51
|
L'Her E, Nazir S, Pateau V, Visvikis D. Accuracy of noncontact surface imaging for tidal volume and respiratory rate measurements in the ICU. J Clin Monit Comput 2021; 36:775-783. [PMID: 33886075 PMCID: PMC8060689 DOI: 10.1007/s10877-021-00708-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
Tidal volume monitoring may help minimize lung injury during respiratory assistance. Surface imaging using time-of-flight camera is a new, non-invasive, non-contact, radiation-free, and easy-to-use technique that enables tidal volume and respiratory rate measurements. The objectives of the study were to determine the accuracy of Time-of-Flight volume (VTTOF) and respiratory rate (RRTOF) measurements at the bedside, and to validate its application for spontaneously breathing patients under high flow nasal canula. Data analysis was performed within the ReaSTOC data-warehousing project (ClinicalTrials.gov identifier NCT02893462). All data were recorded using standard monitoring devices, and the computerized medical file. Time-of-flight technique used a Kinect V2 (Microsoft, Redmond, WA, USA) to acquire the distance information, based on measuring the phase delay between the emitted light-wave and received backscattered signals. 44 patients (32 under mechanical ventilation; 12 under high-flow nasal canula) were recorded. High correlation (r = 0.84; p < 0.001), with low bias (-1.7 mL) and acceptable deviation (75 mL) was observed between VTTOF and VTREF under ventilation. Similar performance was observed for respiratory rate (r = 0.91; p < 0.001; bias < 1b/min; deviation ≤ 5b/min). Measurements were possible for all patients under high-flow nasal canula, detecting overdistension in 4 patients (tidal volume > 8 mL/kg) and low ventilation in 6 patients (tidal volume < 6 mL/kg). Tidal volume monitoring using time-of-flight camera (VTTOF) is correlated to reference values. Time-of-flight camera enables continuous and non-contact respiratory monitoring under high-flow nasal canula, and enables to detect tidal volume and respiratory rate changes, while modifying flow. It enables respiratory monitoring for spontaneously patients, especially while using high-flow nasal oxygenation.
Collapse
Affiliation(s)
- Erwan L'Her
- Médecine Intensive Et Réanimation, CHRU de La Cavale Blanche, Bvd. Tanguy-Prigent, 29609, BREST Cedex, France. .,LATIM INSERM UMR 1101, Université de Bretagne Occidentale, BREST, France.
| | - Souha Nazir
- LATIM INSERM UMR 1101, Université de Bretagne Occidentale, BREST, France
| | - Victoire Pateau
- Médecine Intensive Et Réanimation, CHRU de La Cavale Blanche, Bvd. Tanguy-Prigent, 29609, BREST Cedex, France
| | - Dimitris Visvikis
- LATIM INSERM UMR 1101, Université de Bretagne Occidentale, BREST, France
| |
Collapse
|
52
|
Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging. SENSORS 2021; 21:s21072507. [PMID: 33916751 PMCID: PMC8038345 DOI: 10.3390/s21072507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
This paper discusses the optimization of domain parameters in electrical impedance tomography-based imaging. Precise image reconstruction requires accurate, well-correlated physical and numerical finite element method (FEM) models; thus, we employed the Nelder–Mead algorithm and a complete electrode model to evaluate the individual parameters, including the initial conductivity, electrode misplacement, and shape deformation. The optimization process was designed to calculate the parameters of the numerical model before the image reconstruction. The models were verified via simulation and experimental measurement with single source current patterns. The impact of the optimization on the above parameters was reflected in the applied image reconstruction process, where the conductivity error dropped by 6.16% and 11.58% in adjacent and opposite driving, respectively. In the shape deformation, the inhomogeneity area ratio increased by 11.0% and 48.9%; the imprecise placement of the 6th electrode was successfully optimized with adjacent driving; the conductivity error dropped by 12.69%; and the inhomogeneity localization exhibited a rise of 66.7%. The opposite driving option produces undesired duality resulting from the measurement pattern. The designed optimization process proved to be suitable for correlating the numerical and the physical models, and it also enabled us to eliminate imaging uncertainties and artifacts.
