51
|
Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Opportunities and Challenges for Clinical Translation. Front Bioeng Biotechnol 2020; 8:997. [PMID: 33015001 PMCID: PMC7511661 DOI: 10.3389/fbioe.2020.00997] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, derived from mesenchymal stem/stromal cells (MSCs) exert similar effects as their parental cells, and are of interest for various therapeutic applications. EVs can act through uptake by the target cells followed by release of their cargo inside the cytoplasm, or through interaction of membrane-bound ligands with receptors expressed on target cells to stimulate downstream intracellular pathways. EV-based therapeutics may be directly used as substitutes of intact cells or after modification for targeted drug delivery. However, for the development of EV-based therapeutics, several production, isolation, and characterization requirements have to be met and the quality of the final product has to be tested before its clinical implementation. In this review, we discuss the challenges associated with the development of EV-based therapeutics and the regulatory specifications for their successful clinical translation.
Collapse
Affiliation(s)
- Marie Maumus
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Bauerfeind France, IRMB, Montpellier, France
| | - Pauline Rozier
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jérémy Boulestreau
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| |
Collapse
|
52
|
Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. INTERNATIONAL ORTHOPAEDICS 2020; 45:525-538. [PMID: 32661635 PMCID: PMC7843474 DOI: 10.1007/s00264-020-04703-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Purpose To investigate the available literature on the use of bone marrow aspirate concentrate (BMAC) and summarize the current evidence supporting its potential for the injective treatment of joints affected by osteoarthritis (OA). Methods A systematic literature search was conducted on three electronic databases (PubMed, Embase, and Cochrane Library) in April 2020, using the following string: “((bone marrow concentrate) OR (BMC) OR (bone marrow aspirate concentrate) OR (BMAC)) AND (osteoarthritis)”, and inclusion criteria: clinical and preclinical (animal) studies of any level of evidence, written in English language, and evaluating the intra-articular or subchondral use of BMAC for the injective treatment of OA joints. Results The publication trend remarkably increased over time. A total of 22 studies were included in the qualitative data synthesis: four preclinical studies and 18 clinical studies, for a total number of 4626 patients. Safety was documented by all studies, with a low number of adverse events. An overall improvement in pain and function was documented in most of the studies, but the clinical studies present significant heterogeneity, few patients, short-term follow-up, and overall poor methodology. Conclusion There is a growing interest in the field of BMAC injections for the treatment of OA, with promising results in preclinical and clinical studies in terms of safety and effectiveness. Nevertheless, the current knowledge is still preliminary. Preclinical research is still needed to optimize BMAC use, as well as high-level large controlled trials to better understand the real potential of BMAC injections for the treatment of patients affected by OA.
Collapse
|
53
|
Arrigoni C, D’Arrigo D, Rossella V, Candrian C, Albertini V, Moretti M. Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells 2020; 9:cells9061343. [PMID: 32481562 PMCID: PMC7348802 DOI: 10.3390/cells9061343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of arthritic diseases is increasing in developed countries, but effective treatments are currently lacking. The injection of mesenchymal stem cells (MSCs) represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA). However, the majority of clinical approaches based on MSCs are used within an autologous paradigm, with important limitations. For this reason, allogeneic MSCs isolated from cord blood (cbMSCs) and Wharton’s jelly (wjMSCs) gained increasing interest, demonstrating promising results in this field. Moreover, recent evidences shows that MSCs beneficial effects can be related to their secretome rather than to the presence of cells themselves. Among the trophic factors secreted by MSCs, extracellular vesicles (EVs) are emerging as a promising candidate for the treatment of arthritic joints. In the present review, the application of umbilical cord MSCs and their secretome as innovative therapeutic approaches in the treatment of arthritic joints will be examined. With the prospective of routine clinical applications, umbilical cord MSCs and EVs will be discussed also within an industrial and regulatory perspective.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
| | - Daniele D’Arrigo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
| | - Valeria Rossella
- Swiss Stem Cells Biotech, Via Pizzamiglio 12, 6833 Vacallo, Switzerland; (V.R.); (V.A.)
| | - Christian Candrian
- Unità di Ortopedia e Traumatologia, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via Buffi 13, 6900 Lugano, Switzerland
| | - Veronica Albertini
- Swiss Stem Cells Biotech, Via Pizzamiglio 12, 6833 Vacallo, Switzerland; (V.R.); (V.A.)
