51
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
52
|
Wang Y, Feng T, Li H, Yu Y, Han Y, Zhang J, Li X, Li Y, Zhang XH. A novel heterologous expression strategy for the quorum-quenching enzyme MomL in Lysobacter enzymogenes to the inhibit pathogenicity of Pectobacterium. Appl Microbiol Biotechnol 2019; 103:8889-8898. [PMID: 31656979 DOI: 10.1007/s00253-019-10166-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 01/28/2023]
Abstract
Quorum-quenching (QQ) enzymes can block the quorum-sensing (QS) system and prevent the expression of QS-controlled pathogenic factors in bacteria. However, the low expression levels of QQ proteins in the original host bacteria have affected their widespread application. In this study, we heterologously expressed momL, encoding a QQ enzyme with high activity, in Lysobacter enzymogenes. A "yellow-to-white" selection marker and the high-constitutive-expression promoter PgroEL were used in this novel heterologous expression system. In addition, we optimized the spacer between the SD sequence and the initiator to improve the efficiency of the expression system by 1.54-fold. The engineered strain LeMomL degraded the AHL molecule and the virulence factors of Pectobacterium carotovorum subsp. carotovora (Pcc). Additionally, LeMomL significantly decreased the disease caused by Pcc in Chinese cabbages and carrot root tissues. In conclusion, this novel and facile L. enzymogenes expression strategy has good prospects and is an ideal approach for foreign protein expression.
Collapse
Affiliation(s)
- Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hui Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yameng Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jingjing Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
53
|
Liang X, Matthew S, Chen QY, Kwan JC, Paul VJ, Luesch H. Discovery and Total Synthesis of Doscadenamide A: A Quorum Sensing Signaling Molecule from a Marine Cyanobacterium. Org Lett 2019; 21:7274-7278. [PMID: 31414826 PMCID: PMC7325281 DOI: 10.1021/acs.orglett.9b02525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quorum sensing (QS) plays a critical role in the regulation of bacterial pathogenesis. Doscadenamide A (1a) was isolated from a marine cyanobacterium, its structure elucidated by NMR, and its activity linked to QS induction. The total synthesis of 1a was developed, and the absolute configuration confirmed through comparison of the isolated natural product with synthetic diastereomers. Our preliminary investigation indicated that 1a could activate QS signaling in a LasR-dependent manner.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
54
|
Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG. In silico Analysis Reveals Distribution of Quorum Sensing Genes and Consistent Presence of LuxR Solos in the Pandoraea Species. Front Microbiol 2019; 10:1758. [PMID: 31447806 PMCID: PMC6691176 DOI: 10.3389/fmicb.2019.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| |
Collapse
|
55
|
Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019; 5:e02192. [PMID: 31463386 PMCID: PMC6709409 DOI: 10.1016/j.heliyon.2019.e02192] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Background Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix. The ability of microbes to form biofilm is a universal, ubiquitous, and dynamic process. This dynamic process of biofilms establishes an important strategy to withstand and survive harsh environmental conditions and antimicrobial agents. Objective This review paper aims to give an overview of antibiotic resistance, intervention, and treatment of infections caused by biofilm-forming organisms. Moreover, it can also help to motivate scholars to search for new anti-biofilm strategies and most appropriate methods to tackle the effect of biofilm infections on healthcare services. Methods This paper was written by reviewing recent research and review articles which are reporting about the antibiotic resistance, prevention, and treatment of biofilm-producing organisms. Conclusion Bioprospecting for quorum quenching compounds can be an appropriate solution for controlling biofilm infections.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia.,Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology, and Innovation, Nairobi, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Christine Bii
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia
| |
Collapse
|
56
|
Analysis of the influence of cyclo (L-phenylalanine-L-proline) on the proteome of Staphylococcus aureus using iTRAQ. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
57
|
Mulat M, Pandita A, Khan F. Medicinal Plant Compounds for Combating the Multi-drug Resistant Pathogenic Bacteria: A Review. Curr Pharm Biotechnol 2019; 20:183-196. [PMID: 30854956 DOI: 10.2174/1872210513666190308133429] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Globally, people utilize plants as the main source of remedy to heal various ailments. Medicinal plants have been utilized to treat ailments since the invention of modern scientific systems of medicine. The common remedy of infectious diseases mainly depends on the inhibition capacity of compounds or killing potential. The issue may give a clue for the development of a novel antimicrobial agent. METHODS Currently, microorganisms which are resistant towards antibiotics are probably a matter of serious concern for the overall well-being of health. At the moment, new therapeutic targets aside from the microorganism wall-based activities are in progress. For instance, the autoinducer molecules produced by the quorum sensing system are used to control antibiotic resistance and biofilm formation. RESULTS This therapeutic target is well-studied worldwide, however, the scientific data are not updated and only current studies started to gain insight into its perspective as a target to struggle against infectious diseases. Microbial resistance against antimicrobial compounds is a topic of serious concern in recent time. CONCLUSION Hence, this paper aims to confer a current overview of the novel compounds, quorum sensing, quorum quenching, biofilm formation in the development of antibiotic resistance and an update on their importance as a potential target for natural substances.