Collapse
|
53
|
Tidal volume and stroke volume changes caused by respiratory events during sleep and their relationship with OSA severity: a pilot study. Sleep Breath 2021; 25:2025-2038. [PMID: 33683548 DOI: 10.1007/s11325-021-02334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Breath-by-breath tidal volume (TV) and beat-by-beat stroke volume (SV) were continuously measured in patients with OSA undergoing polysomnography (PSG). The objectives were to (1) determine the changes in TV/SV in response to respiratory events and (2) assess the relationship between these changes and the disease severity. METHODS From the PSG data of nine patients with OSA, six different types of respiratory events were identified, i.e., flow limitation (FL), respiratory effort related arousal (RERA), hypopnea with arousal only (Ha), hypopnea with desaturation only (Hd), hypopnea with arousal and desaturation (Had), and apnea. The measured TV and SV values during and after each respiratory event were compared with the pre-event baseline values. RESULTS The mean TV/SV reductions during all hypopneas and apneas were 38.1%/4.2% and 70.5%/8.8%, respectively. Among three different hypopnea types, the reductions in TV during Hd and Had were significantly greater than those during Ha. The TV reductions during Ha and FL were similar. After RERA, Ha, Had, and apnea, there was an overshoot in TV and SV values, whereas there was no overshoot after FL and Hd. During RERA, there was no reduction in TV/SV. CONCLUSIONS The changes in TV during and after each type of respiratory event were significantly different in most cases. The changes in SV between hypopnea and apnea were different with statistical significance. The AHI does not properly account for the ventilation losses caused by respiratory events. Thus, TV measurements might be useful in the future in assessing the OSA severity in conjunction with the AHI.
Collapse
|
54
|
Evaluation of Regional Pulmonary Ventilation in Spontaneously Breathing Patients with Idiopathic Pulmonary Fibrosis (IPF) Employing Electrical Impedance Tomography (EIT): A Pilot Study from the European IPF Registry (eurIPFreg). J Clin Med 2021; 10:jcm10020192. [PMID: 33430489 PMCID: PMC7827956 DOI: 10.3390/jcm10020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives: In idiopathic pulmonary fibrosis (IPF), alterations in the pulmonary surfactant system result in an increased alveolar surface tension and favor repetitive alveolar collapse. This study aimed to assess the usefulness of electrical impedance tomography (EIT) in characterization of regional ventilation in IPF. Materials and methods: We investigated 17 patients with IPF and 15 healthy controls from the University of Giessen and Marburg Lung Center (UGMLC), Germany, for differences in the following EIT parameters: distribution of ventilation (TID), global inhomogeneity index (GI), regional impedance differences through the delta of end-expiratory lung impedance (dEELI), differences in surface of ventilated area (SURF), as well as center of ventilation (CG) and intratidal gas distribution (ITV). These parameters were assessed under spontaneous breathing and following a predefined escalation protocol of the positive end-expiratory pressure (PEEP), applied through a face mask by an intensive care respirator (EVITA, Draeger, Germany). Results: Individual slopes of dEELI over the PEEP increment protocol were found to be highly significantly increased in both groups (p < 0.001) but were not found to be significantly different between groups. Similarly, dTID slopes were increasing in response to PEEP, but this did not reach statistical significance within or between groups. Individual breathing patterns were very heterogeneous. There were no relevant differences of SURF, GI or CGVD over the PEEP escalation range. A correlation of dEELI to FVC, BMI, age, or weight did not forward significant results. Conclusions: In this study, we did see a significant increase in dEELI and a non-significant increase in dTID in IPF patients as well as in healthy controls in response to an increase of PEEP under spontaneous breathing. We propose the combined measurements of EIT and lung function to assess regional lung ventilation in spontaneously breathing subjects.
