51
|
Finicelli M, Di Salle A, Galderisi U, Peluso G. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients 2022; 14:2956. [PMID: 35889911 PMCID: PMC9317652 DOI: 10.3390/nu14142956] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
The Mediterranean Diet (MedDiet) is a term used to identify a dietary pattern originating from the unique multi-millennial interplay between natural food resources and the eating practices of people living in the Mediterranean basin. Scientific evidence has described the healthy properties of the MedDiet and its beneficial role in several pathological conditions. Nevertheless, current socio-economic trends have moved people away from this healthy lifestyle. Thus, clinical and biological evidence supporting the benefits of the MedDiet is needed to overcome these limitations. Clinical nutrition research examines the effects of dietary interventions on biological or health-related outcomes in a determined study population. The evidence produced by these studies is useful for dietary guidance and public health messaging. We provided an update of the clinical trials registered on the database clinicaltrials.gov evaluating the effects of the MedDiet on health and specific diseases. Our findings revealed an increased number of clinical trials in the last decade and found that most disease-related studies focused on cardiovascular diseases, metabolic diseases, and cancer. The majority of MedDiet's beneficial effects could be primarily related to its anti-inflammatory and anti-oxidant properties as well as the effectiveness of this dietary pattern in controlling waist circumference and obesity. Moreover, strict and long-lasting adherence to the MedDiet as well as the beneficial effects of specific components (e.g., olive oil or its polyphenols) seem to emerge as useful insights for interventional improvements. These findings present further insights into the MedDiet's resources and how it could strengthen overall public health.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
52
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
53
|
Shiels K, Tsoupras A, Lordan R, Zabetakis I, Murray P, Kumar Saha S. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
54
|
Su L, Zhu H, Chen S, Du M, Wan X, Liu Y, Hu S, Xu Y. Anti-Obesity and Gut Microbiota Regulation Effects of Phospholipids from the Eggs of Crab, Portunus Trituberculatus, in High Fat Diet-Fed Mice. Mar Drugs 2022; 20:md20070411. [PMID: 35877704 PMCID: PMC9318425 DOI: 10.3390/md20070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
There are resourceful phospholipids in the eggs of the crab, Portunus trituberculatus (Pt-PL). However, their components and bioactivities regarding obesity were unclear. Here, we investigated the composition of Pt-PL and their fatty acids. Moreover, its effects on obesity and gut microbiota were also evaluated in high fat diet (HFD)-fed mice. The results showed that Pt-PL contained 12 kinds of phospholipids, mainly including phosphatidylcholine (PC, 32.28%), phosphatidylserine (PS, 26.51%), phosphatidic acid (PA, 19.61%), phosphatidylethanolamine (PE, 8.81%), and phosphatidylinositol (PI, 7.96%). Polyunsaturated fatty acids (PUFAs) predominated in the fatty acids components of Pt-PL, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Animal experiments demonstrated that Pt-PL significantly alleviated body weight gain, adipose gain, hepatic gain, fasting blood glucose, serum insulin, lipid levels in serum and the liver, and systematic inflammation in HFD-fed mice. Furthermore, Pt-PL regulated gut microbiota, especially in a dramatic reduction in the ratio of Firmicutes to Bacteroidetes at phylum level, as well as significant amelioration in their subordinate categories. Pt-PL reduced fecal lipopolysaccharide and total bile acids, and elevated fecal short chain fatty acid (SCFA) concentrations, particularly acetate and butyrate. These findings suggest that Pt-PL possesses anti-obesity effects and can alter gut microbiota owing to the abundance of PUFAs. Therefore, Pt-PL may be developed as an effective food supplement for anti-obesity and regulation of human gut health.
Collapse
Affiliation(s)
- Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hongli Zhu
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
| | - Sichun Chen
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
| | - Mengyu Du
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
| | - Xiaofeng Wan
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
| | - Yishu Liu
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
| | - Shiwei Hu
- National Engineering Research Center for Maine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (H.Z.); (S.C.); (M.D.); (X.W.); (Y.L.)
