51
|
Gentamicin-Loaded Thermosetting Hydrogel and Moldable Composite Scaffold: Formulation Study and Biologic Evaluation. J Pharm Sci 2017; 106:1596-1607. [DOI: 10.1016/j.xphs.2017.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
|
52
|
Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca 2+ ions permeation. Colloids Surf B Biointerfaces 2017; 156:388-396. [PMID: 28551573 DOI: 10.1016/j.colsurfb.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
Magnetic scaffolds with different charge densities were prepared using magnetic nanoparticles (MNP) and xanthan gum (XG), a negatively charged polysaccharide, or hydroxypropyl methylcellulose (HPMC), an uncharged cellulose ether. XG chains were crosslinked with citric acid (cit), a triprotic acid, whereas HPMC chains were crosslinked either with cit or with oxalic acid (oxa), a diprotic acid. The scaffolds XG-cit, HPMC-cit and HPMC-oxa were characterized by scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), superconducting quantum interference device (SQUID) magnetometry, contact angle and zeta-potential measurements. In addition, the flux of Ca2+ ions through the scaffolds was monitored by using a potentiometric microsensor. The adhesion and proliferation of murine fibroblasts (NIH/3T3) on XG-cit, XG-cit-MNP, HPMC-cit, HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP were evaluated by MTT assay. The magnetic scaffolds presented low coercivity (<25Oe). The surface energy values determined for all scaffolds were similar, ranging from 43mJm-2 to 46mJm-2. However, the polar component decreased after MNP incorporation and the dispersive component of surface energy increased in average 1mJm-2 after MNP incorporation. The permeation of Ca2+ ions through XG-cit-MNP was significantly higher in comparison with that on XG-cit and HPMC-cit scaffolds, but through HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP scaffolds it was negligible within the timescale of the experiment. The adhesion and proliferation of fibroblasts on the scaffolds followed the trend: XG-cit-MNP>XG-cit>HPMC-cit, HPMC-cit-MNP, HPMC-oxa, HPMC-oxa-MNP. A model was proposed to explain the cell behavior stimulated by the scaffold charge, MNP and Ca2+ ions permeation.
Collapse
|
53
|
Rau JV, Wu VM, Graziani V, Fadeeva IV, Fomin AS, Fosca M, Uskoković V. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629018 DOI: 10.1016/j.msec.2017.05.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells.
Collapse
Affiliation(s)
- Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy.
| | - Victoria M Wu
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Valerio Graziani
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Inna V Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119991 Moscow, Russia
| | - Alexander S Fomin
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119991 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA.
| |
Collapse
|
54
|
Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 2017; 98:67-74. [DOI: 10.1016/j.ijbiomac.2017.01.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
|
55
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
56
|
Predoi D, Iconaru SL, Albu M, Petre CC, Jiga G. Physicochemical and antimicrobial properties of silver-doped hydroxyapatite collagen biocomposite. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics; P.O. Box MG 07 Magurele Romania
| | | | - Madalina Albu
- Collagen Department; National Research & Development Institute for Textiles and Leather (INCDTP)-Division, Leather and Footwear Research Institute; Ion Minulescu Str.93 Bucharest 031215 Romania
| | - Cristian Catalin Petre
- Department of Strength of Materials; University Politehnica of Bucharest, Faculty of Engineering and Management of Technological Systems; 313 Splaiul Independentei Bucharest Romania
| | - Gabriel Jiga
- Department of Strength of Materials; University Politehnica of Bucharest, Faculty of Engineering and Management of Technological Systems; 313 Splaiul Independentei Bucharest Romania
| |
Collapse
|
57
|
Zhu YJ. Nanostructured Materials of Calcium Phosphates and Calcium Silicates: Synthesis, Properties and Applications. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| |
Collapse
|
58
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
59
|
Mansour SF, El-dek SI, Dorozhkin SV, Ahmed MK. Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. NEW J CHEM 2017; 41:13773-13783. [DOI: 10.1039/c7nj01777d] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Co-Substituted hydroxyapatite Mg–Ag-HAP/chitosan biocomposites were synthesized successfully using a simple chemical method, and the compressive strength progressed up to 15.2 MPa atx= 0.8.