Collapse
|
55
|
Kircher M, Elke G, Stender B, Hernandez Mesa M, Schuderer F, Dossel O, Fuld MK, Halaweish AF, Hoffman EA, Weiler N, Frerichs I. Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:251-261. [PMID: 32956046 DOI: 10.1109/tmi.2020.3025080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical impedance tomography is clinically used to trace ventilation related changes in electrical conductivity of lung tissue. Estimating regional pulmonary perfusion using electrical impedance tomography is still a matter of research. To support clinical decision making, reliable bedside information of pulmonary perfusion is needed. We introduce a method to robustly detect pulmonary perfusion based on indicator-enhanced electrical impedance tomography and validate it by dynamic multidetector computed tomography in two experimental models of acute respiratory distress syndrome. The acute injury was induced in a sublobar segment of the right lung by saline lavage or endotoxin instillation in eight anesthetized mechanically ventilated pigs. For electrical impedance tomography measurements, a conductive bolus (10% saline solution) was injected into the right ventricle during breath hold. Electrical impedance tomography perfusion images were reconstructed by linear and normalized Gauss-Newton reconstruction on a finite element mesh with subsequent element-wise signal and feature analysis. An iodinated contrast agent was used to compute pulmonary blood flow via dynamic multidetector computed tomography. Spatial perfusion was estimated based on first-pass indicator dilution for both electrical impedance and multidetector computed tomography and compared by Pearson correlation and Bland-Altman analysis. Strong correlation was found in dorsoventral (r = 0.92) and in right-to-left directions (r = 0.85) with good limits of agreement of 8.74% in eight lung segments. With a robust electrical impedance tomography perfusion estimation method, we found strong agreement between multidetector computed and electrical impedance tomography perfusion in healthy and regionally injured lungs and demonstrated feasibility of electrical impedance tomography perfusion imaging.
Collapse
|
56
|
Mansouri S, Alharbi Y, Haddad F, Chabcoub S, Alshrouf A, Abd-Elghany AA. Electrical Impedance Tomography - Recent Applications and Developments. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:50-62. [PMID: 35069942 PMCID: PMC8667811 DOI: 10.2478/joeb-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Electrical impedance tomography (EIT) is a low-cost noninvasive imaging method. The main purpose of this paper is to highlight the main aspects of the EIT method and to review the recent advances and developments. The advances in instrumentation and in the different image reconstruction methods and systems are demonstrated in this review. The main applications of the EIT are presented and a special attention made to the papers published during the last years (from 2015 until 2020). The advantages and limitations of EIT are also presented. In conclusion, EIT is a promising imaging approach with a strong potential that has a large margin of progression before reaching the maturity phase.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fatma Haddad
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Souhir Chabcoub
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Anwar Alshrouf
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amr A. Abd-Elghany
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, CairoEgypt
| |
Collapse
|
57
|
Development of a Portable, Reliable and Low-Cost Electrical Impedance Tomography System Using an Embedded System. ELECTRONICS 2020. [DOI: 10.3390/electronics10010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrical impedance tomography (EIT) is a useful procedure with applications in industry and medicine, particularly in the lungs and brain area. In this paper, the development of a portable, reliable and low-cost EIT system for image reconstruction by using an embedded system (ES) is introduced herein. The novelty of this article is the hardware development of a complete low-cost EIT system, as well as three simple and efficient algorithms that can be implemented on ES. The proposed EIT system applies the adjacent voltage method, starting with an impedance acquisition stage that sends data to a Raspberry Pi 4 (RPi4) as ES. To perform the image reconstruction, a user interface was developed by using GNU Octave for RPi4 and the EIDORS library. A statistical analysis is performed to determine the best average value from the samples measured by using an analog-to-digital converter (ADC) with a capacity of 30 kSPS and 24-bit resolution. The tests for the proposed EIT system were performed using materials such as metal, glass and an orange to simulate its application in food industry. Experimental results show that the statistical median is more accurate with respect to the real voltage measurement; however, it represents a higher computational cost. Therefore, the mean is calculated and improved by discarding data values in a transitory state, achieving better accuracy than the median to determine the real voltage value, enhancing the quality of the reconstructed images. A performance comparison between a personal computer (PC) and RPi4 is presented. The proposed EIT system offers an excellent cost-benefit ratio with respect to a traditional PC, taking into account precision, accuracy, energy consumption, price, light weight, size, portability and reliability. The proposed EIT system has potential application in mechanical ventilation, food industry and structural health monitoring.
