51
|
Wen G, Zhang Y, Xie S, Dong W. The influence of two distinct surface modification techniques on the clinical efficacy of titanium implants: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101855. [PMID: 38582353 DOI: 10.1016/j.jormas.2024.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE To compare the effectiveness of anodized and sandblasted large-grit acid-etched surface modification implants in clinical applications. METHODS This systematic review has been registered at PROSPERO (CRD42023423656). A systematic search was performed using seven databases. The meta-analysis was performed using the RevMan 5.4 program and Stata 17.0 software. An analysis of the risk of bias in the included studies was conducted using the Cochrane Handbook for Systematic Reviews of Interventions and the Newcastle-Ottawa scale. RESULTS A comprehensive analysis of 16 studies, which collectively encompassed a total of 2768 implants, was finished. Following a five years follow-up, the meta-analysis showed that the cumulative survival rate of implants was lower in the anodized group compared to the sandblasted large-grit acid-etched group (RR, 3.47; 95 % confidence interval [CI], 1.23 to 9.81; P = 0.02). Furthermore, the anodized group and the sandblasted large-grit acid-etched group had similar marginal bone loss over the one to three years follow-up period. However, it was observed that the marginal bone loss increased at the five years follow-up period in the anodized group in comparison to the sandblasted large-grit acid-etched group (SMD, 2.98; 95 % CI, 0.91 to 5.06; P = 0.005). In terms of biological complications, plaque index, bleeding on probing, and probing pocket depth, we found no statistically significant differences between the anodized and sandblasted large-grit acid-etched group. CONCLUSIONS The sandblasted large-grit acid-etched group exhibited higher implants cumulative survival rate and less marginal bone loss compared to the anodized group. Moreover, both groups demonstrated similar incidences of biological complications, plaque index, bleeding on probing, and probing pocket depth, suggesting overall equivalence in these aspects.
Collapse
Affiliation(s)
- Guochen Wen
- School of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Yan Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Shanen Xie
- School of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
52
|
Suresh N, Mauramo M, Waltimo T, Sorsa T, Anil S. The Effectiveness of Curcumin Nanoparticle-Coated Titanium Surfaces in Osteogenesis: A Systematic Review. J Funct Biomater 2024; 15:247. [PMID: 39330223 PMCID: PMC11432901 DOI: 10.3390/jfb15090247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: This systematic review critically appraises and synthesizes evidence from in vitro studies investigating the effects of curcumin nanoparticles on titanium surface modification, focusing on cell adhesion, proliferation, osteogenic differentiation, and mineralization. (2) Methods: A comprehensive electronic search was conducted in PubMed, Cochrane Central Register of Controlled Trials, and Google Scholar databases, yielding six in vitro studies that met the inclusion criteria. The search strategy and study selection process followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A qualitative methodological assessment was performed using the SciRAP (Science in Risk Assessment and Policy) method, which evaluated the reporting and methodological quality of the included studies. (3) Results: All six studies consistently demonstrated that curcumin-coated titanium surfaces inhibited osteoclastogenesis and promoted osteogenic activity, evidenced by enhanced cell adhesion, proliferation, osteogenic differentiation, and mineralization. The mean reporting quality score was 91.8 (SD = 5.7), and the mean methodological quality score was 85.8 (SD = 10.50), as assessed by the SciRAP method. Half of the studies used hydroxyapatite-coated titanium as a control, while the other half used uncoated titanium, introducing potential variability in baseline comparisons. (4) Conclusions: This systematic review provides compelling in vitro evidence supporting the osteogenic potential of curcumin nanoparticle-coated titanium surfaces. The findings suggest that this surface modification strategy may enhance titanium implants' biocompatibility and osteogenic properties, potentially improving dental and orthopedic implant outcomes. However, the review highlights significant heterogeneity in experimental designs and a concentration of studies from a single research group. Further research, particularly in vivo studies and clinical trials from diverse research teams, is essential to validate these findings and comprehensively understand the translational potential of this promising surface modification approach.
Collapse
Affiliation(s)
- Nandita Suresh
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland; (N.S.); (T.W.); (T.S.)
- Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Perumthuruthy, Tiruvalla 689101, Kerala, India
| | - Matti Mauramo
- Department of Pathology, Helsinki University Hospital, Helsinki University, 00290 Helsinki, Finland;
| | - Tuomas Waltimo
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland; (N.S.); (T.W.); (T.S.)
- Faculty of Medicine, University of Basel, 4003 Basel, Switzerland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki University, 00014 Helsinki, Finland; (N.S.); (T.W.); (T.S.)
- Department of Oral Diseases, Karolinska Institutet, Huddinge, 171 77 Stockholm, Sweden
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
53
|
Ciszyński M, Chwaliszewski B, Simka W, Dominiak M, Gedrange T, Hadzik J. Zirconia Dental Implant Designs and Surface Modifications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4202. [PMID: 39274592 PMCID: PMC11396535 DOI: 10.3390/ma17174202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Titanium currently has a well-established position as the gold standard for manufacturing dental implants; however, it is not free of flaws. Mentions of possible soft-tissue discoloration, corrosion, and possible allergic reactions have led to the development of zirconia dental implants. Various techniques for the surface modification of titanium have been applied to increase titanium implants' ability to osseointegrate. Similarly, to achieve the best possible results, zirconia dental implants have also had their surface modified to promote proper healing and satisfactory long-term results. Despite zirconium oxide being a ceramic material, not simply a metal, there have been mentions of it being susceptible to corrosion too. In this article, we aim to review the literature available on zirconia implants, the available techniques for the surface modification of zirconia, and the effects of these techniques on zirconia's biological properties. Zirconia's biocompatibility and ability to osseointegrate appears unquestionably good. Despite some of its mechanical properties being, factually, inferior to those of titanium, the benefits seem to outweigh the drawbacks. Zirconia implants show very good success rates in clinical research. This is partially due to available methods of surface treatment, including nanotopography alterations, which allow for improved wettability, bone-to-implant contact, and osteointegration in general.
Collapse
Affiliation(s)
- Michał Ciszyński
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Bartosz Chwaliszewski
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Tomasz Gedrange
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Department of Orthodontics, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| |
Collapse
|
54
|
Cuahtecontzi Delint R, Ishak MI, Tsimbouri PM, Jayawarna V, Burgess KVE, Ramage G, Nobbs AH, Damiati L, Salmeron-Sanchez M, Su B, Dalby MJ. Nanotopography Influences Host-Pathogen Quorum Sensing and Facilitates Selection of Bioactive Metabolites in Mesenchymal Stromal Cells and Pseudomonas aeruginosa Co-Cultures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43374-43386. [PMID: 39113638 PMCID: PMC11345723 DOI: 10.1021/acsami.4c09291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.