Collapse
Affiliation(s)
- S. F. Mansour
- Physics Department
- Faculty of Science
- Zagazig University
- Egypt
| | - S. I. El-dek
- Materials Science and Nanotechnology Department
- Faculty of Postgraduate Studies for Advanced Sciences
- Beni-Suef University
- Egypt
| | | | - M. K. Ahmed
- Physics Department
- Faculty of Science
- Zagazig University
- Egypt
| |
Collapse
|
60
|
Liu Y, Zhang G, Guo Q, Ma L, Jia Q, Liu L, Zhou J. Artificially controlled degradable inorganic nanomaterial for cancer theranostics. Biomaterials 2017; 112:204-217. [DOI: 10.1016/j.biomaterials.2016.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/01/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022]
|
61
|
Pavlychev AA, Avrunin AS, Vinogradov AS, Filatova EO, Doctorov AA, Krivosenko YS, Samoilenko DO, Svirskiy GI, Konashuk AS, Rostov DA. Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study. NANOTECHNOLOGY 2016; 27:504002. [PMID: 27875332 DOI: 10.1088/0957-4484/27/50/504002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Theoretical and experimental investigations of native bone are carried out to understand relationships between its hierarchical organization and local electronic and atomic structure of the mineralized phase. The 3D superlattice model of a coplanar assembly of the hydroxyapatite (HAP) nanocrystallites separated by the hydrated nanolayers is introduced to account the interplay of short-, long- and super-range order parameters in bone tissue. The model is applied to (i) predict and rationalize the HAP-to-bone spectral changes in the electronic structure and (ii) describe the mechanisms ensuring the link of the hierarchical organization with the electronic structure of the mineralized phase in bone. To check the predictions the near-edge x-ray absorption fine structure (NEXAFS) at the Ca 2p, P 2p and O 1s thresholds is measured for native bone and compared with NEXAFS for reference compounds. The NEXAFS analysis has demonstrated the essential hierarchy induced HAP-to-bone red shifts of the Ca and P 2p-to-valence transitions. The lowest O 1s excitation line at 532.2 eV in bone is assigned with superposition of core transitions in the hydroxide OH-(H2O) m anions, Ca2+(H2O) n cations, the carboxyl groups inside the collagen and [PO4]2- and [PO4]- anions with unsaturated P-O bonds.
Collapse
Affiliation(s)
- A A Pavlychev
- Solid State Electronics Department, St. Petersburg State University, St. Petersburg, 198504, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ignjatović NL, Penov-Gaši KM, Wu VM, Ajduković JJ, Kojić VV, Vasiljević-Radović D, Kuzmanović M, Uskoković V, Uskoković DP. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids Surf B Biointerfaces 2016; 148:629-639. [PMID: 27694053 DOI: 10.1016/j.colsurfb.2016.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Katarina M Penov-Gaši
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Jovana J Ajduković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dana Vasiljević-Radović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Maja Kuzmanović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA; Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA.
| | - Dragan P Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia.
| |
Collapse
|
63
|
Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep 2016; 6:32884. [PMID: 27616161 PMCID: PMC5018723 DOI: 10.1038/srep32884] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering.
Collapse
|
64
|
Ma C, Wang Z, Lu X, Lu JX, Bai F, Wang CF, Li L, Hou SX, Wang HD. In vivo angiogenesis in tissues penetrating into porous β-tricalcium phosphate scaffolds. RSC Adv 2016. [DOI: 10.1039/c6ra09633f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In vivo angiogenesis in a three-dimensional bone graft after the implantation of spherical porous β-tricalcium phosphate scaffolding materials into lumbodorsal fascia of New Zealand rabbits.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedics
- The First Affiliated Hospital of the General Hospital of Chinese People's Liberation Army (PLAGH)
- Beijing
- China
| | - Zhen Wang
- Department of Orthopedics
- Xijing Hospital
- Fourth Military Medical University (FMMU)
- Xi'an
- China
| | - Xiao Lu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jian-Xi Lu
- Shanghai Bio-Lu Biomaterials Co. Ltd
- Shanghai
- China
| | - Feng Bai
- Department of Orthopedics
- 451 PLA Hospital
- Xi'an
- China
| | - Chao-Feng Wang
- Department of Orthopedics
- Navy General Hospital
- Beijing
- China
| | - Li Li
- Department of Orthopedics
- The First Affiliated Hospital of the General Hospital of Chinese People's Liberation Army (PLAGH)
- Beijing
- China
| | - Shu-Xun Hou
- Department of Orthopedics
- The First Affiliated Hospital of the General Hospital of Chinese People's Liberation Army (PLAGH)
- Beijing
- China
| | - Hua-Dong Wang
- Department of Orthopedics
- The First Affiliated Hospital of the General Hospital of Chinese People's Liberation Army (PLAGH)
- Beijing
- China
| |
Collapse
|
65
|
Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review. J Funct Biomater 2015; 6:1099-140. [PMID: 26703750 PMCID: PMC4695913 DOI: 10.3390/jfb6041099] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.
Collapse
Affiliation(s)
- Mythili Prakasam
- CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Kristine Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| | - Alain Largeteau
- CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
| | - Liga Berzina-Cimdina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails: (J.L.); (K.S.-A.); (D.L.); (L.B.-C.)
| |
Collapse
|
66
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|