51
|
Lacombe-Harvey MÈ, Brzezinski R, Beaulieu C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol 2018; 102:7219-7230. [PMID: 29931600 PMCID: PMC6097792 DOI: 10.1007/s00253-018-9149-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
Actinobacteria, a large group of Gram-positive bacteria, secrete a wide range of extracellular enzymes involved in the degradation of organic compounds and biopolymers including the ubiquitous aminopolysaccharides chitin and chitosan. While chitinolytic enzymes are distributed in all kingdoms of life, actinobacteria are recognized as particularly good decomposers of chitinous material and several members of this taxon carry impressive sets of genes dedicated to chitin and chitosan degradation. Degradation of these polymers in actinobacteria is dependent on endo- and exo-acting hydrolases as well as lytic polysaccharide monooxygenases. Actinobacterial chitinases and chitosanases belong to nine major families of glycosyl hydrolases that share no sequence similarity. In this paper, the distribution of chitinolytic actinobacteria within different ecosystems is examined and their chitinolytic machinery is described and compared to those of other chitinolytic organisms.
Collapse
Affiliation(s)
| | - Ryszard Brzezinski
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Carole Beaulieu
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
52
|
Kumar M, Brar A, Vivekanand V, Pareek N. Bioconversion of Chitin to Bioactive Chitooligosaccharides: Amelioration and Coastal Pollution Reduction by Microbial Resources. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:269-281. [PMID: 29637379 DOI: 10.1007/s10126-018-9812-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Chitin-metabolizing products are of high industrial relevance in current scenario due to their wide biological applications, relatively lower cost, greater abundance, and sustainable supply. Chitooligosaccharides have remarkably wide spectrum of applications in therapeutics such as antitumor agents, immunomodulators, drug delivery, gene therapy, wound dressings, as chitinase inhibitors to prevent malaria. Hypocholesterolemic and antimicrobial activities of chitooligosaccharides make them a molecule of choice for food industry, and their functional profile depends on the physicochemical characteristics. Recently, chitin-based nanomaterials are also gaining tremendous importance in biomedical and agricultural applications. Crystallinity and insolubility of chitin imposes a major hurdle in the way of polymer utilization. Chemical production processes are known to produce chitooligosaccharides with variable degree of polymerization and properties along with ecological concerns. Biological production routes mainly involve chitinases, chitosanases, and chitin-binding proteins. Development of bio-catalytic production routes for chitin will not only enhance the production of commercially viable chitooligosaccharides with defined molecular properties but will also provide a means to combat marine pollution with value addition.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - Amandeep Brar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India.
| |
Collapse
|
53
|
Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem 2018; 253:139-147. [PMID: 29502814 DOI: 10.1016/j.foodchem.2018.01.137] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/01/2017] [Accepted: 01/22/2018] [Indexed: 01/20/2023]
Abstract
Chitooligosaccharide is widely used as a functional food additive and a valuable pharmacological agent. The transformation of chitinous biomass into valuable bioactive chitooligosaccharides is one of the most exciting applications of chitosanase. A novel glycoside hydrolase (GH) family 46 chitosanase (GsCsn46A) from rhizobacterium Gynuella sunshinyii was cloned and heterologously expressed in Escherichia coli. GsCsn46A showed maximal activity at pH 5.5 and 30 °C. GsCsn46A featured remarkable cold-adapted property, which controllably hydrolyzed chitosan to three types of chitooligosaccharides at the mild reaction condition (reaction condition: pH 5.5 at 30 °C; method for stopping the reaction: 50 °C for 30 min). The yields of three types of chitooligosaccharides products (degree of polymerization (DP): 2-7, 2-5 and 2-3) were 70.9%, 87.1% and 94.6% respectively. This novel cold-adapted chitosanase provides a cleaner production process for the controllable preparation of chitooligosaccharides with the specific DP.