- Correspondence: ; Tel.: +86-0580-8129858
| | - Yangli Xu
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, China;
| |
Collapse
|
55
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 452] [Impact Index Per Article: 150.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
56
|
Xie D, Li P, Zhu Y, He J, Zhang M, Liu K, Lin H, Zhai H, Li X, Ma Y. Comparative bioactivity profile of phospholipids from three marine byproducts based on the zebrafish model. J Food Biochem 2022; 46:e14229. [PMID: 35575312 DOI: 10.1111/jfbc.14229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
Phospholipids (PLs) are important components of physiological metabolism in animals and plants, and they have been widely used in clinical treatment, cosmetics, and industry. With the development of marine resources, marine PLs rich in polyunsaturated fatty acids have attracted increasing attention. As important marine resources, shrimp heads (SH), codfish roe (CR), and squid gonads (SG) contain a high PL content. The antithrombotic, antistroke, anti-inflammatory, pro-angiogenic, and cardioprotective activities of PLs from SH, CR, and SG were evaluated and compared using the in vivo zebrafish model. The results showed that the PL extracts of SH, CR, and SG had significant biological activities, which lays a theoretical foundation for the development and utilization of PLs in marine byproducts in the future, providing a new choice for the prevention of inflammatory and cardiovascular diseases. PRACTICAL APPLICATIONS: In this experiment, phospholipids in seafood from different sources were extracted, and their biological activities were comprehensively evaluated and compared using the zebrafish model to lay a foundation for the development of cardiovascular drugs, health food, special medicinal food, and other effective components. The utilization of marine byproducts not only makes full use of resources, but it also protects the environment.
Collapse
Affiliation(s)
- Dongxiao Xie
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yongqiang Zhu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengqi Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Zhai
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yaohong Ma
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
57
|
English CJ, Mayr HL, Lohning AE, Reidlinger DP. The association between dietary patterns and the novel inflammatory markers platelet-activating factor and lipoprotein-associated phospholipase A2: a systematic review. Nutr Rev 2022; 80:1371-1391. [PMID: 34651191 PMCID: PMC9086773 DOI: 10.1093/nutrit/nuab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Atherosclerosis is a disease of chronic inflammation. Recent research has identified 2 novel inflammatory biomarkers: platelet-activating factor (PAF) and lipoprotein-associated phospholipase A2 (Lp-PLA2). Diet has been proposed as a mediator of inflammation, but to date, the focus for these novel biomarkers has been on individual foods and nutrients rather than overall dietary patterns. OBJECTIVE To systematically review the literature on the association between dietary patterns and PAF and Lp-PLA2. DATA SOURCES The PubMed, Embase, CINAHL, and Cochrane CENTRAL literature databases were searched. DATA ANALYSIS Study quality was evaluated using the Quality Criteria Checklist. Sixteen studies (n = 4 observational and n = 12 interventional) were included and assessed for associations between dietary patterns and PAF and Lp-PLA2. CONCLUSION Study quality varied from neutral (n = 10) to positive (n = 6). Mediterranean, heart healthy, and vegetarian dietary patterns were associated with improved levels of PAF and Lp-PLA2. Conversely, Western dietary patterns were less favorable. A range of well-established, healthier dietary patterns may lower inflammation and the risk of atherosclerosis. More well-designed studies are needed to confirm these findings and identify other dietary patterns that improve inflammation.
Collapse
Affiliation(s)
- Carolyn J English
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Hannah L Mayr
- Faculty of Health Sciences and Medicine, Bond University, Robina , Queensland, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Dianne P Reidlinger
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| |
Collapse
|
58
|
Chai C, Oh S, Imm JY. Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition. Food Sci Anim Resour 2022; 42:351-371. [PMID: 35611078 PMCID: PMC9108948 DOI: 10.5851/kosfa.2022.e11] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Milk fats are present as globules emulsified in the aqueous phase of milk and stabilized by a delicate membrane architecture called milk fat globule membrane (MFGM). The unique structure and composition of the MFGM play an important role in fat digestion and the metabolic programming of neonates. The objective of this review is to compare the structure, composition, and physicochemical characteristics of fat globules in human milk, bovine milk, and infant formula. It provides an overview of the fat digestion process and enzymes in healthy infants, and describes the possible roles of the MFGM in association with factors affecting fat digestion. Lastly, the health benefits of the MFGM on infant nutrition and future perspectives are discussed with a focus on brain development, metabolic response, and gut health.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Sejong Oh
- Devision of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
59
|
Rong P, Wang JL, Angelova A, Almsherqi ZA, Deng Y. Plasmalogenic Lipid Analogs as Platelet-Activating Factor Antagonists: A Potential Novel Class of Anti-inflammatory Compounds. Front Cell Dev Biol 2022; 10:859421. [PMID: 35493091 PMCID: PMC9048793 DOI: 10.3389/fcell.2022.859421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmalogens and Platelet-Activating Factor (PAF) are both bioactive ether phospholipids. Whereas plasmalogens are recognized for their important antioxidant function and modulatory role in cell membrane structure and dynamics, PAF is a potent pro-inflammatory lipid mediator known to have messenger functions in cell signaling and inflammatory response. The relationship between these two types of lipids has been rarely studied in terms of their metabolic interconversion and reciprocal modulation of the pro-inflammation/anti-inflammation balance. The vinyl-ether bonded plasmalogen lipid can be the lipid sources for the precursor of the biosynthesis of ether-bonded PAF. In this opinion paper, we suggest a potential role of plasmalogenic analogs of PAF as modulators and PAF antagonists (anti-PAF). We discuss that the metabolic interconversion of these two lipid kinds may be explored towards the development of efficient preventive and relief strategies against PAF-mediated pro-inflammation. We propose that plasmalogen analogs, acting as anti-PAF, may be considered as a new class of bioactive anti-inflammatory drugs. Despite of the scarcity of available experimental data, the competition between PAF and its natural plasmalogenic analogs for binding to the PAF receptor (PAF-R) can be proposed as a mechanistic model and potential therapeutic perspective against multiple inflammatory diseases (e.g., cardiovascular and neurodegenerative disorders, diabetes, cancers, and various manifestations in coronavirus infections such as COVID-19).