Collapse
Affiliation(s)
- Mulugeta Mulat
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India.,Division of Microbiology, College of Natural Science, Wollo University, Dessie, Ethiopia
| | - Archana Pandita
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
58
|
Zhuang X, Zhang A, Chu W. Anti-quorum sensing activity of Forsythia suspense extract against Chromobacterium violaceum by targeting CviR receptor. Int Microbiol 2019; 23:215-224. [PMID: 31342213 DOI: 10.1007/s10123-019-00091-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022]
Abstract
The increasing incidence of antimicrobial-resistant bacterial pathogens has focused researchers on quorum sensing inhibition strategies instead of those conventional approaches to fight bacterial infections. Anti-quorum sensing (QS) activity of aqueous extract from Forsythia suspense (FSE) was assessed, and its potential QS inhibition mechanisms were also analyzed. The minimal inhibitory concentration (MIC) of FSE to Chromobacterium violaceum 12472 is 0.5 mg mL-1. Inhibition of QS-regulated violacein production and biofilm formation in C. violaceum 12472 by FSE occurred in a concentration-dependent manner at sub-MIC, with > 70.12 and > 85.31% inhibition at 0.25 mg mL-1, respectively. N-Acyl homoserine lactones (AHLs) extracted from cultures of C. violaceum 31532 grown in the presence of FSE could not change the violacein production in C. violaceum 026, which indicated that FSE did not inhibit AHL synthesis. We also found that FSE cannot degrade AHLs. Finally, in silico molecular docking was conducted. The computed binding energy data suggested that components of F. suspense have a tendency to inhibit CviR with varying binding affinities and the energy score of Pinoresinol (- 26.02 kcal/mol) is higher than that of C6-HSL (- 16.09 kcal mol-1). We concluded that FSE acts as an antagonist of bacterial quorum sensing by competing with AHL receptor binding site.
Collapse
Affiliation(s)
- Xiyi Zhuang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - An Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
59
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
60
|
Quorum sensing inimical activity of Tribulus terrestris against gram negative bacterial pathogens by signalling interference. 3 Biotech 2019; 9:163. [PMID: 30944810 DOI: 10.1007/s13205-019-1695-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial virulence is controlled by a cascade of genes influenced by quorum sensing alias bacterial signalling.The present study was intended to develop an effective module that could constrain bacterial communication without harming the host. Quorum quenching ability of Tribulus terrestris was screened upon chromogenic reporter strains such as Chromobacterium violaceum, Serratia marcescens and Pseudomonas aeruginosa. Hydro-alcoholic extracts of root showed positive quorum quenching activity by effectively down regulating quorum sensing controlled mechanisms such as pigment production and biofilm formation. Lead component was purified and found to be ß-1, 5-O-dibenzoyl ribofuranose by GC-MS NIST and NMR spectrometry. Interestingly it was observed that the compound was neither bactericidal nor bacteriostatic but rather it's only disturbing its interaction. Further studies revealed that the antagonist is not inhibiting the production of signalling molecule acyl homoserine lactone, instead inhibiting its action.
Collapse
|
61
|
Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z. Use of probiotics in aquaculture of China-a review of the past decade. FISH & SHELLFISH IMMUNOLOGY 2019; 86:734-755. [PMID: 30553887 DOI: 10.1016/j.fsi.2018.12.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.
Collapse
Affiliation(s)
- Anran Wang
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium; Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chao Ran
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yanbo Wang
- Marine Resource & Nutritional Biology, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, China
| | - Zhen Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qianwen Ding
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jérôme Bindelle
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
62
|
Hendiani S, Pornour M, Kashef N. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are affected by sub-lethal photodynamic inactivation. Photodiagnosis Photodyn Ther 2019; 26:8-12. [PMID: 30753921 DOI: 10.1016/j.pdpdt.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Photodynamic inactivation (PDI) is recognized as a new antimicrobial approach. It is likely that in human hosts receiving this therapy, pathogens may encounter sub-lethal doses of PDI (sPDI), which may affect microbial virulence. This study was aimed to evaluate the effect of sPDI using methylene blue (MB) on the expression of genes belonging to two quorum sensing (QS) operons (rhl and las systems) and two genes necessary for pyocyanin and rhamnolipid production (phzM and rhlA) under QS control in Pseudomonas aeruginosa. METHODS Ability of pyocyanin and rhamnolipid production of P. aeruginosa ATCC 27853 and clinical isolates exposed to sPDI (MB at 0.012 mM and light dose of 23 J/cm2 was evaluated. The effect of sPDI on expression of rhlI, rhlR, lasI, lasR, phzM and rhlA were also evaluated by quantitative real time polymerase chain reaction. RESULTS sPDI led to the down-regulation of the expression of all four QS genes (lasI, lasR, rhlI and rhlR) and rhamnolipid gene (rhlA). However, up-regulation of pyocyanin gene (phzM) was observed after sPDI. These results were consistent with phenotypic changes. CONCLUSION This study suggests that oxidative stress induced by sPDI can affect QS-regulated virulence factors of P. aeruginosa such as pyocyanin and rhamnolipids in different ways.
Collapse
Affiliation(s)
- Saghar Hendiani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
63
|
Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives. Mar Drugs 2019; 17:md17020080. [PMID: 30696031 PMCID: PMC6409935 DOI: 10.3390/md17020080] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial treatments. This review covers a series of molecules showing quorum sensing (QS) inhibitory activity that are isolated from marine microorganisms, including bacteria, actinomycetes and fungi, and chemically synthesized based on QSIs derived from marine microorganisms. This is the first comprehensive overview of QSIs derived from marine microorganisms and their synthetic analogues with QS inhibitory activity.
Collapse
|
64
|
Mion S, Rémy B, Plener L, Chabrière É, Daudé D. Quorum sensing et quorum quenching : Comment bloquer la communication des bactéries pour inhiber leur virulence ? Med Sci (Paris) 2019; 35:31-38. [DOI: 10.1051/medsci/2018310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
La plupart des bactéries utilisent un système de communication, le quorum sensing, fondé sur la sécrétion et la perception de petites molécules appelées autoinducteurs qui leur permettent d’adapter leur comportement en fonction de la taille de la population. Les bactéries mutualisent ainsi leurs efforts de survie en synchronisant entre elles la régulation de gènes impliqués notamment dans la virulence, la résistance aux antimicrobiens ou la formation du biofilm. Des méthodes ont vu le jour pour inhiber cette communication entre bactéries et limiter leurs effets nocifs. Des inhibiteurs chimiques, des anticorps ou encore des enzymes capables d’interférer avec les autoinducteurs ont été développés et se sont montrés efficaces pour diminuer la virulence des bactéries à la fois in vitro et in vivo. Cette stratégie, appelée quorum quenching, a également montré des effets synergiques avec des traitements antibactériens classiques. Il permettrait notamment d’augmenter la sensibilité des bactéries aux antibiotiques. Ceci constitue une piste thérapeutique prometteuse pour lutter contre les infections bactériennes et limiter les conséquences de l’antibiorésistance.