Collapse
|
58
|
Cavaliere F, Biancofiore G, Bignami E, De Robertis E, Giannini A, Piastra M, Scolletta S, Taccone FS, Terragni P. A year in review in Minerva Anestesiologica 2019. Critical care. Minerva Anestesiol 2020; 86:102-113. [PMID: 31994860 DOI: 10.23736/s0375-9393.20.14384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Franco Cavaliere
- Institute of Anesthesia and Intensive Care, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| | - Gianni Biancofiore
- Transplant Anesthesia and Critical Care, University School of Medicine, Pisa, Italy
| | - Elena Bignami
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Edoardo De Robertis
- Section of Anesthesia, Analgesia and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alberto Giannini
- Unit of Pediatric Anesthesia and Intensive Care, ASST - Spedali Civili Children's Hospital, Brescia, Italy
| | - Marco Piastra
- Pediatric Intensive Care Unit and Trauma Center, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Sabino Scolletta
- Department of Accident and Emergency, of Organ Transplantation, Anesthesia and Intensive Care, Siena University Hospital, Siena, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Free University of Brussels (ULB), Brussels, Belgium
| | - Pierpaolo Terragni
- Division of Anesthesia and General Intensive Care, Department of Medical, Surgical and Experimental Sciences, Sassari University Hospital, University of Sassari, Sassari, Italy
| |
Collapse
|
59
|
Sang L, Zhao Z, Lin Z, Liu X, Zhong N, Li Y. A narrative review of electrical impedance tomography in lung diseases with flow limitation and hyperinflation: methodologies and applications. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1688. [PMID: 33490200 PMCID: PMC7812189 DOI: 10.21037/atm-20-4984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrical impedance tomography (EIT) is a functional radiation-free imaging technique that measures regional lung ventilation distribution by calculating the impedance changes in the corresponding regions. The aim of the present review was to summarize the current literature concerning the methodologies and applications of EIT in lung diseases with flow limitation and hyperinflation. PubMed was searched up to May 2020 to identify studies investigating the use of EIT in patients with asthma, bronchiectasis, bronchitis, bronchiolitis, chronic obstructive pulmonary disease, and cystic fibrosis. The extracted data included study design, EIT methodologies, interventions, validation and comparators, population characteristics, and key findings. Of the 44 included studies, seven were related to simulation, animal experimentation, or reconstruction algorithm development with evaluation on patients; 27 studies had the primary objective of validating EIT technique and measures including regional ventilation distribution, regional EIT-spirometry parameters, end-expiratory lung impedance, and regional time constants; and 10 studies had the primary objective of applying EIT to monitor the response to therapeutic interventions, including various ventilation supports, patient repositioning, and airway suctioning. In pediatric and adult patients, EIT has been successfully validated for assessing spatial and temporal ventilation distribution, measuring changes in lung volume and flow, and studying regional respiratory mechanics. EIT has also demonstrated potential as an alternative or supplement to well-established measurement modalities (e.g., conventional pulmonary function testing) to monitor the progression of obstructive lung diseases, although the existing literature lacks prediction values as references and lacks clinical outcome evidence.