Collapse
Affiliation(s)
- Rosalia Cuahtecontzi Delint
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Mohd I. Ishak
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Penelope M. Tsimbouri
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Vineetha Jayawarna
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Karl V. E. Burgess
- EdinOmics, University
of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Gordon Ramage
- Safeguarding
Health through Infection Prevention (SHIP) Research Group, Research
Centre for Health, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Angela H. Nobbs
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Laila Damiati
- Department
of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Manuel Salmeron-Sanchez
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Bo Su
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| |
Collapse
|
55
|
Luo Y. Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps. Bioengineering (Basel) 2024; 11:817. [PMID: 39199775 PMCID: PMC11351140 DOI: 10.3390/bioengineering11080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Personalized orthopedic devices are increasingly favored for their potential to enhance long-term treatment success. Despite significant advancements across various disciplines, the seamless integration and full automation of personalized orthopedic treatments remain elusive. This paper identifies key interdisciplinary gaps in integrating and automating advanced technologies for personalized orthopedic treatment. It begins by outlining the standard clinical practices in orthopedic treatments and the extent of personalization achievable. The paper then explores recent innovations in artificial intelligence, biomaterials, genomic and proteomic analyses, lab-on-a-chip, medical imaging, image-based biomechanical finite element modeling, biomimicry, 3D printing and bioprinting, and implantable sensors, emphasizing their contributions to personalized treatments. Tentative strategies or solutions are proposed to address the interdisciplinary gaps by utilizing innovative technologies. The key findings highlight the need for the non-invasive quantitative assessment of bone quality, patient-specific biocompatibility, and device designs that address individual biological and mechanical conditions. This comprehensive review underscores the transformative potential of these technologies and the importance of multidisciplinary collaboration to integrate and automate them into a cohesive, intelligent system for personalized orthopedic treatments.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
56
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
57
|
Narayanan R, Panigrahi M, Rautray TR, Kwon TY. Cathodic Synthesis of Strontium-Substituted Hydroxyapatite Coatings. JOM 2024; 76:4068-4074. [DOI: 10.1007/s11837-024-06663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/13/2024] [Indexed: 01/06/2025]
|
58
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
59
|
Park SS, Lim H, Lee BT. In vivo evaluation of hyaluronic acid-polyethylene glycol amended PMMA bone cement for orthopaedic application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1947-1962. [PMID: 38815001 DOI: 10.1080/09205063.2024.2359789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The utilization of polymethyl methacrylate (PMMA) bone cement is employed for the purpose of stabilizing fractured vertebral bodies. The existence of a mechanical imbalance in hard polymethylmethacrylate (PMMA) bone cement has the potential to increase the likelihood of a fracture occurring in the neighbouring vertebral body. In order to reduce potential difficulties, the primary goal of this study is to investigate the potential benefits of increasing PMMA bone cement's bioactivity and lowering its elastic modulus. The incorporation of a 10% volume fraction of hyaluronic acid (HyA) and polyethylene glycol (PEG) into the bone cement led to an improvement in the bioactivity and decreasing of elastic modulus of polymethylmethacrylate (PMMA). The integration of HyPE gel phase presents several advantages over pure PMMA bone cement, including enhanced setting parameters, improved degradability, and increased biocompatibility. The gel phase is additionally accountable for a reduction in the elastic modulus of polymethylmethacrylate (PMMA) bone cement. In addition, the existence of a porous structure that arises from the degradation of the HyPE gel phase delivers a significant amount of room, thereby enhancing the process of bone regeneration when implanted in the femur of rabbits. The utilization of HyPE in PMMA has been shown through comprehensive µ-CT analysis to enhance bone formation, thereby promoting osteointegration at the implantation site. Furthermore, the histological analysis demonstrated the existence of osteogenic activity in the PMMA polyethylene glycol supplemented with 10% HyA and 10% PEG after a 2-month period subsequent to implantation.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hansung Lim
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
60
|
Alsharbaty MHM, Naji GA, Ghani BA, Schagerl M, Khalil MA, Ali SS. Cytotoxicity and antibacterial susceptibility assessment of a newly developed pectin-chitosan polyelectrolyte composite for dental implants. Sci Rep 2024; 14:16968. [PMID: 39043806 PMCID: PMC11266696 DOI: 10.1038/s41598-024-68020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Biopolymers such as chitosan and pectin are currently attracting significant attention because of their unique properties, which are valuable in the food industry and pharmaceutical applications. These properties include non-toxicity, compatibility with biological systems, natural decomposition ability, and structural adaptability. The objective of this study was to assess the performance of two different ratios of pectin-chitosan polyelectrolyte composite (PCPC) after applying them as a coating to commercially pure titanium (CpTi) substrates using electrospraying. The PCPC was studied in ratios of 1:2 and 1:3, while the control group consisted of CpTi substrates without any coating. The pull-off adhesion strength, cytotoxicity, and antibacterial susceptibility tests were utilized to evaluate the PCPC coatings. In order to determine whether the composite coating was the result of physical blending or chemical bonding, the topographic surface parameters were studied using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). PCPC (1:3) had the highest average cell viability of 93.42, 89.88, and 86.85% after 24, 48, and 72 h, respectively, as determined by the cytotoxicity assay, when compared to the other groups. According to the Kirby-Bauer disk diffusion method for testing antibacterial susceptibility, PCPC (1:3) showed the highest average diameter of the zone of inhibition, measuring 14.88, 14.43, and 11.03 mm after 24, 48, and 72 h of incubation, respectively. This difference was highly significant compared to Group 3 at all three time periods. PCPC (1:3) exhibited a significantly higher mean pull-off adhesion strength (521.6 psi) compared to PCPC (1:2), which revealed 419.5 psi. PCPC (1:3) coated substrates exhibited better surface roughness parameters compared to other groups based on the findings of the AFM. The FTIR measurement indicated that both PCPC groups exhibited a purely physical blending in the composite coating. Based on the extent of these successful in vitro experiments, PCPC (1:3) demonstrates its potential as an effective coating layer. Therefore, the findings of this study pave the way for using newly developed PCPC after electrospraying coating on CpTi for dental implants.
Collapse
Affiliation(s)
| | - Ghassan A Naji
- College of Dentistry, AL-Iraqia University, Baghdad, Iraq
| | - Ban A Ghani
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, 21944, Taif, Saudi Arabia
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
61
|
Hussain B, Grytten JI, Rongen G, Sanz M, Haugen HJ. Surface Topography Has Less Influence on Peri-Implantitis than Patient Factors: A Comparative Clinical Study of Two Dental Implant Systems. ACS Biomater Sci Eng 2024; 10:4562-4574. [PMID: 38916970 PMCID: PMC11234333 DOI: 10.1021/acsbiomaterials.3c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES This study aims to assess the risk of peri-implantitis (PI) onset among different implant systems and evaluate the severity of the disease from a population of patients treated in a university clinic. Furthermore, this study intends to thoroughly examine the surface properties of the implant systems that have been identified and investigated. MATERIAL AND METHODS Data from a total of six hundred and 14 patients were extracted from the Institute of Clinical Dentistry, Dental Faculty, University of Oslo. Subject- and implant-based variables were collected, including the type of implant, date of implant installation, medical records, recall appointments up to 2022, periodontal measurements, information on diabetes, smoking status, sex, and age. The outcome of interest was the diagnosis of PI, defined as the occurrence of bleeding on probing (BoP), peri-implant probing depth (PD) ≥ 5 mm, and bone loss (BL). Data were analyzed using multivariate linear and logistic regression. Scanning electron microscopy, light laser profilometer, and X-ray photoelectron spectroscopy were utilized for surface and chemical analyses. RESULTS Among the patients evaluated, 6.8% were diagnosed with PI. A comparison was made between two different implant systems: Dentsply Sirona, OsseospeedTM and Straumann SLActive, with mean follow-up times of 3.84 years (SE: 0.15) and 3.34 years (SE: 0.15), respectively. The surfaces have different topographies and surface chemistry. However, no significant association was found between PI and implant surface/system, including no difference in the onset or severity of the disease. Nonetheless, plaque control was associated with an increased risk of developing PI, along with the gender of the patient. Furthermore, patients suffering from PI exhibited increased BL in the anterior region. CONCLUSION No differences were observed among the evaluated implant systems, although the surfaces have different topography and chemistry. Factors that affected the risk of developing PI were plaque index and male gender. The severity of BL in patients with PI was more pronounced in the anterior region. Consequently, our findings show that success in implantology is less contingent on selecting implant systems and more on a better understanding of patient-specific risk factors, as well as on implementing biomaterials that can more effectively debride dental implants.
Collapse
Affiliation(s)
- Badra Hussain
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| | | | - Gunnar Rongen
- Institute
of Community Dentistry, University of Oslo, Oslo 0316, Norway
| | - Mariano Sanz
- Section
of Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid 28040, Spain
- ETEP
(Etiology and Therapy of Periodiontal and Peri-Implant Diseases) Research
Group, Complutense University, Madrid 28040, Spain
| | - Håvard Jostein Haugen
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
62
|
Toscano RA, Barbosa S, Campos LG, de Sousa CA, Dallazen E, Mourão CF, Shibli JA, Ervolino E, Faverani LP, Assunção WG. The Addition of Hydroxyapatite Nanoparticles on Implant Surfaces Modified by Zirconia Blasting and Acid Etching to Enhance Peri-Implant Bone Healing. Int J Mol Sci 2024; 25:7321. [PMID: 39000425 PMCID: PMC11242766 DOI: 10.3390/ijms25137321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.
Collapse
Affiliation(s)
- Ricardo Alves Toscano
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Stéfany Barbosa
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Larissa Gabriele Campos
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Cecília Alves de Sousa
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Eduardo Dallazen
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, School of Dentistry, Tufts University, Boston, MA 02111, USA
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16018-800, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Wirley Goncalves Assunção
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| |
Collapse
|
63
|
Bokobza L. On the Use of Nanoparticles in Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3191. [PMID: 38998274 PMCID: PMC11242106 DOI: 10.3390/ma17133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone-implant interfacial area. Surface coatings via the sol-gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
64
|
Saberian E, Jenča A, Seyfaddini R, Jenča A, Zare-Zardini H, Petrášová A, Jenčová J. Comparative Analysis of Osteoblastic Responses to Titanium and Alumina-Toughened Zirconia Implants: An In Vitro Study. Biomolecules 2024; 14:719. [PMID: 38927122 PMCID: PMC11201529 DOI: 10.3390/biom14060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Osteoblastic responses play a crucial role in the success of oral implants. Enhanced proliferation of osteoblast cells is associated with reduced cell mortality and an increase in bone regeneration. This study aims to evaluate the osteoblastic responses following oral implantation. MATERIALS AND METHODS Osteoblast stem cells were harvested and subsequently cultivated using cell culture techniques. The osteoblastic phenotype of the extracted cells was confirmed by examining the extracellular matrix. Cell morphogenesis on functionalized biomaterial surfaces was assessed through indirect immunofluorescence staining. The cellular response was investigated in the presence of two types of implant materials: titanium (Ti) and alumina-toughened zirconia (ATZ). Cell viability and apoptosis were quantitatively assessed using MTT assays and flow cytometry, respectively. RESULTS The survival of osteoblastic lineage cells was moderately reduced post-implantation. Viability in the Ti implant group remained at approximately 86%, while in the ATZ group, it was observed at 75%, which is considered acceptable. Moreover, there was a significant disparity in cell survival between the two implant groups (p < 0.05). Analysis of apoptosis levels at various concentrations revealed that the rate of apoptosis was 3.6% in the control group and 18.5% in the ATZ group, indicating that apoptosis or programmed cell death in the ATZ-treated group had increased nearly four-fold (p < 0.05). CONCLUSIONS The findings of this study indicate a reduction in osteoblastic cell line survival following implant treatment, with titanium implants exhibiting superior performance in terms of cell survival. However, it was also noted that the incidence of apoptosis in osteoblast cells was significantly higher in the presence of zirconium-based implants.