Collapse
|
65
|
Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Mar Drugs 2019; 17:md17010072. [PMID: 30669697 PMCID: PMC6356914 DOI: 10.3390/md17010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
With 70% of the Earth's surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.
Collapse
|
66
|
The Probiotic Bacterium Phaeobacter inhibens Downregulates Virulence Factor Transcription in the Shellfish Pathogen Vibrio coralliilyticus by N-Acyl Homoserine Lactone Production. Appl Environ Microbiol 2019; 85:AEM.01545-18. [PMID: 30389771 DOI: 10.1128/aem.01545-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 μM, 3.7 μM, and 2.9 μM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticus IMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.
Collapse
|
67
|
Agar Extraction By-Products from Gelidium sesquipedale as a Source of Glycerol-Galactosides. Molecules 2018; 23:molecules23123364. [PMID: 30572590 PMCID: PMC6320990 DOI: 10.3390/molecules23123364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
Alkaline treatment is a common step largely used in the industrial extraction of agar, a phycocolloid obtained from red algae such as Gelidium sesquipedale. The subsequent residue constitutes a poorly valorized by-product. The present study aimed to identify low-molecular-weight compounds in this alkaline waste. A fractionation process was designed in order to obtain the oligosaccharidic fraction from which several glycerol-galactosides were isolated. A combination of electrospray ion (ESI)-mass spectrometry, ¹H-NMR spectroscopy, and glycosidic linkage analyses by GC-MS allowed the identification of floridoside, corresponding to Gal-glycerol, along with oligogalactosides, i.e., (Gal)2⁻4-glycerol, among which α-d-galactopyranosyl-(1→3)-β-d-galactopyranosylα1-2⁻glycerol and α-d-galactopyranosyl-(1→4)-β-d-galactopyranosylα1-2⁻glycerol were described for the first time in red algae.
Collapse
|
68
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
69
|
Della Sala G, Agriesti F, Mazzoccoli C, Tataranni T, Costantino V, Piccoli C. Clogging the Ubiquitin-Proteasome Machinery with Marine Natural Products: Last Decade Update. Mar Drugs 2018; 16:E467. [PMID: 30486251 PMCID: PMC6316072 DOI: 10.3390/md16120467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is the central protein degradation system in eukaryotic cells, playing a key role in homeostasis maintenance, through proteolysis of regulatory and misfolded (potentially harmful) proteins. As cancer cells produce proteins inducing cell proliferation and inhibiting cell death pathways, UPP inhibition has been exploited as an anticancer strategy to shift the balance between protein synthesis and degradation towards cell death. Over the last few years, marine invertebrates and microorganisms have shown to be an unexhaustive factory of secondary metabolites targeting the UPP. These chemically intriguing compounds can inspire clinical development of novel antitumor drugs to cope with the incessant outbreak of side effects and resistance mechanisms induced by currently approved proteasome inhibitors (e.g., bortezomib). In this review, we report about (a) the role of the UPP in anticancer therapy, (b) chemical and biological properties of UPP inhibitors from marine sources discovered in the last decade, (c) high-throughput screening techniques for mining natural UPP inhibitors in organic extracts. Moreover, we will tell about the fascinating story of salinosporamide A, the first marine natural product to access clinical trials as a proteasome inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Gerardo Della Sala
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valeria Costantino
- The NeaNat Group, Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| |
Collapse
|
70
|
See-Too WS, Convey P, Pearce DA, Chan KG. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microb Cell Fact 2018; 17:179. [PMID: 30445965 PMCID: PMC6240239 DOI: 10.1186/s12934-018-1024-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme. RESULTS Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage. CONCLUSION We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.
Collapse
Affiliation(s)
- Wah Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Peter Convey
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David A Pearce
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Applied Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
71
|
Characterization of a Novel N-Acylhomoserine Lactonase RmmL from Ruegeria mobilis YJ3. Mar Drugs 2018; 16:md16100370. [PMID: 30297643 PMCID: PMC6213412 DOI: 10.3390/md16100370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022] Open
Abstract
Gram-negative bacteria utilize N-acylhomoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for intercellular communication. Cell-to-cell communication depends on cell population density, and AHL-dependent QS is related to the production of multiple genes including virulence factors. Quorum quenching (QQ), signal inactivation by enzymatic degradation, is a potential strategy for attenuating QS regulated bacterial infections. Both Gram-positive and -negative bacteria have QQ enzymes that can degrade AHLs. In our previous study, strain Ruegeria mobilis YJ3, isolated from healthy shrimp, showed strong AHLs degradative activity. In the current study, an AHL lactonase (designated RmmL) was cloned and characterized from Ruegeria mobilis YJ3. Amino acid sequence analysis showed that RmmL has a conserved “HXHXDH” motif and clusters together with lactonase AidC that belongs to the metallo-β-lactamase superfamily. Recombinant RmmL could degrade either short- or long-chain AHLs in vitro. High-performance liquid chromatography analysis indicated that RmmL works as an AHL lactonase catalyzing AHL ring-opening by hydrolyzing lactones. Furthermore, RmmL can reduce the production of pyocyanin by Pseudomonas aeruginosa PAO1, while for the violacein and the extracellular protease activities by Chromobacterium violaceum CV026 and Vibrio anguillarum VIB72, no significant reduction was observed. This study suggests that RmmL might be used as a therapeutic agent in aquaculture.