Collapse
Affiliation(s)
- Ling Sang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Zhimin Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| |
Collapse
|
60
|
Sattar MA, Garcia MM, Banasiak R, Portela LM, Babout L. Electrical Resistance Tomography for Control Applications: Quantitative Study of the Gas-Liquid Distribution inside A Cyclone. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20216069. [PMID: 33113871 PMCID: PMC7662277 DOI: 10.3390/s20216069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Phase separation based centrifugal forces is effective, and thus widely explored by the process industry. In an inline swirl separator, a core of the light phase is formed in the center of the device and captured further downstream. Given the inlet conditions, this gas core created varies in shape and size. To predict the separation behavior and control the process in an optimal way, the gas core diameter should be measured with the minimum possible intrusiveness. Process tomography techniques such as electrical resistance tomography (ERT) allows us to measure the gas core diameter in a fast and non-intrusive way. Due to the soft-field nature and ill-posed problem in solving the inverse problem, especially in the area of low spatial resolution, the reconstructed images often overestimate the diameter of the object under consideration leading to unreliable measurements. To use ERT measurements as an input for the controller, the estimated diameters should be corrected based on secondary measurements, e.g., optical techniques such as high-speed cameras. In this context, image processing and image analysis techniques were adapted to compare the diameter calculated by an ERT system and a fast camera. In this paper, a correction method is introduced to correct the diameter obtained by ERT based on static measurements. The proposed method reduced the ERT error of dynamic measurements of the gas core size from over 300% to below 20%, making it a reliable sensing technique for controlled separation processes.
Collapse
Affiliation(s)
- Muhammad Awais Sattar
- Institute of Applied Computer Science, The Lodz University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland; (R.B.); (L.B.)
| | - Matheus Martinez Garcia
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; (M.M.G.); (L.M.P.)
| | - Robert Banasiak
- Institute of Applied Computer Science, The Lodz University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland; (R.B.); (L.B.)
| | - Luis M. Portela
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; (M.M.G.); (L.M.P.)
| | - Laurent Babout
- Institute of Applied Computer Science, The Lodz University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland; (R.B.); (L.B.)
| |
Collapse
|
61
|
Mosing M, Waldmann AD, Sacks M, Buss P, Boesch JM, Zeiler GE, Hosgood G, Gleed RD, Miller M, Meyer LCR, Böhm SH. What hinders pulmonary gas exchange and changes distribution of ventilation in immobilized white rhinoceroses ( Ceratotherium simum) in lateral recumbency? J Appl Physiol (1985) 2020; 129:1140-1149. [PMID: 33054661 DOI: 10.1152/japplphysiol.00359.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study used electrical impedance tomography (EIT) measurements of regional ventilation and perfusion to elucidate the reasons for severe gas exchange impairment reported in rhinoceroses during opioid-induced immobilization. EIT values were compared with standard monitoring parameters to establish a new monitoring tool for conservational immobilization and future treatment options. Six male white rhinoceroses were immobilized using etorphine, and EIT ventilation variables, venous admixture, and dead space were measured 30, 40, and 50 min after becoming recumbent in lateral position. Pulmonary perfusion mapping using impedance-enhanced EIT was performed at the end of the study period. The measured impedance (∆Z) by EIT was compared between pulmonary regions using mixed linear models. Measurements of regional ventilation and perfusion revealed a pronounced disproportional shift of ventilation and perfusion toward the nondependent lung. Overall, the dependent lung was minimally ventilated and perfused, but remained aerated with minimal detectable lung collapse. Perfusion was found primarily around the hilum of the nondependent lung and was minimal in the periphery of the nondependent and the entire dependent lung. These shifts can explain the high amount of venous admixture and physiological dead space found in this study. Breath holding redistributed ventilation toward dependent and ventral lung areas. The findings of this study reveal important pathophysiological insights into the changes in lung ventilation and perfusion during immobilization of white rhinoceroses. These novel insights might induce a search for better therapeutic options and is establishing EIT as a promising monitoring tool for large animals in the field.NEW & NOTEWORTHY Electrical impedance tomography measurements of regional ventilation and perfusion applied to etorphine-immobilized white rhinoceroses in lateral recumbency revealed a pronounced disproportional shift of the measured ventilation and perfusion toward the nondependent lung. The dependent lung was minimally ventilated and perfused, but still aerated. Perfusion was found primarily around the hilum of the nondependent lung. These shifts can explain the gas exchange impairments found in this study. Breath holding can redistribute ventilation.