Collapse
|
54
|
Regel EK, Weikert T, Niehues A, Moerschbacher BM, Singh R. Protein-engineering of chitosanase from Bacillus sp. MN to alter its substrate specificity. Biotechnol Bioeng 2018; 115:863-873. [PMID: 29280476 DOI: 10.1002/bit.26533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
Partially acetylated chitosan oligosaccharides (paCOS) have various potential applications in agriculture, biomedicine, and pharmaceutics due to their suitable bioactivities. One method to produce paCOS is partial chemical hydrolysis of chitosan polymers, but that leads to poorly defined mixtures of oligosaccharides. However, the effective production of defined paCOS is crucial for fundamental research and for developing applications. A more promising approach is enzymatic depolymerization of chitosan using chitinases or chitosanases, as the substrate specificity of the enzyme determines the composition of the oligomeric products. Protein-engineering of these enzymes to alter their substrate specificity can overcome the limitations associated with naturally occurring enzymes and expand the spectrum of specific paCOS that can be produced. Here, engineering the substrate specificity of Bacillus sp. MN chitosanase is described for the first time. Two muteins with active site substitutions can accept N-acetyl-D-glucosamine units at their subsite (-2), which is impossible for the wildtype enzyme.
Collapse
Affiliation(s)
- Eva K Regel
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Tobias Weikert
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
55
|
Aktuganov GE, Melent’ev AI. Specific features of chitosan depolymerization by chitinases, chitosanases, and nonspecific enzymes in the production of bioactive chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Zitouni M, Viens P, Ghinet MG, Brzezinski R. Diversity of family GH46 chitosanases in Kitasatospora setae KM-6054. Appl Microbiol Biotechnol 2017; 101:7877-7888. [PMID: 28924834 PMCID: PMC5635096 DOI: 10.1007/s00253-017-8517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
The genome of Kitasatospora setae KM-6054, a soil actinomycete, has three genes encoding chitosanases belonging to GH46 family. The genes (csn1-3) were cloned in Streptomyces lividans and the corresponding enzymes were purified from the recombinant cultures. The csn2 clone yielded two proteins (Csn2BH and Csn2H) differing by the presence of a carbohydrate-binding domain. Sequence analysis showed that Csn1 and Csn2H were canonical GH46 chitosanases, while Csn3 resembled chitosanases from bacilli. The activity of the four chitosanases was tested in a variety of conditions and on diverse chitosan forms, including highly N-deacetylated chitosan or chitosan complexed with humic or polyphosphoric acid. Kinetic parameters were also determined. These tests unveiled the biochemical diversity among these chitosanases and the peculiarity of Csn3 compared with the other three enzymes. The observed biochemical diversity is discussed based on structural 3D models and sequence alignment. This is a first study of all the GH46 chitosanases produced by a single microbial strain.
Collapse
Affiliation(s)
- Mina Zitouni
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Pascal Viens
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
- Innomalt Inc, Sherbrooke, Québec, Canada
| | - Mariana G Ghinet
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
- Département de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryszard Brzezinski
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
57
|
Yorinaga Y, Kumasaka T, Yamamoto M, Hamada K, Kawamukai M. Crystal structure of a family 80 chitosanase fromMitsuaria chitosanitabida. FEBS Lett 2017; 591:540-547. [DOI: 10.1002/1873-3468.12557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yutaka Yorinaga
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI); Sayo Hyogo Japan
| | | | - Kensaku Hamada
- X-ray Research Laboratory; Rigaku Co.; Akishima Tokyo Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| |
Collapse
|
58
|
Aktuganov GE, Galimzyanova NF, Teregulova GA, Melentjev AI. Synthesis of exo-β-glucosaminidase BY FUNGUS Penicillium sp. IB-37-2. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding. Appl Biochem Biotechnol 2016; 180:1167-1179. [PMID: 27318711 DOI: 10.1007/s12010-016-2159-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.
Collapse
|
60
|
Tegl G, Öhlknecht C, Vielnascher R, Rollett A, Hofinger-Horvath A, Kosma P, Guebitz GM. Cellobiohydrolases Produce Different Oligosaccharides from Chitosan. Biomacromolecules 2016; 17:2284-92. [DOI: 10.1021/acs.biomac.6b00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregor Tegl
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Christoph Öhlknecht
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Robert Vielnascher
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Alexandra Rollett
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Andreas Hofinger-Horvath
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
- ACIB − Austrian Centre of Industrial Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| |
Collapse
|