Collapse
Affiliation(s)
- Elham Saberian
- Faculty of Medicine, Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 01 Kosice, Slovakia (A.J.)
| | - Rahman Seyfaddini
- Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 01 Kosice, Slovakia (A.J.)
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 01 Kosice, Slovakia (A.J.)
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 01 Kosice, Slovakia (A.J.)
| |
Collapse
|
65
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
66
|
Bae GH, Cho WT, Lee JH, Huh JB. Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants. J Adv Prosthodont 2024; 16:189-199. [PMID: 38957293 PMCID: PMC11215036 DOI: 10.4047/jap.2024.16.3.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.
Collapse
Affiliation(s)
- Gang-Ho Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jong-Ho Lee
- Research and Development Institute, PNUADD Co., Ltd., Busan, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
67
|
Komatsu T, Ohta H, Takakura N, Hata J, Kitagawa T, Kurashina Y, Onoe H, Okano HJ, Iguchi Y. A Novel Rat Model of Embolic Cerebral Ischemia Using a Cell-Implantable Radiopaque Hydrogel Microfiber. Transl Stroke Res 2024; 15:636-646. [PMID: 36867349 DOI: 10.1007/s12975-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The failure of neuroprotective treatment-related clinical trials, including stem cell therapies, may be partially due to a lack of suitable animal models. We have developed a stem cell-implantable radiopaque hydrogel microfiber that can survive for a long time in vivo. The microfiber is made of barium alginate hydrogel containing zirconium dioxide, fabricated in a dual coaxial laminar flow microfluidic device. We aimed to develop a novel focal stroke model using this microfiber. Using male Sprague-Dawley rats (n=14), a catheter (inner diameter, 0.42 mm; outer diameter, 0.55 mm) was navigated from the caudal ventral artery to the left internal carotid artery using digital subtraction angiography. A radiopaque hydrogel microfiber (diameter, 0.4 mm; length, 1 mm) was advanced through the catheter by slow injection of heparinized physiological saline to establish local occlusion. Both 9.4-T magnetic resonance imaging at 3 and 6 h and 2% 2,3,5-triphenyl tetrazolium chloride staining at 24 h after stroke model creation were performed. Neurological deficit score and body temperature were measured. The anterior cerebral artery-middle cerebral artery bifurcation was selectively embolized in all rats. Median operating time was 4 min (interquartile range [IQR], 3-8 min). Mean infarct volume was 388 mm3 (IQR, 354-420 mm3) at 24 h after occlusion. No infarction of the thalamus or hypothalamus was seen. Body temperature did not change significantly over time (P = 0.204). However, neurological deficit scores before and at 3, 6, and 24 h after model creation differed significantly (P < 0.001). We present a novel rat model of focal infarct restricted to the middle cerebral artery territory using a radiopaque hydrogel microfiber positioned under fluoroscopic guidance. By comparing the use of stem cell-containing versus non-containing fibers in this stroke model, it would be possible to determine the efficacy of "pure" cell transplantation in treating stroke.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takakura
- School of integrated DESIGN Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Junichi Hata
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| |
Collapse
|
68
|
Vranceanu DM, Ungureanu E, Ionescu IC, Parau AC, Pruna V, Titorencu I, Badea M, Gălbău CȘ, Idomir M, Dinu M, (Dragomir) AV, Cotrut CM. In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium. Biomimetics (Basel) 2024; 9:244. [PMID: 38667255 PMCID: PMC11047857 DOI: 10.3390/biomimetics9040244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency.
Collapse
Affiliation(s)
- Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Ionut C. Ionescu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Anca C. Parau
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Mihaela Badea
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Cristina-Ștefania Gălbău
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Idomir
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Alina Vladescu (Dragomir)
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| |
Collapse
|
69
|
Madiwal V, Rajwade J. Silver-deposited titanium as a prophylactic 'nano coat' for peri-implantitis. NANOSCALE ADVANCES 2024; 6:2113-2128. [PMID: 38633042 PMCID: PMC11019494 DOI: 10.1039/d3na00898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Dental implant failures caused by bacterial infections are a significant concern for dental implantologists. We modified the titanium surface by depositing silver (Ti-Ag) using direct current (DC) sputtering and confirmed the formation of a 'nano coat' by X-ray photoelectron spectroscopy (XPS), surface profilometry and energy dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the deposition of a uniform nano Ag thin film. A gradual increase in thickness was observed, and the film thickness (530 nm) at 5 min deposition time (Ti-Ag5) resulted in a reduction of the water contact angle (WCA, 15%) and an increase in surface energy (SFE, 22%) in comparison to the uncoated Ti surface. Using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), the slow, steady release of Ag from the coating was observed over 21 days. The Ti-Ag5 surface exhibited excellent antibacterial activity against Streptococcus oralis, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, which belonged to the yellow, purple, and red complexes, representing specific periodontal pathogens. Furthermore, we observed excellent cytocompatibility of Ag-deposited Ti towards MG-63 osteoblasts with no inhibitory effect on their proliferative potential. Quantitation of alkaline phosphatase (ALP) activity, mineralization efficiency, and osteogenesis-related gene expression of MG-63 cells over 21 days was suggestive of rapid osseointegration. Overall, the 'nano coat' of Ag on Ti is indeed a prophylactic against peri-implantitis, ensuring increased implant success.
Collapse
Affiliation(s)
- Vaibhav Madiwal
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411004 India +91-020-025325131
- Savitribai Phule Pune University Homi Bhabha Road Pune 411007 India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411004 India +91-020-025325131
- Savitribai Phule Pune University Homi Bhabha Road Pune 411007 India
| |
Collapse
|
70
|
Yum H, Han HS, Kim K, Kim S, Cho YD. The cumulative survival rate of sandblasted, large-grit, acid-etched dental implants: a retrospective analysis. J Periodontal Implant Sci 2024; 54:122-135. [PMID: 37524380 PMCID: PMC11065536 DOI: 10.5051/jpis.2301440072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
PURPOSE This retrospective study aimed to assess the long-term cumulative survival rate of titanium, sandblasted, large-grit, acid-etched implants over a 10-year follow-up period and investigate the factors affecting the survival rate and change in marginal bone loss (MBL). METHODS The study included 400 patients who underwent dental implant placement at the Department of Periodontology of Seoul National University Dental Hospital (SNUDH) between 2005 and 2015. Panoramic radiographic images and dental records of patients were collected and examined using Kaplan-Meier analysis, Cox proportional hazards regression analysis, and multiple regression analysis to determine the survival rates and identify any factors related to implant failure and MBL. RESULTS A total of 782 implants were placed with a follow-up period ranging from 0 to 16 years (mean: 8.21±3.75 years). Overall, 25 implants were lost, resulting in a cumulative survival rate of 96.8%. Comparisons of the research variables regarding cumulative survival rate mostly yielded insignificant results. The mean mesial and distal MBLs were 1.85±2.31 mm and 1.59±2.03 mm, respectively. Factors influencing these values included age, diabetes mellitus (DM), jaw location, implant diameter, bone augmentation surgery, and prosthetic unit. CONCLUSIONS This study found that the implant survival rates at SNUDH fell within the acceptable published criteria. The patients' sex, age, DM status, implant location, implant design, implant size, surgical type, bone augmentation, and prosthetic unit had no discernible influence on long-term implant survival. Sandblasted, large-grit, acid-etched implants might offer advantages in terms of implant longevity and consistent clinical outcomes.
Collapse
Affiliation(s)
- Haeji Yum
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Hee-Seung Han
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Kitae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| |
Collapse
|
71
|
Zhang Q, Wu S, Sun Y, Ru Yie KH, Zhuang J, Liu T, Si W, Zhang Y, Liu Z, Xiong L, Lu L, Gao P, Liu J. Mussel byssus-inspired dual-functionalization of zirconia dental implants for improved bone integration. Mater Today Bio 2024; 25:101007. [PMID: 38779617 PMCID: PMC11110719 DOI: 10.1016/j.mtbio.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Zirconia faces challenges in dental implant applications due to its inherent biological inertness, which compromises osseointegration, a critical factor for the long-term success of implants that rely heavily on specific cell adhesion and enhanced osteogenic activity. Here, we fabricated a dual-functional coating that incorporates strontium ions, aimed at enhancing osteogenic activity, along with an integrin-targeting sequence to improve cell adhesion by mussel byssus-inspired surface chemistry. The results indicated that although the integrin-targeting sequence at the interface solely enhances osteoblast adhesion without directly increasing osteogenic activity, its synergistic interaction with the continuously released strontium ions from the coating, as compared to the release of strontium ions alone, significantly enhances the overall osteogenic effect. More importantly, compared to traditional polydopamine surface chemistry, the coating surface is enriched with amino groups capable of undergoing various chemical reactions and exhibits enhanced stability and aesthetic appeal. Therefore, the synergistic interplay between strontium and the functionally customizable surface offers considerable potential to improve the success of zirconia implantation.