Collapse
Affiliation(s)
- Martina Mosing
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Muriel Sacks
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | - Jordyn M Boesch
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Gareth E Zeiler
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Centre for Veterinary Wildlife Studies and Department of Paraclinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Giselle Hosgood
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Robin D Gleed
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Michele Miller
- Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leith C R Meyer
- Centre for Veterinary Wildlife Studies and Department of Paraclinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Stephan H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
62
|
Hahn G, Niewenhuys J, Just A, Tonetti T, Behnemann T, Rapetti F, Collino F, Vasques F, Maiolo G, Romitti F, Gattinoni L, Quintel M, Moerer O. Monitoring lung impedance changes during long-term ventilator-induced lung injury ventilation using electrical impedance tomography. Physiol Meas 2020; 41:095011. [PMID: 33035199 DOI: 10.1088/1361-6579/abb1fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The target of this methodological evaluation was the feasibility of long-term monitoring of changes in lung conditions by time-difference electrical impedance tomography (tdEIT). In contrast to ventilation monitoring by tdEIT, the monitoring of end-expiratory (EELIC) or end-inspiratory (EILIC) lung impedance change always requires a reference measurement. APPROACH To determine the stability of the used Pulmovista 500® EIT system, as a prerequisite it was initially secured on a resistive phantom for 50 h. By comparing the slopes of EELIC for the whole lung area up to 48 h from 36 pigs ventilated at six positive end-expiratory pressure (PEEP) levels from 0 to 18 cmH2O we found a good agreement (range of r 2 = 0.93-1.0) between absolute EIT (aEIT) and tdEIT values. This justified the usage of tdEIT with its superior local resolution compared to aEIT for long-term determination of EELIC. MAIN RESULTS The EELIC was between -0.07 Ωm day-1 at PEEP 4 and -1.04 Ωm day-1 at PEEP 18 cmH2O. The complex local time pattern for EELIC was roughly quantified by the new parameter, centre of end-expiratory change (CoEEC), in equivalence to the established centre of ventilation (CoV). The ventrally located mean of the CoV was fairly constant in the range of 42%-46% of thorax diameter; however, on the contrary, the CoEEC shifted from about 40% to about 75% in the dorsal direction for PEEP levels of 14 and 18 cmH2O. SIGNIFICANCE The observed shifts started earlier for higher PEEP levels. Changes of EELI could be precisely monitored over a period of 48 h by tdEIT on pigs.
Collapse
Affiliation(s)
- G Hahn
- Department of Anaesthesiology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, D-37075, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Riu PJ, Company G, Bragos R, Rosell J, Pajares V, Torrego A. Minimally Invasive Real-Time Electrical Impedance Spectroscopy Diagnostic Tool for Lung Parenchyma Pathologies . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5077-5080. [PMID: 33019128 DOI: 10.1109/embc44109.2020.9175860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical Impedance Spectroscopy has already demonstrated the ability to distinguish different tissues types, or tumors from normal tissue, or tissues displaying diverse degrees of pathology. When applying the technique, however, the necessity to make contact with the tissue often constitutes a practical limitation. Electrical Impedance Imaging (EIT), or in a broader sense, regional impedance assessment, struggle to assess different tissue conditions out of measurements from the surface of the body. But sensitivity is very small even for tissue a few centimeters under the skin, and in-vivo measurements are often not viable.The lung offer a third approximation by introducing a catheter though a bronchoscope, which is a routine clinical procedure. Measurements have been obtained by using 3 or 4-electrode techniques and allow us to distinguish, at least, fibrotic, emphysema or neoplastic regions from normal parenchyma. New instrumental developments, clinical measurements and preliminary results are presented and discussed.