Collapse
|
72
|
Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM. Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of Candida glabrata and Its Clinical Isolates. ACS OMEGA 2018; 3:12201-12214. [PMID: 31459295 PMCID: PMC6645245 DOI: 10.1021/acsomega.8b01856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
Toxicity challenges by antifungal arsenals and emergence of multidrug resistance scenario has posed a serious threat to global community. To cope up with this alarming situation, phytoactive molecules are richest, safest, and most effective source of broad spectrum antimicrobial compounds. In the present investigation, six phytoactive molecules [cinnamaldehyde (CIN), epigallocatechin, vanillin, eugenol (EUG), furanone, and epigallocatechin gallate] were studied against Candida glabrata and its clinical isolates. Among these, CIN and EUG which are active components of cinnamon and clove essential oils, respectively, exhibited maximum inhibition against planktonic growth of C. glabrata at a concentration of 64 and 128 μg mL-1, respectively. These two molecules effectively inhibited and eradicated approximately 80% biofilm of C. glabrata and its clinical isolates from biomaterials. CIN and EUG increased reactive oxygen species generation, cell lysis, and ergosterol content in plasma membrane and reduced virulence attributes (phospholipase and proteinase) as well as catalase activity of C. glabrata cells. Reduction of mitochondrial membrane potential with increased release of cytochrome c from mitochondria to cytosol indicated initiation of early apoptosis in CIN- and EUG-treated C. glabrata cells. Transcriptional analysis showed that multidrug transporter (CDR1) and ergosterol biosynthesis genes were downregulated in the presence of CIN, while getting upregulated in EUG-treated cells. Interestingly, genes such as 1,3-β-glucan synthase (FKS1), GPI-anchored protein (KRE1), and sterol importer (AUS1) were downregulated upon treatment of CIN/EUG. These results provided molecular-level insights about the antifungal mechanism of CIN and EUG against C. glabrata including its resistant clinical isolate. The current data established that CIN and EUG can be potentially formulated in new antifungal strategies.
Collapse
Affiliation(s)
- Payal Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sonam Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Navin Kumar
- Department
of Biotechnology, Graphic Era Deemed to
be University, Dehradun 248002, Uttarakhand, India
| | - Vikas Pruthi
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
73
|
McBrayer DN, Cameron CD, Gantman BK, Tal-Gan Y. Rational Design of Potent Activators and Inhibitors of the Enterococcus faecalis Fsr Quorum Sensing Circuit. ACS Chem Biol 2018; 13:2673-2681. [PMID: 30141904 DOI: 10.1021/acschembio.8b00610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing rate of resistance development to conventional antibiotics by bacteria necessitates the identification of alternative treatment possibilities that can reduce the ability of bacteria to adapt. Enterococcus faecalis remains the leading cause of clinical enterococci infections and has exhibited quorum sensing (QS)-dependent pathogenicity. Here, we report the development of macrocyclic peptide-based activators and inhibitors of the E. faecalis Fsr QS circuitry. To this end, we developed, optimized, and compared three synthetic routes for lactone-containing macrocyclic peptide scaffolds. We then utilized previous and current structure-activity relationship (SAR) insights of the native QS signaling peptide to rationally design the most potent activators and inhibitors of the Fsr QS circuitry identified to date. The application of these peptides could provide a means to attenuate the pathogenicity of E. faecalis without introducing significant selective pressure on the bacteria to develop resistance.
Collapse
Affiliation(s)
- Dominic N. McBrayer
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Crissey D. Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Brooke K. Gantman
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
74
|
Mairink SZ, Barbosa LCA, Boukouvalas J, Pedroso SHSP, Santos SG, Magalhães PP, Farias LM. Synthesis and evaluation of cadiolide analogues as inhibitors of bacterial biofilm formation. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2246-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
75
|
Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. MATERIALS 2018; 11:ma11091676. [PMID: 30201944 PMCID: PMC6163278 DOI: 10.3390/ma11091676] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Biofilm formation in healthcare is an issue of considerable concern, as it results in increased morbidity and mortality, imposing a significant financial burden on the healthcare system. Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections. Hence, there is a high demand for novel strategies other than conventional antibiotic therapies to control biofilm-based infections. There are two approaches which have been employed so far to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors based on the understanding of the molecular mechanism of biofilm formation, and the other is to modify the biomaterials which are used in medical devices to prevent biofilm formation. This review will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing cellular communication system and the multidrug efflux pumps which play an important role in biofilm formation. Research efforts directed towards these promising strategies could eventually lead to the development of better anti-biofilm therapies than the conventional treatments.
Collapse
|
76
|
Bergonzi C, Schwab M, Naik T, Daudé D, Chabrière E, Elias M. Structural and Biochemical Characterization of AaL, a Quorum Quenching Lactonase with Unusual Kinetic Properties. Sci Rep 2018; 8:11262. [PMID: 30050039 PMCID: PMC6062542 DOI: 10.1038/s41598-018-28988-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Quorum quenching lactonases are enzymes that are capable of disrupting bacterial signaling based on acyl homoserine lactones (AHL) via their enzymatic degradation. In particular, lactonases have therefore been demonstrated to inhibit bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. Here we characterized biochemically and structurally a novel representative from the metallo-β-lactamase superfamily, named AaL that was isolated from the thermoacidophilic bacterium Alicyclobacillus acidoterrestris. AaL is a potent quorum quenching enzyme as demonstrated by its ability to inhibit the biofilm formation of Acinetobacter baumannii. Kinetic studies demonstrate that AaL is both a proficient and a broad spectrum enzyme, being capable of hydrolyzing a wide range of lactones with high rates (kcat/KM > 105 M-1.s-1). Additionally, AaL exhibits unusually low KM values, ranging from 10 to 80 µM. Analysis of AaL structures bound to phosphate, glycerol, and C6-AHL reveals a unique hydrophobic patch (W26, F87 and I237), involved in substrate binding, possibly accounting for the enzyme's high specificity. Identifying the specificity determinants will aid the development of highly specific quorum quenching enzymes as potential therapeutics.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Tanushree Naik
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Chabrière
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA.