Collapse
Affiliation(s)
| | | | - Yingyue Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiatong Zhuang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tingting Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wen Si
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zheyuan Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Xiong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
72
|
Calazans Neto JV, Ferreira I, Ramos AP, Bolfarini C, Batalha RL, Dos Reis AC, Valente MLDC. Comparative analysis of the physical, chemical, and microbiological properties of Ti-6Al-4V disks produced by different methods and subjected to surface treatments. J Prosthet Dent 2024; 131:742.e1-742.e8. [PMID: 38383281 DOI: 10.1016/j.prosdent.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
STATEMENT OF PROBLEM To improve the osseointegration of dental implants and reduce microbiological growth, different micro- and nanoscale surface topographies can be used. PURPOSE The purpose of this in vitro study was to evaluate the influence of Ti-6Al-4V with 4 surfaces, machined (DU), machined+hydroxyapatite (DUHAp), machined+acid-alkali treatment (DUAA), and additive manufacturing (DMA), on the physical, chemical, and microbiological properties. MATERIAL AND METHODS The topography of Ti-6Al-4V disks with the 4 surfaces was evaluated by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray spectroscopy (EDS), and the crystalline structure by X-ray diffraction (XRD). Physical and chemical properties were analyzed by using wettability and surface free energy, roughness, and microbial adhesion against Staphylococcus aureus by colony forming units (CFU). One-way ANOVA analysis of variance and the Tukey multiple comparisons test were applied to evaluate the data, except CFU, which was submitted to the Kruskal-Wallis nonparametric test (α=.05). RESULTS DU photomicrographs showed a topography characteristic of a polished machined surface, DUHAp and DUAA exhibited patterns corresponding to the surface modifications performed, and in DMA the presence of partially fused spherical particles was observed. The EDS identified chemical elements inherent in the Ti-6Al-4V, and the DUHAp and DUAA disks also had the ions from the treatments applied. XRD patterns revealed similarities between DU and DMA, as well as characteristic peaks of hydroxyapatite (HA) in the DUHAp disk and the DUAA. Compared with DU and DMA the DUHAp and DUAA groups showed hydrophilic behavior with smaller contact angles and higher surface free energy (P<.05). DMA showed a higher mean value of roughness, different from the others (P<.05), and a higher CFU for S. aureus (P=.006). CONCLUSIONS DUHAp and DUAA showed similar behaviors regarding wettability, surface free energy, and bacterial adhesion. Among the untreated groups, DMA exhibited higher roughness, bacterial adhesion, and lower wettability and surface free energy.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Izabela Ferreira
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Paula Ramos
- Professor, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, (USP), Ribeirão Preto, Brazil
| | - Claudemiro Bolfarini
- Professor, Professor, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Rodolfo Lisboa Batalha
- Researcher, Materials and Technologies, Department of Research, Development and Innovation, Institute of Welding and Quality (ISQ), Porto Salvo, Oeiras, Portugal
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
73
|
Areid N, Abushahba F, Riivari S, Närhi T. Effect of TiO 2 Abutment Coatings on Peri-Implant Soft Tissue Behavior: A Systematic Review of In Vivo Studies. Int J Dent 2024; 2024:9079673. [PMID: 38533472 PMCID: PMC10965279 DOI: 10.1155/2024/9079673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Establishing a proper soft tissue adhesion around the implant abutment is essential to prevent microbial invasion, inhibit epithelial downgrowth, and obtain an optimal healing process. This systematic review aims to evaluate the real potential of TiO2 coating on the behavior of peri-implant soft tissue health and maintenance. A specific aim was to evaluate clinically and histologically the effect of TiO2 abutment coating on epithelial and connective tissue attachment. Electronic database searches were conducted from 1990 to 2023 in MEDLINE/PubMed and the Web of Science databases. In total, 15 out of 485 publications were included. Eight studies involved humans, and seven were animal studies. Exposure time ranges from 2 days to 5 years. The peri-implant soft tissue evaluations included clinical assessment (plaque index (PI), peri-implant probing pocket depth (PPD), and bleeding on probing (BoP)), histological as well as histomorphometric analysis. The Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies was used to evaluate the overall quality of the studies included in the review. The results showed some variation but remained within acceptable limits. Within the limitations of this systematic review, the present findings suggest that TiO2 coatings seem to influence soft tissue healing. TiO2-coated abutments with a roughness value between 0.2 and 0.5 μm enhance soft tissue health. Sol-gel-derived TiO2 coatings induced better soft tissue attachment than noncoated machined abutment surfaces. The anodized titanium abutments demonstrate comparable clinical and histological outcomes to conventional machined abutments. However, there was variation among the included studies concerning TiO2 coating characteristics and the measured outcomes used to evaluate the soft tissue response, and therefore, quantitative analysis was not feasible. Long-term in vivo studies with standardized soft tissue analysis and coating surface parameters are necessary before a definitive conclusion can be drawn. OSF Registration No.: 10.17605/OSF.IO/E5RQV.
Collapse
Affiliation(s)
- Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Department of Biomaterials Science and Turku Clinical Biomaterial Center-TCBC, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Wellbeing Services County of South-West Finland, Turku FI-20521, Finland
| |
Collapse
|
74
|
Chen T, Wu Z, Hou Q, Mei Y, Yang K, Xu J, Wang L. The Dual Angiogenesis Effects via Nrf2/HO-1 Signaling Pathway of Melatonin Nanocomposite Scaffold on Promoting Diabetic Bone Defect Repair. Int J Nanomedicine 2024; 19:2709-2732. [PMID: 38510794 PMCID: PMC10954026 DOI: 10.2147/ijn.s449290] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/β-Tricalcium phosphate (PCL/β-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.
Collapse
Affiliation(s)
- Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
75
|
Chen YW, Chiang T, Chen IH, Yuh DY, Tseng HY, Wang CW, Hou HH. Titanium Surfaces with a Laser-Produced Microchannel Structure Enhance Pre-Osteoblast Proliferation, Maturation, and Extracellular Mineralization In Vitro. Int J Mol Sci 2024; 25:3388. [PMID: 38542358 PMCID: PMC10970313 DOI: 10.3390/ijms25063388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025] Open
Abstract
The clinical success of dental titanium implants is profoundly linked to implant stability and osseointegration, which comprises pre-osteoblast proliferation, osteogenic differentiation, and extracellular mineralization. Because of the bio-inert nature of titanium, surface processing using subtractive or additive methods enhances osseointegration ability but limits the benefit due to accompanying surface contamination. By contrast, laser processing methods increase the roughness of the implant surface without contamination. However, the effects of laser-mediated distinct surface structures on the osteointegration level of osteoblasts are controversial. The role of a titanium surface with a laser-mediated microchannel structure in pre-osteoblast maturation remains unclear. This study aimed to elucidate the effect of laser-produced microchannels on pre-osteoblast maturation. Pre-osteoblast human embryonic palatal mesenchymal cells were seeded on a titanium plate treated with grinding (G), sandblasting with large grit and acid etching (SLA), or laser irradiation (L) for 3-18 days. The proliferation and morphology of pre-osteoblasts were evaluated using a Trypan Blue dye exclusion test and fluorescence microscopy. The mRNA expression, protein expression, and protein secretion of osteogenic differentiation markers in pre-osteoblasts were evaluated using reverse transcriptase quantitative polymerase chain reaction, a Western blot assay, and a multiplex assay, respectively. The extracellular calcium precipitation of pre-osteoblast was measured using Alizarin red S staining. Compared to G- and SLA-treated titanium surfaces, the laser-produced microchannel surfaces enhanced pre-osteoblast proliferation, the expression/secretion of osteogenic differentiation markers, and extracellular calcium precipitation. Laser-treated titanium implants may enhance the pre-osteoblast maturation process and provide extra benefits in clinical application.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan;
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
| | - Tao Chiang
- Biomate Implant Academy Institute, Kaohsiung 806, Taiwan;
| | - I-Hui Chen
- Division of Periodontology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Da-Yo Yuh
- Division of Periodontology, Department of Dentistry, Tri-Service General Hospital, Taipei 114, Taiwan;
- Department of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsiu-Yang Tseng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Hsin-Han Hou
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan;
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
76
|
Romero Gavilán F, Cerqueira A, Anitua E, Muñoz F, García Arnáez I, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J, Tejero R. Enhancing the correlation between in vitro and in vivo experiments in dental implant osseointegration: investigating the role of Ca ions. J Mater Chem B 2024; 12:2831-2842. [PMID: 38412455 DOI: 10.1039/d3tb02694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study delves into the osteogenic potential of a calcium-ion modified titanium implant surface, unicCa, employing state-of-the-art proteomics techniques both in vitro (utilizing osteoblasts and macrophage cell cultures) and in vivo (in a rabbit condyle model). When human osteoblasts (Hobs) were cultured on unicCa surfaces, they displayed a marked improvement in cell adhesion and differentiation compared to their unmodified counterparts. The proteomic analysis also revealed enrichment in functions associated with cell migration, adhesion, extracellular matrix organization, and proliferation. The analysis also underscored the involvement of key signalling pathways such as PI3K-Akt and mTOR. In the presence of macrophages, unicCa initially exhibited improvement in immune-related functions and calcium channel activities at the outset (1 day), gradually tapering off over time (3 days). Following a 5-day implantation in rabbits, unicCa demonstrated distinctive protein expression profiles compared to unmodified surfaces. The proteomic analysis highlighted shifts in adhesion, immune response, and bone healing-related proteins. unicCa appeared to influence the coagulation cascade and immune regulatory proteins within the implant site. In summary, this study provides a comprehensive proteomic analysis of the unicCa surface, drawing correlations between in vitro and in vivo results. It emphasizes the considerable potential of unicCa surfaces in enhancing osteogenic behavior and immunomodulation. These findings significantly contribute to our understanding of the intricate molecular mechanisms governing the interplay between biomaterials and bone cells, thereby facilitating the development of improved implant surfaces for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Francisco Romero Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute I + D, C/Leonardo da Vinci 14B, Miñano 01510, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/Jacinto Quincoces, 39, Vitoria 01007, Spain.