Collapse
|
64
|
Individualized Positive End-expiratory Pressure and Regional Gas Exchange in Porcine Lung Injury. Anesthesiology 2020; 132:808-824. [DOI: 10.1097/aln.0000000000003151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
In acute respiratory failure elevated intraabdominal pressure aggravates lung collapse, tidal recruitment, and ventilation inhomogeneity. Low positive end-expiratory pressure (PEEP) may promote lung collapse and intrapulmonary shunting, whereas high PEEP may increase dead space by inspiratory overdistension. The authors hypothesized that an electrical impedance tomography–guided PEEP approach minimizing tidal recruitment improves regional ventilation and perfusion matching when compared to a table-based low PEEP/no recruitment and an oxygenation-guided high PEEP/full recruitment strategy in a hybrid model of lung injury and elevated intraabdominal pressure.
Methods
In 15 pigs with oleic acid–induced lung injury intraabdominal pressure was increased by intraabdominal saline infusion. PEEP was set in randomized order: (1) guided by a PEEP/inspired oxygen fraction table, without recruitment maneuver; (2) minimizing tidal recruitment guided by electrical impedance tomography after a recruitment maneuver; and (3) maximizing oxygenation after a recruitment maneuver. Single photon emission computed tomography was used to analyze regional ventilation, perfusion, and aeration. Primary outcome measures were differences in PEEP levels and regional ventilation/perfusion matching.
Results
Resulting PEEP levels were different (mean ± SD) with (1) table PEEP: 11 ± 3 cm H2O; (2) minimal tidal recruitment PEEP: 22 ± 3 cm H2O; and (3) maximal oxygenation PEEP: 25 ± 4 cm H2O; P < 0.001. Table PEEP without recruitment maneuver caused highest lung collapse (28 ± 11% vs. 5 ± 5% vs. 4 ± 4%; P < 0.001), shunt perfusion (3.2 ± 0.8 l/min vs. 1.0 ± 0.8 l/min vs. 0.7 ± 0.6 l/min; P < 0.001) and dead space ventilation (2.9 ± 1.0 l/min vs. 1.5 ± 0.7 l/min vs. 1.7 ± 0.8 l/min; P < 0.001). Although resulting in different PEEP levels, minimal tidal recruitment and maximal oxygenation PEEP, both following a recruitment maneuver, had similar effects on regional ventilation/perfusion matching.
Conclusions
When compared to table PEEP without a recruitment maneuver, both minimal tidal recruitment PEEP and maximal oxygenation PEEP following a recruitment maneuver decreased shunting and dead space ventilation, and the effects of minimal tidal recruitment PEEP and maximal oxygenation PEEP were comparable.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
65
|
Acute Respiratory Distress Syndrome (ARDS): Pathophysiological Insights and Lung Imaging. J Clin Med 2019; 8:jcm8122171. [PMID: 31818023 PMCID: PMC6947447 DOI: 10.3390/jcm8122171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is in the center of the scientific debate both for its complex pathophysiology and for the discussion about the remedies that could contribute to its healing. The intricate interplay of different body systems that characterizes ARDS is mirrored by two main research threads, one centered on the pathophysiological mechanisms of the disease and the other on the new approaches to lung imaging. In this Special Issue of the Journal of Clinical Medicine are presented studies using imaging technologies based on electrical impedance tomography, synchrotron radiation computed tomography and intravital probe-based confocal laser endomicroscopy. The studies on the pathophysiological mechanisms pertain to the evaluation of the biomarkers of the disease and the platelet disfunction during extracorporeal membrane oxygenation. These contributions witness the intensity of ARDS research as many of the key problems of the disease are only in part resolved.
Collapse
|