| |
Collapse
|
77
|
Kocak G, Cicek H, Ceylan Ö, Bütün V. Antimicrobial and anti-quorum-sensing properties and paint film usage of novel diazaborine-based copolymers. J Appl Polym Sci 2018. [DOI: 10.1002/app.46907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gökhan Kocak
- Department of Chemistry; Adiyaman University; Adiyaman 02040 Turkey
| | - Hüseyin Cicek
- Department of Chemistry; Mugla Sitki Kocman University; Mugla 48000 Turkey
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School; Mugla Sitki Kocman University; Mugla 48147 Turkey
| | - Vural Bütün
- Department of Chemistry; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
78
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
79
|
Mion S, Rémy B, Plener L, Chabrière E, Daudé D. [Prevent bacteria from communicating: Divide to cure]. ANNALES PHARMACEUTIQUES FRANÇAISES 2018; 76:249-264. [PMID: 29598881 DOI: 10.1016/j.pharma.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Quorum Sensing (QS) is a communication system used by numerous bacteria to synchronize their behavior according to the cell density. In this way, bacteria secrete and sense small mediating molecules, called autoinducers (AI), which concentration increases in the environment proportionally to bacterial cell number. QS induces major physiological and phenotypic changes such as virulence induction and biofilm formation. Biofilm represents a physical barrier which shelters bacteria poorly sensitive to antimicrobial treatments and favors the apparition of resistance mechanisms. Disturbing QS is referred to as quorum quenching (QQ). This strategy is used by microorganisms themselves to prevent the development of specific group behaviors. Two strategies are mainly employed: the use of quorum sensing inhibitors (QSI) and of quorum quenching enzymes (QQE) that degrades AI. Many studies have been dedicated to identifying QSI (natural or synthetic) as well as QQE and demonstrating their anti-virulence and anti-biofilm effects on numerous bacterial species. Synergistic effects between QQ and traditional treatments such as antibiotherapy or with reemerging phage therapy have been put forward. The efficiency of numerous QSI and QQE was thereby demonstrated either with in vitro or in vivo animal models leading to the development of medical devices containing QSI and QQE to improve already existing treatments.
Collapse
Affiliation(s)
- S Mion
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - B Rémy
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France; Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - L Plener
- Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - E Chabrière
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21, boulevard Jean-Moulin, 13005 Marseille, France
| | - D Daudé
- Gene&GreenTK, 19-21, boulevard Jean-Moulin, 13005 Marseille, France.
| |
Collapse
|
80
|
Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front Pharmacol 2018; 9:203. [PMID: 29563876 PMCID: PMC5845960 DOI: 10.3389/fphar.2018.00203] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.
Collapse
Affiliation(s)
- Benjamin Rémy
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
- Gene&GreenTK, Marseille, France
| | - Sonia Mion
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
81
|
A Culture-Dependent Method for the Identification of Quorum Quenching Enzymes of Microbial Origin. Methods Mol Biol 2018; 1673:297-309. [PMID: 29130182 DOI: 10.1007/978-1-4939-7309-5_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Although it has been more than a decade since the first discovery of AHL lactonase AiiA in Bacillus sp. 240B1, we are only beginning to understand the diversity of quorum quenching (QQ) enzymes. Most of the previously identified QQ enzymes are derived from nonmarine microorganisms. A novel marine-derived secretory AHL lactonase, MomL, was found in Muricauda olearia in our previous work and represents a novel type of AHL lactonase widespread in the ocean. Herein, we describe a culture-dependent method for the identification of microbial QQ enzymes, especially the high-throughput method for screening QQ bacteria from cultivable bacterial strains. This method should be capable of efficiently identifying QQ enzymes from various microbial origins. The discovery of more QQ enzymes will help us to understand their ecological roles and may provide potential as therapeutic agents.
Collapse
|
82
|
Nature to the natural rescue: Silencing microbial chats. Chem Biol Interact 2017; 280:86-98. [PMID: 29247642 DOI: 10.1016/j.cbi.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Communication is the sole means by which effective networking and co-existence is accomplished amongst living beings. Microbes have their own chit-chats. Science has overheard these microbial gossips and have concluded that these aren't just informal communications, but carefully coordinated signals that plan their effective strategies. Tracking one such signal molecule, N-acyl homoserine lactone (AHL), led to a fundamental understanding to microbial quorum sensing (QS). Furtherance of research sought for ways to cut off communication between these virulent forms, so as to hinder their combinatorial attacks through quorum sensing inhibitors (QSIs). A clear understanding of the inhibitors of these microbial communication systems is vital to destroy their networking and co-working. The current review, consolidates the solutions for QSIs offered from natural sources against these micro components, that are capable of slaughtering even nature's most fit entity-man. The applications of effective out sourcing of this QSI technologies and the need for development are discussed. The importance of silencing this microbial chatter to various aspects of human life and their implications are discussed and elaborated.
Collapse
|
83
|
Kumar Thota G, Tamilarasan D, Balamurugan R. Synthesis of Highly Functionalized Pyrrolidine Derivatives from Easily Accessible Diethyl (E
)-4-Oxohex-2-enedioate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ganesh Kumar Thota
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| | | | - Rengarajan Balamurugan
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| |
Collapse
|
84
|
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules 2017; 22:E1975. [PMID: 29140285 PMCID: PMC6150374 DOI: 10.3390/molecules22111975] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria has highlighted the urgent need of alternative therapeutic approaches for human and animal health. Targeting virulence factors that are controlled by bacterial quorum sensing (QS), seems a promising approach. The aims of this study were to generate novel nanoparticles (NPs) composed of chitosan (CS), sulfo-butyl-ether-β-cyclodextrin (Captisol®) and/or pentasodium tripolyphosphate using ionotropic gelation technique, and to evaluate their potential capacity to arrest QS in bacteria. The resulting NPs were in the size range of 250-400 nm with CS70/5 and 330-600 nm with CS70/20, had low polydispersity index (<0.25) and highly positive zeta potential ranging from ζ ~+31 to +40 mV. Quercetin, a hydrophobic model flavonoid, could be incorporated proportionally with increasing amounts of Captisol® in the NPs formualtion, without altering significantly its physicochemical properties. Elemental analysis and FTIR studies revealed that Captisol® and quercetin were effectively integrated into the NPs. These NPs were stable in M9 bacterial medium for 7 h at 37 °C. Further, NPs containing Captisol® seem to prolong the release of associated drug. Bioassays against an E. coli Top 10 QS biosensor revealed that CS70/5 NPs could inhibit QS up to 61.12%, while CS70/20 NPs exhibited high antibacterial effects up to 88.32%. These results suggested that the interaction between NPs and the bacterial membrane could enhance either anti-QS or anti-bacterial activities.