- Private Practice in Oral Implantology, C/Jose Maria Cagigal, 19, Vitoria 01007, Spain
| | - Fernando Muñoz
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario, s/n, Lugo 27002, Spain
| | - Iñaki García Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Ricardo Tejero
- BTI Biotechnology Institute I + D, C/Leonardo da Vinci 14B, Miñano 01510, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/Jacinto Quincoces, 39, Vitoria 01007, Spain.
| |
Collapse
|
77
|
Schwartz-Filho HO, Martins TR, Sano PR, Araújo MT, Chan DCH, Saldanha NR, Silva KDP, Graziano TS, Brandt WC, Torres CVR, Cogo-Müller K. Nanotopography and oral bacterial adhesion on titanium surfaces: in vitro and in vivo studies. Braz Oral Res 2024; 38:e021. [PMID: 38477807 PMCID: PMC11376621 DOI: 10.1590/1807-3107bor-2024.vol38.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/03/2023] [Indexed: 03/14/2024] Open
Abstract
The present study aimed to evaluate the influence of titanium surface nanotopography on the initial bacterial adhesion process by in vivo and in vitro study models. Titanium disks were produced and characterized according to their surface topography: machined (Ti-M), microtopography (Ti-Micro), and nanotopography (Ti-Nano). For the in vivo study, 18 subjects wore oral acrylic splints containing 2 disks from each group for 24 h (n = 36). After this period, the disks were removed from the splints and evaluated by microbial culture method, scanning electron microscopy (SEM), and qPCR for quantification of Streptococcus oralis, Actinomyces naeslundii, Fusobacterium nucleatum, as well as total bacteria. For the in vitro study, adhesion tests were performed with the species S. oralis and A. naeslundii for 24 h. Data were compared by ANOVA, with Tukey's post-test. Regarding the in vivo study, both the total aerobic and total anaerobic bacteria counts were similar among groups (p > 0.05). In qPCR, there was no difference among groups of bacteria adhered to the disks (p > 0.05), except for A. naeslundii, which was found in lower proportions in the Ti-Nano group (p < 0.05). In the SEM analysis, the groups had a similar bacterial distribution, with a predominance of cocci and few bacilli. In the in vitro study, there was no difference in the adhesion profile for S. oralis and A. naeslundii after 24 h of biofilm formation (p > 0.05). Thus, we conclude that micro- and nanotopography do not affect bacterial adhesion, considering an initial period of biofilm formation.
Collapse
Affiliation(s)
| | | | - Paulo Roberto Sano
- Universidade de Santo Amaro - Unisa, Department of Dentistry, São Paulo, SP, Brazil
| | - Marcela Takemoto Araújo
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | - Daniel Cheuk Hong Chan
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | | | - Kátia de Pádua Silva
- Universidade Estadual de Campinas - Unicamp, School of Pharmaceutical Sciences, Laboratory of Antimicrobial Pharmacology and Microbiology, Campinas, SP, Brazil
| | - Talita Signoreti Graziano
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | - William Cunha Brandt
- Universidade de Santo Amaro - Unisa, Department of Dentistry, São Paulo, SP, Brazil
| | | | - Karina Cogo-Müller
- Universidade Estadual de Campinas - Unicamp, School of Pharmaceutical Sciences, Laboratory of Antimicrobial Pharmacology and Microbiology, Campinas, SP, Brazil
| |
Collapse
|
78
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
79
|
Bolshakov P, Kuchumov AG, Kharin N, Akifyev K, Statsenko E, Silberschmidt VV. Method of computational design for additive manufacturing of hip endoprosthesis based on basic-cell concept. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3802. [PMID: 38246644 DOI: 10.1002/cnm.3802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Endoprosthetic hip replacement is the conventional way to treat osteoarthritis or a fracture of a dysfunctional joint. Different manufacturing methods are employed to create reliable patient-specific devices with long-term performance and biocompatibility. Recently, additive manufacturing has become a promising technique for the fabrication of medical devices, because it allows to produce complex samples with various structures of pores. Moreover, the limitations of traditional fabrication methods can be avoided. It is known that a well-designed porous structure provides a better proliferation of cells, leading to improved bone remodeling. Additionally, porosity can be used to adjust the mechanical properties of designed structures. This makes the design and choice of the structure's basic cell a crucial task. This study focuses on a novel computational method, based on the basic-cell concept to design a hip endoprosthesis with an unregularly complex structure. A cube with spheroid pores was utilized as a basic cell, with each cell having its own porosity and mechanical properties. A novelty of the suggested method is in its combination of the topology optimization method and the structural design algorithm. Bending and compression cases were analyzed for a cylinder structure and two hip implants. The ability of basic-cell geometry to influence the structure's stress-strain state was shown. The relative change in the volume of the original structure and the designed cylinder structure was 6.8%. Computational assessments of a stress-strain state using the proposed method and direct modeling were carried out. The volumes of the two types of implants decreased by 9% and 11%, respectively. The maximum von Mises stress was 600 MPa in the initial design. After the algorithm application, it increased to 630 MPa for the first type of implant, while it is not changing in the second type of implant. At the same time, the load-bearing capacity of the hip endoprostheses was retained. The internal structure of the optimized implants was significantly different from the traditional designs, but better structural integrity is likely to be achieved with less material. Additionally, this method leads to time reduction both for the initial design and its variations. Moreover, it enables to produce medical implants with specific functional structures with an additive manufacturing method avoiding the constraints of traditional technologies.
Collapse
Affiliation(s)
- Pavel Bolshakov
- Department of Machine Science and Engineering Graphics, Tupolev Kazan National Research Technical University, Kazan, Russia
| | - Alex G Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Perm, Russia
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Perm, Russia
| | - Nikita Kharin
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
- Institute of Engineering, Kazan Federal University, Kazan, Russia
| | - Kirill Akifyev
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Evgeny Statsenko
- Laboratory of X-ray Tomography, Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| |
Collapse
|
80
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
81
|
Tagliaferri N, Pisciotta A, Orlandi G, Bertani G, Di Tinco R, Bertoni L, Sena P, Lunghi A, Bianchi M, Veneri F, Bellini P, Bertacchini J, Conserva E, Consolo U, Carnevale G. Zirconia Hybrid Dental Implants Influence the Biological Properties of Neural Crest-Derived Mesenchymal Stromal Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:392. [PMID: 38470723 PMCID: PMC10934982 DOI: 10.3390/nano14050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs' biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications.