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, via R. Galeazzi 4., 20161 Milano, Italy
- Correspondence: ; Tel.: +41-91-811-7076
| |
Collapse
|
54
|
Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
55
|
Ragni E, Perucca Orfei C, De Luca P, Mondadori C, Viganò M, Colombini A, de Girolamo L. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res Ther 2020; 11:165. [PMID: 32345351 PMCID: PMC7189600 DOI: 10.1186/s13287-020-01677-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC)-enriched products showed positive clinical outcomes in regenerative medicine, where tissue restoration and inflammation control are needed. GMP-expanded MSCs displayed an even higher potential due to exclusive secretion of therapeutic factors, both free and conveyed within extracellular vesicles (EVs), collectively termed secretome. Moreover, priming with biochemical cues may influence the portfolio and biological activities of MSC-derived factors. For these reasons, the use of naive or primed secretome gained attention as a cell-free therapeutic option. Albeit, at present, a homogenous and comprehensive secretome fingerprint is still missing. Therefore, the aim of this work was to deeply characterize adipose-derived MSC (ASC)-secreted factors and EV-miRNAs, and their modulation after IFNγ preconditioning. The crucial influence of the target pathology or cell type was also scored in osteoarthritis to evaluate disease-driven potency. METHODS ASCs were isolated from four donors and cultured with and without IFNγ. Two-hundred secreted factors were assayed by ELISA. ASC-EVs were isolated by ultracentrifugation and validated by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. miRNome was deciphered by high-throughput screening. Bioinformatics was used to predict the modulatory effect of secreted molecules on pathologic cartilage and synovial macrophages based on public datasets. Models of inflammation for both macrophages and chondrocytes were used to test by flow cytometry the secretome anti-inflammatory potency. RESULTS Data showed that more than 60 cytokines/chemokines could be identified at varying levels of intensity in all samples. The vast majority of factors are involved in extracellular matrix remodeling, and chemotaxis or motility of inflammatory cells. IFNγ is able to further increase the capacity of the secretome to stimulate cell migration signals. Moreover, more than 240 miRNAs were found in ASC-EVs. Sixty miRNAs accounted for > 95% of the genetic message that resulted to be chondro-protective and M2 macrophage polarizing. Inflammation tipped the balance towards a more pronounced tissue regenerative and anti-inflammatory phenotype. In silico data were confirmed on inflamed macrophages and chondrocytes, with secretome being able to increase M2 phenotype marker CD163 and reduce the chondrocyte inflammation marker VCAM1, respectively. IFNγ priming further enhanced secretome anti-inflammatory potency. CONCLUSIONS Given the portfolio of soluble factors and EV-miRNAs, ASC secretome showed a marked capacity to stimulate cell motility and modulate inflammatory and degenerative processes. Preconditioning is able to increase this ability, suggesting inflammatory priming as an effective strategy to obtain a more potent clinical product which use should always be driven by the molecular mark of the target pathology.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| |
Collapse
|
56
|
Secreted Factors and EV-miRNAs Orchestrate the Healing Capacity of Adipose Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis. Int J Mol Sci 2020; 21:ijms21051582. [PMID: 32111031 PMCID: PMC7084308 DOI: 10.3390/ijms21051582] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue and used either as expanded cells or minimally manipulated cell preparations showed positive clinical outcomes in regenerative medicine approaches based on tissue restoration and inflammation control, like in osteoarthritis (OA). Recently, MSCs’ healing capacity has been ascribed to the large array of soluble factors, including soluble cytokines/chemokines and miRNAs conveyed within extracellular vesicles (EVs). Therefore, in this study, 200 secreted cytokines, chemokines and growth factors via ELISA, together with EV-embedded miRNAs via high-throughput techniques, were scored in adipose-derived MSCs (ASCs) cultivated under inflammatory conditions, mimicking OA synovial fluid. Both factors (through most abundantly expressed TIMP1, TIMP2, PLG and CTSS) and miRNAs (miR-24-3p, miR-222-3p and miR-193b-3p) suggested a strong capacity for ASCs to reduce matrix degradation activities, as those activated in OA cartilage, and switch synovial macrophages, often characterized by an M1 inflammatory polarization, towards an M2 phenotype. Moreover, the crucial importance of selecting the target tissue is discussed, showing how a focused search may greatly improve potency prediction and explain clinical outcomes. In conclusion, herein presented data shed light about the way ASCs regulate cell homeostasis and regenerative pathways in an OA-resembling environment, therefore suggesting a rationale for the use of MSC-enriched clinical products, such as stromal vascular fraction and microfragmented adipose tissue, in joint pathologies.
Collapse
|
57
|
Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Front Cell Dev Biol 2020; 8:107. [PMID: 32154253 PMCID: PMC7047768 DOI: 10.3389/fcell.2020.00107] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pauline Rozier
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| |
Collapse
|
58
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|