Collapse
Affiliation(s)
- Hao Thanh Nguyen
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- Department of Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Hanoi 100000, Vietnam.
| | - Francisco M Goycoolea
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
85
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
86
|
Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 2017; 55:753-766. [PMID: 28956348 DOI: 10.1007/s12275-017-7274-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.
Collapse
|
87
|
Liu N, Yu M, Zhao Y, Cheng J, An K, Zhang XH. PfmA, a novel quorum-quenching N-acylhomoserine lactone acylase from Pseudoalteromonas flavipulchra. MICROBIOLOGY-SGM 2017; 163:1389-1398. [PMID: 28920855 DOI: 10.1099/mic.0.000535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacteria, such as Proteobacteria, Cyanobacteria and Bacteroidetes, use N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules for communication. Enzymatic degradation of AHLs, such as AHL acylase and AHL lactonase, can degrade AHLs (quorum quenching, QQ) to attenuate or disarm the virulence of pathogens. QQ is confirmed to be common in marine bacterial communities. Many genes encoding AHL acylases are found in marine bacteria and metagenomic collections, but only a few of these have been characterized in detail. We have reported that the marine bacterium Pseudoalteromonas flavipulchra JG1 can degrade AHLs. In the present study, a novel AHL acylase PfmA, which can degrade AHLs with acyl chains longer than 10 carbons, was identified from strain JG1. Ultra-performance liquid chromatography (UPLC) and electrospray ionization mass spectrometry (ESI-MS) analysis demonstrated that PfmA functions as an AHL acylase, which hydrolysed the amide bond of AHL. The purified PfmA of P. flavipulchra JG1 showed optimum activity at 30 °C and pH 7.0. PfmA belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily and showed homology to a member of penicillin amidases, but PfmA can degrade ampicillin but not penicillin G. The residue Ser256 in PfmA is the active site according to site-directed mutagenesis. Furthermore, PfmA reduced AHL accumulation and the production of virulence factors in Vibrio anguillarum VIB72 and Pseudomonas aeruginosa PAO1, and attenuated the virulence of P. aeruginosa to increase Artemia survival, which suggested that PfmA can be considered as a therapeutic agent to control AHL-mediated pathogenicity.
Collapse
Affiliation(s)
- Na Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Youbin Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jingguang Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ke An
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
88
|
Deryabin DG, Inchagova KS. Subinhibitory concentrations of the penicillin antibiotics induce quorum-dependent violacein synthesis in Chromobacterium violaceum. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
89
|
McBrayer DN, Gantman BK, Cameron CD, Tal-Gan Y. An Entirely Solid Phase Peptide Synthesis-Based Strategy for Synthesis of Gelatinase Biosynthesis-Activating Pheromone (GBAP) Analogue Libraries: Investigating the Structure-Activity Relationships of the Enterococcus faecalis Quorum Sensing Signal. Org Lett 2017; 19:3295-3298. [PMID: 28590764 DOI: 10.1021/acs.orglett.7b01444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of an entirely solid-phase peptide synthesis (SPPS)-based synthesis of the quorum sensing signal gelatinase biosynthesis-activating pheromone (GBAP) from Enterococcus faecalis is reported. The method was used to prepare three libraries of analogues to investigate the structure-activity relationships (SARs) of the GBAP signal. The SAR studies revealed new characteristics of the GBAP signal and uncovered the most potent quorum sensing activator in E. faecalis known to date.
Collapse
Affiliation(s)
- Dominic N McBrayer
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Brooke K Gantman
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Crissey D Cameron
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno , 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
90
|
Zhang Y, Brackman G, Coenye T. Pitfalls associated with evaluating enzymatic quorum quenching activity: the case of MomL and its effect on Pseudomonas aeruginosa and Acinetobacter baumannii biofilms. PeerJ 2017; 5:e3251. [PMID: 28462048 PMCID: PMC5410158 DOI: 10.7717/peerj.3251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The enzymatic degradation of quorums sensing (QS) molecules (called quorum quenching, QQ) has been considered as a promising anti-virulence therapy to treat biofilm-related infections and combat antibiotic resistance. The recently-discovered QQ enzyme MomL has been reported to efficiently degrade different N-acyl homoserine lactones (AHLs) of various Gram-negative pathogens. Here we investigated the effect of MomL on biofilms formed by two important nosocomial pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii. METHODS MomL was expressed in E.coli BL21 and purified. The activity of MomL on AHLs with hydroxyl substituent was tested. Biofilms of P. aeruginosa PAO1 and Acinetobacter strains were formed in 96-well microtiter plates. Biofilm formation was evaluated by crystal violet staining, plating and fluorescence microscopy. The effect of MomL on biofilm susceptibility to antibiotics was also tested. We further evaluated MomL in dual-species biofilms formed by P. aeruginosa and A. baumannii, and in biofilms formed in a wound model. The effect of MomL on virulence of A. baumannii was also tested in the Caenorhabditis elegans model. RESULTS MomL reduced biofilm formation and increased biofilm susceptibility to different antibiotics in biofilms of P. aeruginosa PAO1 and A. baumannii LMG 10531 formed in microtiter plates in vitro. However, no significant differences were detected in the dual-species biofilm and in wound model biofilms. In addition, MomL did not affect virulence of A. baumannii in the C. elegans model. Finally, the effect of MomL on biofilm of Acinetobacter strains seems to be strain-dependent. DISCUSSION Our results indicate that although MomL showed a promising anti-biofilm effect against P. aeruginosa and A. baumanii biofilms formed in microtiter plates, the effect on biofilm formation under conditions more likely to mimic the real-life situation was much less pronounced or even absent. Our data indicate that in order to obtain a better picture of potential applicability of QQ enzymes for the treatment of biofilm-related infections, more elaborate model systems need to be used.