Collapse
Affiliation(s)
- Nadia Tagliaferri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy;
- Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Pierantonio Bellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Enrico Conserva
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| |
Collapse
|
82
|
Ul Haq I, Khan TA, Krukiewicz K. Etiology, pathology, and host-impaired immunity in medical implant-associated infections. J Infect Public Health 2024; 17:189-203. [PMID: 38113816 DOI: 10.1016/j.jiph.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Taj Ali Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States; Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| |
Collapse
|
83
|
Todaro C, Cerri M, Rodriguez y Baena R, Lupi SM. Lower Jaw Full-Arch Restoration: A Completely Digital Approach to Immediate Load. Healthcare (Basel) 2024; 12:332. [PMID: 38338217 PMCID: PMC10855469 DOI: 10.3390/healthcare12030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The digital transformation has revolutionized various sectors, including dentistry. Dentistry has emerged as a pioneer in embracing digital technologies, leading to advancements in surgical and prosthetic oral healthcare. Immediate loading for full-arch edentulous dental implants, once debated, is now widely accepted. This case report describes a 74-year-old patient with dental mobility and significant bone loss who was rehabilitated using a Toronto Bridge protocol on four dental implants with immediate loading. Digital planning, surgical guides, 3D printing, and precision techniques were employed. The surgery involved implant placement and prosthetic procedures. The patient reported minimal post-operative discomfort, and after four months, the definitive prosthesis was successfully placed. This case demonstrates the efficacy of immediate loading in complex dental scenarios with digital innovation, resulting in improved patient outcomes. The full digital workflow, including 3D printing and the use of modern materials, enhances the efficiency and predictability of oral rehabilitation, marking a transformative era in dental care. The integration of digital technology in all phases of treatment, from diagnosis to finalization, makes this approach safer, reliable, and efficient, thereby benefiting both patients and clinicians.
Collapse
Affiliation(s)
- Claudia Todaro
- School of Dentistry, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (R.R.y.B.); (S.M.L.)
| | - Michael Cerri
- Private Practice, 29011 Borgonovo Val Tidone, Italy;
| | - Ruggero Rodriguez y Baena
- School of Dentistry, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (R.R.y.B.); (S.M.L.)
| | - Saturnino Marco Lupi
- School of Dentistry, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (R.R.y.B.); (S.M.L.)
| |
Collapse
|
84
|
Mohammadnejad L, Theurer A, Alber J, Illing B, Kimmerle-Mueller E, Schultheiss J, Krajewski S, Rupp F. Surface-Mediated Modulation of Different Biological Responses on Anatase-Coated Titanium. J Funct Biomater 2024; 15:29. [PMID: 38391882 PMCID: PMC10889146 DOI: 10.3390/jfb15020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Various surface modification strategies are being developed to endow dental titanium implant surfaces with micro- and nano-structures to improve their biocompatibility, and first of all their osseointegration. These modifications have the potential to address clinical concerns by stimulating different biological processes. This study aims to evaluate the biological responses of ananatase-modified blasted/etched titanium (SLA-anatase) surfaces compared to blasted/acid etched (SLA) and machined titanium surfaces. Using unipolar pulsed direct current (DC) sputtering, a nanocrystalline anatase layer was fabricated. In vitro experiments have shown that SLA-anatase discs can effectively promote osteoblast adhesion and proliferation, which are regarded as important features of a successful dental implant with bone contact. Furthermore, anatase surface modification has been shown to partially enhance osteoblast mineralization in vitro, while not significantly affecting bacterial colonization. Consequently, the recently created anatase coating holds significant potential as a promising candidate for future advancements in dental implant surface modification for improving the initial stages of osseointegration.
Collapse
Affiliation(s)
- Leila Mohammadnejad
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Antonia Theurer
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Julia Alber
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Barbara Illing
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Evi Kimmerle-Mueller
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Jacob Schultheiss
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Stefanie Krajewski
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| | - Frank Rupp
- Department Medical Materials Science & Technology, Institute for Biomedical Engineering, University Hospital Tübingen, Osianderstr. 2-8, 72076 Tübingen, Germany
| |
Collapse
|
85
|
Zhan J, Li L, Yao L, Cao Z, Lou W, Zhang J, Liu J, Yao L. Evaluation of sustained drug release performance and osteoinduction of magnetron-sputtered tantalum-coated titanium dioxide nanotubes. RSC Adv 2024; 14:3698-3711. [PMID: 38268551 PMCID: PMC10805130 DOI: 10.1039/d3ra08769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Modifying the drug-release capacity of titanium implants is essential for maintaining their long-term functioning. Titanium dioxide nanotube (TNT) arrays, owing to their drug release capacity, are commonly used in the biomaterial sphere. Their unique half open structure and arrangement in rows increase the drug release capacity. However, their rapid drug release ability not only reduces drug efficiency but also produces excessive local and systemic deposition of antibiotics. In this study, we designed a tantalum-coated TNT system for drug-release optimization. A decreased nanotube size caused by the tantalum nanocoating was observed through SEM and analyzed (TNT: 110 nm, TNT-Ta1: 80 nm, TNT-Ta3: 40 nm, TNT-Ta5: 20 nm, TNT-Ta7: <5 nm). XPS analysis revealed the distribution of the chemical components, especially that of the tantalum element. In vitro experiments showed that the tantalum nanocoating enhanced cell proliferation; in particular, TNT-Ta5 possessed the best cell viability (about 1.18 of TNT groups at 7d). It also showed that the tantalum nanocoating had a positive effect on osteogenesis (especially TNT-Ta5 and TNT-Ta7). Additionally, hydrophilic/hydrophobic drug (vancomycin/raloxifene) release results indicated that the TNT-Ta5 group possessed the most desirable sustained release capacity. Moreover, in this drug release system, the hydrophobic drug showed more sustained release capacity than the hydrophilic drug (vancomycin: sustained release for more than 48 h, raloxifene: sustained release for more than 168 h). More importantly, TNT-Ta5 is proved to be an appropriate drug release system, which possesses cytocompatibility, osteogenic capacity, and sustained drug release capacity.
Collapse
Affiliation(s)
- Jing Zhan
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Li Li
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University 268# Xueyuan West Road, Lucheng District Wenzhou Zhejiang China
| | - Zheng Cao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Weiwei Lou
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Jianying Zhang
- International Healthcare Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310058 China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University 268# Xueyuan West Road, Lucheng District Wenzhou Zhejiang China
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| |
Collapse
|
86
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
87
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
88
|
Gao H, Jiang N, Niu Q, Mei S, Haugen HJ, Ma Q. Biocompatible Nanostructured Silver-Incorporated Implant Surfaces Show Effective Antibacterial, Osteogenic, and Anti-Inflammatory Effects in vitro and in Rat Model. Int J Nanomedicine 2023; 18:7359-7378. [PMID: 38090361 PMCID: PMC10711298 DOI: 10.2147/ijn.s435415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Titanium (Ti) and its alloys are widely utilized in endosseous implants. However, their clinical efficacy is marred by complications arising from bacterial infections owing to their inadequate antibacterial properties. Consequently, enhancing the antibacterial attributes of implant surfaces stands as a pivotal objective in the realm of implantable materials research. Methods In this study, we employed sequential anodization and plasma immersion ion implantation (PIII) technology to fabricate a silver-embedded sparsely titania nanotube array (SNT) on the near-β titanium alloy Ti-5Zr-3Sn-5Mo-15Nb (TLM) implants. The surface characteristics, antimicrobial properties, biocompatibility, and osteogenic activity of the silver-nanomodified SNT implant (SNT Ag) surface, alongside peri-implant inflammatory responses, were meticulously assessed through a combination of in vitro and in vivo analyses. Results Compared with polished TLM and SNT, the silver-embedded SNT (SNT Ag) surface retained the basic shape of nanotubes and stably released Ag+ at the ppm level for a long time, which demonstrated an effective inhibition and bactericidal activity against Staphylococcus aureus (SA) while maintaining ideal cytocompatibility. Additionally, the subtle modifications in nanotubular topography induced by silver implantation endowed SNT Ag with enhanced osteogenic activity and mitigated inflammatory capsulation in soft tissue peri-implants in a rat model. Conclusion Incorporating a silver-embedded SNT array onto the implant surface demonstrated robust antibacterial properties, impeccable cytocompatibility, exceptional osteogenic activity, and the potential to prevent inflammatory encapsulation around the implant site. The Silver-PIII modification strategy emerges as a highly promising approach for surface applications in endosseous implants and trans-gingival implant abutments.