Collapse
Affiliation(s)
- Pu Rong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zakaria A. Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Zakaria A. Almsherqi, ; Yuru Deng,
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Zakaria A. Almsherqi, ; Yuru Deng,
| |
Collapse
|
60
|
Choudhury M, Bindra HS, Singh K, Singh AK, Nayak R. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mousam Choudhury
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | | | - Karishma Singh
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Alok Kumar Singh
- School of Biotechnology Sher‐e‐Kashmir University of Agricultural Science and Technology of Jammu Jammu and Kashmir India
| | - Ranu Nayak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
61
|
Theinert KB, Snedec T, Pietsch F, Theile S, Leonhardt AS, Spilke J, Pichelmann S, Bannert E, Reichelt K, Dobeleit G, Fuhrmann H, Baumgartner W, Schären-Bannert M, Starke A. Qualitative and Quantitative Changes in Total Lipid Concentration and Lipid Fractions in Liver Tissue of Periparturient German Holstein Dairy Cows of Two Age Groups. Front Vet Sci 2022; 9:814808. [PMID: 35372546 PMCID: PMC8967350 DOI: 10.3389/fvets.2022.814808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fatty liver syndrome (FLS) is a common disease in high-producing dairy cows. Studies in humans suggest that the different hepatic lipid fractions play a role in this context. In dairy cows, little is known about the composition of fat stored in the liver, its periparturient dynamics, and the effect of cows' age. Therefore, our goal was to generate primary data in healthy cows to serve as reference values for future studies. Eight healthy German Holstein cows (2nd lactation, n = 3; ≥3rd lactation, n = 5) were examined 14 d antepartum and 7, 28, and 42 d postpartum. The examinations included clinical assessment, liver biopsy, blood sampling, and recording of milk yield. Total lipids (TL) in liver tissue were measured gravimetrically. The TL were separated into lipid fractions (triacylglycerol, TAG; phospholipids, PL; non-esterified fatty acids, NEFA; and cholesterol esters) using thin-layer chromatography, followed by gas chromatography for fatty acid determination. Concentrations of NEFA, ß-hydroxybutyrate, and cholesterol were analyzed in blood. Concentrations of TL, TAG, NEFA, and cholesterol esters in liver tissue and NEFA in blood increased in the periparturient period. The older cows had higher hepatic TL, TAG, and PL concentrations, higher relative hepatic concentrations of TAG in TL, higher NEFA concentrations in blood, a greater decrease in body condition, and higher milk yields between d 9 and 40 than the younger cows. We proposed that due to higher milk yield, older cows mobilized and deposited more fat in the liver, and the increase in hepatic TAG concentration was longer-lasting than in younger cows. Higher levels of structural lipids (PL) in older cows could be explained by higher demand for storage of TAG and cholesterol esters in lipid droplets or for the export of TAG via very-low-density lipoproteins. Results show that hepatic fat storage is a reversible process and does not necessarily cause clinical disease. Nevertheless, older cows have a more sustained and greater increase in hepatic TAG concentration, which may explain their increased risk of FLS. The results are limited in their extrapolation due to the small sample size and thereby possible selection bias but present a valuable basis for future studies.
Collapse
Affiliation(s)
- Kirsten B. Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Teja Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Fabian Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabrina Theile
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Anne-Sophie Leonhardt
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Joachim Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agriculture and Nutrition, Martin-Luther-University, Halle, Germany
| | - Stefan Pichelmann
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Erik Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Kristin Reichelt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gabriele Dobeleit
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, Vienna, Austria
| | - Melanie Schären-Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Melanie Schären-Bannert
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
62
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
63
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
64
|
Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022; 12:metabo12020096. [PMID: 35208171 PMCID: PMC8877676 DOI: 10.3390/metabo12020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.