Collapse
Affiliation(s)
- Yunhui Zhang
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| |
Collapse
|
91
|
López M, Mayer C, Fernández-García L, Blasco L, Muras A, Ruiz FM, Bou G, Otero A, Tomás M, on behalf of the GEIH-GEMARA (SEIMC). Quorum sensing network in clinical strains of A. baumannii: AidA is a new quorum quenching enzyme. PLoS One 2017; 12:e0174454. [PMID: 28328989 PMCID: PMC5362224 DOI: 10.1371/journal.pone.0174454] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2_clon_2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/ß hydrolase gene, AidA). This QQ enzyme was present in all non-motile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421_GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of H2O2 (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/ß hydrolase gene, AidA protein) was detected in these strains.
Collapse
Affiliation(s)
- María López
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
| | - Celia Mayer
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Fernández-García
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
| | - Lucía Blasco
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
| | - Andrea Muras
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - German Bou
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
| | - Ana Otero
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Tomás
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
- * E-mail:
| | | |
Collapse
|
92
|
Guendouze A, Plener L, Bzdrenga J, Jacquet P, Rémy B, Elias M, Lavigne JP, Daudé D, Chabrière E. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors. Front Microbiol 2017; 8:227. [PMID: 28261183 PMCID: PMC5306132 DOI: 10.3389/fmicb.2017.00227] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications.
Collapse
Affiliation(s)
- Assia Guendouze
- URMITE, Aix-Marseille Université UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée InfectionMarseille, France; Laboratoire de Biologie Moléculaire et Cellulaire, Université des frères Mentouri ConstantineConstantine, Algérie
| | | | - Janek Bzdrenga
- URMITE, Aix-Marseille Université UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection Marseille, France
| | - Pauline Jacquet
- URMITE, Aix-Marseille Université UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection Marseille, France
| | - Benjamin Rémy
- URMITE, Aix-Marseille Université UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée InfectionMarseille, France; Gene&GreenTKMarseille, France
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul MN, USA
| | - Jean-Philippe Lavigne
- INSERM, U1047, University of Montpellier 1Montpellier, France; Department of Microbiology, Caremeau University HospitalNîmes, France
| | | | - Eric Chabrière
- URMITE, Aix-Marseille Université UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection Marseille, France
| |
Collapse
|
93
|
Nguyen TH, Nguyen VD. Characterization and Applications of Marine Microbial Enzymes in Biotechnology and Probiotics for Animal Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:37-74. [PMID: 28215328 DOI: 10.1016/bs.afnr.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture.
Collapse
Affiliation(s)
- T H Nguyen
- Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam.
| | - V D Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam.
| |
Collapse
|
94
|
Abstract
Quorum sensing (QS)-based signaling is a widespread pathway used by bacteria for the regulation of functions involved in their relation to the environment or their host. QS relies upon the production, accumulation and perception of small diffusable molecules by the bacterial population, hence linking high gene expression with high cell population densities. Among the different QS signal molecules, an important class of signal molecules is the N-acyl homoserine lactone (N-AHSL). In pathogens such as Erwinia or Pseudomonas, N-AHSL based QS is crucial to overcome the host defenses and ensure a successful infection. Interfering with QS-regulation allows the algae Delisea pulcra to avoid surface colonization by bacteria. Thus, interfering the QS-regulation of pathogenic bacteria is a promising antibiotic-free antibacterial therapeutic strategy. To date, two N-AHSL lactonases and one amidohydrolase families of N-ASHL degradation enzymes have been characterized and have proven to be efficient in vitro to control N-AHSL-based QS-regulated functions in pathogens. In this chapter, we provide methods to screen individual clones or bacterial strains as well as pool of clones for genomic and metagenomic libraries, that can be used to identify strains or clones carrying N-ASHL degradation enzymes.
Collapse
Affiliation(s)
- Stéphane Uroz
- Interactions Arbres Microorganismes, INRA Université de Lorraine, UMR1136, Champenoux, 54280, France
| | - Phil M Oger
- Univ Lyon, INSA-Lyon, UCBL, CNRS UMR5240, 69621, Villeurbanne Cedex, France. .,Univ Lyon, ENS-Lyon, CNRS UMR5276, Lyon, 69634, France.
| |
Collapse
|
95
|
Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016; 22:E29. [PMID: 28035988 PMCID: PMC6155606 DOI: 10.3390/molecules22010029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
- Department of Microbiology, University of Uyo, 520211 Uyo, Akwa Ibom State, Nigeria.
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, Eastern Cape, South Africa.