Collapse
Affiliation(s)
- Hui Gao
- Department of Stomatology, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Jiang
- Department of Community Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qiannan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shenglin Mei
- Xingrui Dental Clinic, Xi’an, Shaanxi Province, People’s Republic of China
- Department of Physics & Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
89
|
Civantos A, Mesa-Restrepo A, Torres Y, Shetty AR, Cheng MK, Jaramillo-Correa C, Aditya T, Allain JP. Nanotextured porous titanium scaffolds by argon ion irradiation: Toward conformal nanopatterning and improved implant osseointegration. J Biomed Mater Res A 2023; 111:1850-1865. [PMID: 37334879 DOI: 10.1002/jbm.a.37582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yadir Torres
- Department of Engineering and Materials Science and Transport, University of Seville, Seville, Spain
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Camilo Jaramillo-Correa
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
90
|
Al-Kilani J, Al-Kilani S, Chrcanovic BR. Difference in marginal bone loss around implants between short implant-supported partial fixed prostheses with and without cantilever: a retrospective clinical study. Int J Implant Dent 2023; 9:46. [PMID: 38036796 PMCID: PMC10689685 DOI: 10.1186/s40729-023-00515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE To investigate the influence of cantilever prosthetic arm on the marginal bone loss (MBL) over time around dental implants supporting short fixed partial dentures (FPDs), in a record-based retrospective study. METHODS All cases of 3-unit implant-supported FPDs, supported by 2-3 implants, from the database of cases treated at one specialist clinic were considered for inclusion. Only implants with a minimum of 36 months of radiological follow-up were considered. Univariate linear regression models were used to compare MBL over time between 12 clinical covariates, after which a linear mixed-effects model was built. RESULTS One-hundred-thirty-nine patients (64 men, 75 women) with 164 3-unit implant-supported FPDs (333 implants supporting non-cantilevered FPDs, 94 supporting cantilevered FPDs) were included in the study. The patients were followed up clinically and radiographically for a mean of 154.1 ± 78.0 (min-max, 37.3-364.6) and 132.9 ± 77.3 months (min-max, 36.8-329.9), respectively. The total number of marginal bone level double measurements (mesial and distal sides of each implant) was 2909. FPDs with cantilever presented an estimated greater MBL over time compared to FPDs without cantilever. Bruxism, sex (women), implant (modified) surface, and (poor) bone quality were also associated with higher MBL over time. CONCLUSIONS The use of a cantilever extension is suggested to negatively affect the bone marginal level over time around implants supporting 3-unit FPDs. Due to the small difference of the estimated MBL over long periods of follow-up between the groups, it is a matter of debate if the observed negative effect may be of clinical significance.
Collapse
|
91
|
Li Y, Gianfreda F, Danesi C, Bollero P, Ermini A, Pizzoferrato R, Nicolai E. In Situ Growth of Mg-Fe Layered Double Hydroxides (LDH) Film on Titanium Dental Implant Substrates for pH Regulation in Oral Environments. CRYSTALS 2023; 13:1636. [DOI: 10.3390/cryst13121636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Layered double hydroxides (LDHs) consist of two-dimensional, positively charged lamellar structures with the ability to host various anions in the interlayer spaces, which grants them unique properties and tunable characteristics. LDHs, a class of versatile inorganic compounds, have recently emerged as promising candidates for enhancing osseointegration. A suitable alkaline microenvironment is thought to be beneficial for stimulating osteoblasts’ differentiation (responsible for bone matrix formation) while suppressing osteoclast generation (responsible for bone matrix disintegration). LDHs are prone to adjusting their alkalinity and thus offering us the chance to study how pH affects cellular behavior. LDHs can indeed modulate the local pH, inflammatory responses, and oxidative stress levels, factors that profoundly influence the behavior of osteogenic cells and their interactions with the implant surface. Herein, we deposited Mg–Fe LDH films on titanium substrates for dental implants. The modified Ti substrates was more alkaline in comparison to the bare ones, with a pH higher than 8 after hydrolysis in an aqueous environment.
Collapse
Affiliation(s)
- Yuliu Li
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesco Gianfreda
- Department of System Medicine, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | | | - Patrizio Bollero
- Department of System Medicine, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Anita Ermini
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Pizzoferrato
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
92
|
Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6860. [PMID: 37959457 PMCID: PMC10649385 DOI: 10.3390/ma16216860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Dental implants have revolutionised restorative dentistry, offering patients a natural-looking and durable solution to replace missing or severely damaged teeth. Titanium and its alloys have emerged as the gold standard among the various materials available due to their exceptional properties. One of the critical advantages of titanium and its alloys is their remarkable biocompatibility which ensures minimal adverse reactions within the human body. Furthermore, they exhibit outstanding corrosion resistance ensuring the longevity of the implant. Their mechanical properties, including hardness, tensile strength, yield strength, and fatigue strength, align perfectly with the demanding requirements of dental implants, guaranteeing the restoration's functionality and durability. This narrative review aims to provide a comprehensive understanding of the manufacturing techniques employed for titanium and its alloy dental implants while shedding light on their intrinsic properties. It also presents crucial proof-of-concept examples, offering tangible evidence of these materials' effectiveness in clinical applications. However, despite their numerous advantages, certain limitations still exist necessitating ongoing research and development efforts. This review will briefly touch upon these restrictions and explore the evolving trends likely to shape the future of titanium and its alloy dental implants.
Collapse
Affiliation(s)
| | | | | | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.W.); (X.C.); (L.K.)
| |
Collapse
|
93
|
Neto JVC, Teixeira ABV, Cândido Dos Reis A. Hydroxyapatite coatings versus osseointegration in dental implants: A systematic review. J Prosthet Dent 2023:S0022-3913(23)00631-5. [PMID: 37845113 DOI: 10.1016/j.prosdent.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
STATEMENT OF PROBLEM Knowledge of the effectiveness of hydroxyapatite coatings on the surface of titanium dental implants is lacking because of difficulties in standardizing their thickness, roughness, and effect on osseointegration. The selection of articles describing this coating in osseointegration will be of great relevance to implant dentistry. PURPOSE This systematic review aimed to answer the question, "How effective is hydroxyapatite on titanium surfaces for osseointegration?" MATERIAL AND METHODS The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines were followed, and the protocol was registered on the international prospective register of systematic reviews (PROSPERO) database (CRD42023422601). The PubMed, Scopus, Web of Science, and Embase databases were searched, and articles were selected manually in 2 steps by 2 blinded investigators according to the previously selected eligibility criteria. The risk of bias was assessed using the systematic review center for laboratory animal experimentation (SYRCLE) tool. RESULTS Initially, 671 results were found. After analysis of eligibility criteria and full reading, 15 articles were included in the present review. Of these, 12 reported favorable osseointegration results for hydroxyapatite-coated surfaces, and 3 found no significant long-term difference between the coated and uncoated groups. CONCLUSIONS Hydroxyapatite surface treatment is effective in the osseointegration of titanium dental implants because it favors the absorption of proteins, adhesion, and proliferation of bone cells when obtained by methods that ensure proper adhesion. (J Prosthet Dent xxxx;xxx:xxx-xxx).
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Graduate student, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Postdoctoral Fellow, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Associate Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil..
| |
Collapse
|
94
|
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K, Ogawa T. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res 2023; 67:568-582. [PMID: 36543189 DOI: 10.2186/jpr.jpr_d_22_00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE We examined blood and protein dynamics potentially influenced by implant threads and hydrophilic/hydrophobic states of implant surfaces. METHODS A computational fluid dynamics model was created for a screw-shaped implant with a water contact angle of 70° (hydrophobic surface) and 0° (superhydrophilic surface). Movements and density of blood and fibrinogen as a representative wound healing protein were visualized and quantified during constant blood inflow. RESULTS Blood plasma did not occupy 40-50% of the implant interface or the inside of threads around hydrophobic implants, whereas such blood voids were nearly completely eliminated around superhydrophilic implants. Whole blood field vectors were disorganized and random within hydrophobic threads but formed vortex nodes surrounded by stable blood streams along the superhydrophilic implant surface. The averaged vector within threads was away from the implant surface for the hydrophobic implant and towards the implant surface for the superhydrophilic implant. Rapid and massive whole blood influx into the thread zone was only seen for the superhydrophilic implant, whereas a line of conflicting vectors formed at the entrance of the thread area of the hydrophobic implant to prevent blood influx. The fibrinogen density was up to 20-times greater at the superhydrophilic implant interface than the hydrophobic one. Fibrinogen density was higher at the interface than outside the threads only for the superhydrophilic implant. CONCLUSIONS Implant threads and surface hydrophilicity have profound effects on vector and distribution of blood and proteins. Critically, implant threads formed significant biological voids at the interface that were negated by superhydrophilicity-induced contact hemodynamics.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, Yokohama, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
95
|
Wu T, Zhou Q, Hong G, Bai Z, Bian J, Xie H, Chen C. A chlorogenic acid-chitosan complex bifunctional coating for improving osteogenesis differentiation and bactericidal properties of zirconia implants. Colloids Surf B Biointerfaces 2023; 230:113484. [PMID: 37540946 DOI: 10.1016/j.colsurfb.2023.113484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Poor osteogenesis caused by limited bioactivity and peri-implantitis caused by bacterial colonization are the main challenges affecting the use of zirconia-based materials in dental implants. Accordingly, the development of a surface treatment method with an antibacterial effect and that promotes osteogenesis without damage to cells is crucial for yttrium-stabilized tetragonal zirconia (Y-TZP) implants. Herein, we have developed a functional surface modification strategy whereby a poly (ethylene imine)/hyaluronic acid /chitosan-chlorogenic acid (PEI/HA/CGA-CS) conjugate is deposited on a zirconia surface by the layer-by-layer (LBL) technique, enhancing its osteogenic differentiation and antibacterial activities. The results showed that the PEI/HA/CGA-CS coating improved the wettability of the zirconia surface and maintained stable release of CGA. The PEI/HA/CGA-CS functional coating was found to promote early cell adhesion, proliferation, differentiation, and calcification. The results of bacterial adhesion and activity tests showed that the coating effectively inhibits the proliferation and activity of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) without impairing the biological activity of osteoblasts. In addition, we found that the PEI/HA/CGA-CS coating enhances the osteogenesis of MC3T3-E1 cells by promoting the protein expression of Nephronectin (NPNT) and activating the Wnt/β-catenin signaling pathway. The above results are of profound significance for the practical application of zirconia-based implants. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Tong Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Qiyue Zhou
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Gaoying Hong
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zehua Bai
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jingjing Bian
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
96
|
Abdulla MA, Hasan RH, Al-Hyani OH. Impact of Er,Cr:YSGG Laser, Sandblast, and Acid Etching Surface Modification on Surface Topography of Biodental Titanium Implants. J Lasers Med Sci 2023; 14:e38. [PMID: 38028874 PMCID: PMC10658112 DOI: 10.34172/jlms.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Several techniques have been used to modify the surface of commercially pure titanium (CPTi) implants to improve osseointegration using lasers, sandblasts, sandblasts with acid etching, and other modalities. For implant-osseointegration, surface features like chemical composition of a surface, topography, and surface energy are essential. The present comparative study aimed to compare the impact of Er,Cr:YSGG laser, sandblasting, and acid etching implant surface modifications on the surface topography, roughness, and element chemical composition of the Ti dental implant. Methods: Thirty CPTi dental implants were divided into three groups according to the surface modification (n=10 for each group): Group A: Sandblasting with acid etching (SLActive), group B: Sandblasting, and group C: Er,Cr:YSGG laser surface modifications. The modified surfaces were analyzed using scanning electron microscopy (SEM), profilometer, and energy dispersive x-ray spectrometry (EDS). Results: One-way analysis of variance (ANOVA) showed that there were significant differences in the mean values of average roughness (Ra) of the three groups (P<0.05). Tukey's post hoc test showed that the average roughness (Ra) of laser-surface modification (group C) of the implant had the highest mean value (2.30 µm) among the different groups, while sandblasted surface modification (group B) of the implant had the lowest mean value (1.39 µm). The SLActive (group A) sandblast with acid etching had a mean value of 1.63 µm. SEM analysis showed that significantly modified surface topographies and different element concentrations were found within all modified groups. Conclusion: The Er,Cr:YSGG laser irradiation increased the implant surface roughness value after implant surface modification, compared to sandblasts and sandblasts with acid etching application. The observations for the SEM-EDS analysis revealed several elements with different concentrations, which were affected by the physical-chemical characteristics of the surface modification techniques. The SEM analysis showed a significant modification in implant surface topographies of the tested groups.