| | - Adekunle Christopher Faleye
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Gulshan Singh
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
96
|
Zhou S, Zhang A, Yin H, Chu W. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish. Front Cell Infect Microbiol 2016; 6:184. [PMID: 28018866 PMCID: PMC5149555 DOI: 10.3389/fcimb.2016.00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University Nanjing, China
| | - An Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University Nanjing, China
| | - Hongping Yin
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University Nanjing, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University Nanjing, China
| |
Collapse
|
97
|
El-Shaer S, Shaaban M, Barwa R, Hassan R. Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. J Med Microbiol 2016; 65:1194-1204. [PMID: 27498852 DOI: 10.1099/jmm.0.000327] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spread of multidrug-resistant Pseudomonas aeruginosa isolates constitutes a serious clinical challenge. Bacterial efflux machinery is a crucial mechanism of resistance among P. aeruginosa. Efflux inhibitors such as phenylalanine arginyl β-naphthylamide (PAβN) promote the bacterial susceptibility to antimicrobial agents. The pathogenesis of P. aeruginosa is coordinated via quorum sensing (QS). This study aims to find out the impact of efflux pump inhibitor, PAβN, on QS and virulence attributes in clinical isolates of P. aeruginosa. P. aeruginosa isolates were purified from urine and wound samples, and the antimicrobial susceptibility was carried out by disc diffusion method. The multidrug-resistant and the virulent isolates U16, U21, W19 and W23 were selected. PAβN enhanced their susceptibility to most antimicrobial agents. PAβN reduced QS signalling molecules N-3-oxo-dodecanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone without affecting bacterial viability. Moreover, PAβN eliminated their virulence factors such as elastase, protease, pyocyanin and bacterial motility. At the transcription level, PAβN significantly (P<0.01) diminished the relative expression of QS cascade (lasI, lasR, rhlI, rhlR, pqsA and pqsR) and QS regulated-type II secretory genes lasB (elastase) and toxA (exotoxin A) compared to the control untreated isolates U16 and U21. In addition, PAβN eliminated the relative expression of pelA (exopolysaccharides) in U16 and U21 isolates. Hence, P. aeruginosa-tested isolates became hypo-virulent upon using PAβN. PAβN significantly blocked the QS circuit and inhibited the virulence factors expressed by clinical isolates of P. aeruginosa. PAβN could be a prime substrate for development of QS inhibitors and prevention of P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Soha El-Shaer
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Mona Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
98
|
Hassan R, Shaaban MI, Abdel Bar FM, El-Mahdy AM, Shokralla S. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil. Front Microbiol 2016; 7:659. [PMID: 27242690 PMCID: PMC4866617 DOI: 10.3389/fmicb.2016.00659] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 11/24/2022] Open
Abstract
Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti-virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Mona I. Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Fatma M. Abdel Bar
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Areej M. El-Mahdy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Shadi Shokralla
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, GuelphON, Canada
| |
Collapse
|
99
|
Kang SY, Lee JK, Jang JH, Hwang BY, Hong YS. Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli. Microb Cell Fact 2015; 14:191. [PMID: 26608135 PMCID: PMC4659178 DOI: 10.1186/s12934-015-0379-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quorum sensing (QS) networks are more commonly known as acyl homoserine lactone (HSL) networks. Recently, p-coumaroyl-HSL has been found in a photosynthetic bacterium. p-coumaroyl-HSL is derived from a lignin monomer, p-coumaric acid, rather than a fatty acyl group. The p-coumaroyl-HSL may serve an ecological role in diverse QS pathways between p-coumaroyl-HSL producing bacteria and specific plants. Interference with QS has been regarded as a novel way to control bacterial infections. Heterologous production of the QS molecule, p-coumaroyl-HSL, could provide a sustainable and controlled means for its large-scale production, in contrast to the restricted feedback regulation and extremely low productivity of natural producers. RESULTS We developed an artificial biosynthetic process for phenylacetyl-homoserine lactone analogs, including cinnamoyl-HSL, p-coumaroyl-HSL, caffeoyl-HSL, and feruloyl-HSL, using a bioconversion method via E. coli (CB1) in the co-expression of the codon-optimized LuxI-type synthase (RpaI) and p-coumaroyl-CoA ligase (4CL2nt). In addition to this, we show the de novo production of p-coumaroyl-HSL in heterologous host E. coli (DN1) and tyrosine overproducing E. coli (DN2), containing the rpaI gene in addition to p-coumaroyl-CoA biosynthetic genes. The yields for p-coumaroyl-HSL reached 93.4 ± 0.6 and 142.5 ± 1.0 mg/L in the S-adenosyl-L-methionine and L-methionine feeding culture in the DN2 strain, respectively. CONCLUSIONS This is the first report of a de novo biosynthesis in a heterologous host yielding a QS molecule, p-coumaroyl-HSL from a glucose medium using a single vector system combining p-coumaroyl-CoA biosynthetic genes and the LuxI-type synthase gene.
Collapse
Affiliation(s)
- Sun-Young Kang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Chungbuk, 363-883, Republic of Korea.
- Department of Pharmacy Graduate School, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Jae Kyoung Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Chungbuk, 363-883, Republic of Korea.
- Department of Pharmacy Graduate School, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Chungbuk, 363-883, Republic of Korea.
| | - Bang Yeon Hwang
- Department of Pharmacy Graduate School, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
100
|
Zhou Y, Zhao R, Ma B, Gao H, Xue X, Qu D, Li M, Meng J, Luo X, Hou Z. Oligomerization of RNAIII-Inhibiting Peptide Inhibits Adherence and Biofilm Formation of Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo. Microb Drug Resist 2015; 22:193-201. [PMID: 26571297 DOI: 10.1089/mdr.2015.0170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation enhances bacterial resistance and complicates treatment. Therefore, an innovative strategy is urgently needed for the treatment of Staphylococcus aureus biofilm infectious diseases. RNAIII-inhibiting peptide (RIP), as a quorum-sensing inhibitor, inhibits S. aureus biofilm formation. However, RIP possesses poor antibiofilm activity when used alone or at a low dose in vivo. The activity and stability of RIP can be enhanced by designing its derivatives through amino acid substitution, terminal modification, or oligomerization. Among the derivatives, 16P-AC significantly decreased the biofilm formation and adherence of methicillin-resistant S. aureus (MRSA) on polystyrene material by inhibiting the expression level of four biofilm formation-related genes in vitro. Moreover, 16P-AC showed excellent protective effects by decreasing the bacterial titers in the urine, kidney, stent, and bladder, as well as by inhibiting intercellular adhesion on the implanted stent, in a rat urinary tract infection model induced by MRSA. This derivative also exhibited a relatively good stability in rat plasma. Therefore, 16P-AC is a potential drug candidate to treat biofilm-associated infections caused by MRSA. The present modification strategy is feasible to improve the metabolic stability and activity of RIP in vivo.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Ruzhou Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Bo Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Han Gao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Di Qu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Jingru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University , Xi'an, China
| |
Collapse
|