Collapse
Affiliation(s)
- Mohammed A Abdulla
- Department of Prosthetic Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Radhwan H Hasan
- Department of Prosthetic Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Osama Hazim Al-Hyani
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
| |
Collapse
|
97
|
Tambone E, Ceresa C, Marchetti A, Chiera S, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Rhamnolipid 89 Biosurfactant Is Effective against Streptococcus oralis Biofilm and Preserves Osteoblast Behavior: Perspectives in Dental Implantology. Int J Mol Sci 2023; 24:14014. [PMID: 37762317 PMCID: PMC10530769 DOI: 10.3390/ijms241814014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilm-related peri-implant diseases represent the major complication for osteointegrated dental implants, requiring complex treatments or implant removal. Microbial biosurfactants emerged as new antibiofilm coating agents for implantable devices thanks to their high biocompatibility. This study aimed to assess the efficacy of the rhamnolipid 89 biosurfactant (R89BS) in limiting Streptococcus oralis biofilm formation and dislodging sessile cells from medical grade titanium, but preserving adhesion and proliferation of human osteoblasts. The inhibitory activity of a R89BS coating on S. oralis biofilm formation was assayed by quantifying biofilm biomass and microbial cells on titanium discs incubated up to 72 h. R89BS dispersal activity was addressed by measuring residual biomass of pre-formed biofilms after rhamnolipid treatment up to 24 h. Adhesion and proliferation of human primary osteoblasts on R89BS-coated titanium were evaluated by cell count and adenosine-triphosphate quantification, while cell differentiation was studied by measuring alkaline phosphatase activity and observing mineral deposition. Results showed that R89BS coating inhibited S. oralis biofilm formation by 80% at 72 h and dislodged 63-86% of pre-formed biofilms in 24 h according to concentration. No change in the adhesion of human osteoblasts was observed, whereas proliferation was reduced accompanied by an increase in cell differentiation. R89BS effectively counteracts S. oralis biofilm formation on titanium and preserves overall osteoblasts behavior representing a promising preventive strategy against biofilm-related peri-implant diseases.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Silvia Chiera
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| |
Collapse
|
98
|
Cai J, Wang W, Cai P, Cao B. Immune response to foreign materials in spinal fusion surgery. Heliyon 2023; 9:e19950. [PMID: 37810067 PMCID: PMC10559558 DOI: 10.1016/j.heliyon.2023.e19950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal fusion surgery is a common procedure used to stabilize the spine and treat back pain. The procedure involves the use of foreign materials such as screws, rods, or cages, which can trigger a foreign body reaction, an immune response that involves the activation of immune cells such as macrophages and lymphocytes. The foreign body reaction can impact the success of spinal fusion, as it can interfere with bone growth and fusion. This review article provides an overview of the cellular and molecular events in the foreign body reaction, the impact of the immune response on spinal fusion, and strategies to minimize its impact. By carefully considering the use of foreign materials and optimizing surgical techniques, the impact of the foreign body reaction can be reduced, leading to better outcomes for patients.
Collapse
Affiliation(s)
| | | | - Peng Cai
- Department of Orthopedics, Chengdu Seventh People's Hospital (Chengdu Tumor Hospital), 51 Zhimin Rd, Wuhou District, 610041, Chengdu, Sichuan, China
| | - Bo Cao
- Department of Orthopedics, Chengdu Seventh People's Hospital (Chengdu Tumor Hospital), 51 Zhimin Rd, Wuhou District, 610041, Chengdu, Sichuan, China
| |
Collapse
|
99
|
Naeimi Darestani M, Asl Roosta H, Mosaddad SA, Yaghoubee S. The effect of leukocyte- and platelet-rich fibrin on the bone loss and primary stability of implants placed in posterior maxilla: a randomized clinical trial. Int J Implant Dent 2023; 9:23. [PMID: 37555894 PMCID: PMC10412516 DOI: 10.1186/s40729-023-00487-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE In this study, we investigated the effects of leukocyte- and platelet-rich fibrin (L-PRF) on implant stability and alterations in the marginal bone surrounding posterior maxillary implants. METHODS This randomized clinical trial was conducted to compare the variable of L-PRF placement around maxillary implants. Resonance frequency analysis (RFA) was used to evaluate the implant stability immediately after surgery and at 1, 2, 4, 6, 8, and 12 weeks after surgery (t0 to t6, respectively). In addition, the amount of marginal bone changes around the implant at t6 was compared with the baseline using periapical radiography. RESULTS The RFA outcomes were statistically significant within each group (P < 0.001, Eta2 = 0.322); however, in none of the follow-ups and immediately after the surgery, there was a significant difference between the two groups in terms of the implant stability quotient (ISQ) scores (P > 0.05). At t0, the test and control groups' respective mean levels of marginal bone loss around the implants were 0.4836 mm and 0.7343 mm, significantly different from the corresponding values at t6. On the other hand, marginal bone loss around the implant was not significantly different between the two groups in t0 and t6 (P = 0.532). CONCLUSIONS L-PRF did not improve the RFA outcomes of implants three months after implant placement, and changes in the ISQ values over time were the same in both groups. In addition, L-PRF had no superior effect on the marginal bone loss around the implants. TRIAL REGISTRATION NUMBER The research was registered in the Iranian Registry of Clinical Trials on 22 December 2020 (No: IRCT20200624047906N1), available at http://www.irct.ir.
Collapse
Affiliation(s)
| | - Hoori Asl Roosta
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Siamak Yaghoubee
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
100
|
Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: The future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev 2023; 199:114900. [PMID: 37263543 DOI: 10.1016/j.addr.2023.114900] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Unlike orthopedic implants, dental implants require the orchestration of both osseointegration at the bone-implant interface and soft-tissue integration at the transmucosal region in a complex oral micro-environment with ubiquitous pathogenic bacteria. This represents a very challenging environment for early acceptance and long-term survival of dental implants, especially in compromised patient conditions, including aged, smoking and diabetic patients. Enabling advanced local therapy from the surface of titanium-based dental implants via novel nano-engineering strategies is emerging. This includes anodized nano-engineered implants eluting growth factors, antibiotics, therapeutic nanoparticles and biopolymers to achieve maximum localized therapeutic action. An important criterion is balancing bioactivity enhancement and therapy (like bactericidal efficacy) without causing cytotoxicity. Critical research gaps still need to be addressed to enable the clinical translation of these therapeutic dental implants. This review informs the latest developments, challenges and future directions in this domain to enable the successful fabrication of clinically-translatable therapeutic dental implants that would allow for long-term success, even in compromised patient conditions.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak-Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, 34116 Istanbul, Turkey
| | - Elise Verron
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| |
Collapse
|