Collapse
|
65
|
Lipid Profile, Antioxidant and Antihypertensive Activity, and Computational Molecular Docking of Diatom Fatty Acids as ACE Inhibitors. Antioxidants (Basel) 2022; 11:antiox11020186. [PMID: 35204069 PMCID: PMC8868434 DOI: 10.3390/antiox11020186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diatoms, as single cell eukaryotic microalgae, are rich sources of lipids, which have either beneficial or detrimental effects on the prevention and treatment of many diseases. Gas chromatography-mass spectrometry (GC-MS) identified diatom lipids with high levels of essential fatty acids (EFAs), especially polyunsaturated FAs (PUFAs) containing both omega-3 and omega-6. Nutritional values of FAs indicated possible applications in the pharmaceutical, nutraceutical, and functional food industries. Diatom FAs showed antioxidative potential on harmful radicals by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging, with high inhibition of the angiotensin-converting enzyme (ACE) that causes cardiovascular disease (CVD) and hypertension. A computational molecular docking simulation confirmed the inhibition mechanisms of FAs on ACE, with comparable levels of binding free energy to chemically synthesized ACE drugs. Findings suggested that diatom lipids showed potential for use as alternative ACE inhibitors or food supplement for CVD prevention.
Collapse
|
66
|
Bai F, Wang X, Niu X, Shen G, Ye J. Lipidomic Profiling Reveals the Reducing Lipid Accumulation Effect of Dietary Taurine in Groupers ( Epinephelus coioides). Front Mol Biosci 2022; 8:814318. [PMID: 35004860 PMCID: PMC8740052 DOI: 10.3389/fmolb.2021.814318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
A lipidomic analysis was conducted to provide the first detailed overview of lipid molecule profiles in response to dietary lipid and taurine and associations of liver lipid-lowering effects of dietary taurine with lipid molecular species and the positional distributions of fatty acids in the liver of juvenile orange-spotted groupers (Epinephelus coioides). The results indicated that the liver was more sensitive to varied dietary lipid and taurine contents than the muscle with regard to lipid molecules. A total of 131 differential lipid molecules (DLMs) were observed in the liver of groupers when dietary taurine was increased from 0 to 1% at 15% lipid, among which all the up and down-regulated DLMs are phospholipids (PLs) and triglycerides (TGs), respectively. The liver content of TGs containing 18:2n-6 attached at the sn-2 and sn-3 positions on the glycerol backbone increased with increasing dietary lipid from 10 to 15% but decreased with increasing dietary taurine from 0 to 1%. Therefore, dietary taurine can not only reduce lipid accumulation through decreasing the contents of TGs containing 18:2n-6 at the sn-2 and sn-3 positions but also enhance the anti-inflammatory capacity and health status of groupers. This study will also provide a new insight into the function of taurine in farmed fish.
Collapse
Affiliation(s)
- Fakai Bai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingjian Niu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Guiping Shen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
67
|
Alemán A, Marín-Peñalver D, de Palencia PF, Gómez-Guillén MDC, Montero P. Anti-Inflammatory Properties, Bioaccessibility and Intestinal Absorption of Sea Fennel ( Crithmum maritimum) Extract Encapsulated in Soy Phosphatidylcholine Liposomes. Nutrients 2022; 14:210. [PMID: 35011085 PMCID: PMC8747172 DOI: 10.3390/nu14010210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022] Open
Abstract
A sea fennel (Crithmum maritimum) aqueous extract was prepared and loaded into soybean phosphatidylcholine liposomes. Both the free extract (FE), and the empty (L) and loaded (L-FE) liposomes were shown to be non-cytotoxic to THP-1 and Caco-2 cells. The anti-inflammatory effect was tested on THP-1 cells differentiated into macrophages. FE showed anti-inflammatory activity, revealed by the induced secretion of IL-10 cytokines in macrophages that were subsequently stimulated with LPS. Also, a decrease in TNF-α production by L was observed, evidencing that liposomes reduced the pro-inflammatory mediators' secretion. The liposomes (L) showed protective anti-inflammatory activity and also were able to downregulate the inflammation. Furthermore, L-FE were also found to downregulate the inflammation response, as they were able to decrease TNF-α secretion in macrophages previously exposed to LPS. The simulated in vitro gastrointestinal digestion (GID) of FE diminished the chlorogenic acid content (the main polyphenolic compound of the extract) by 40%, while in L-FE, the amount of this phenolic compound increased with respect to the undigested liposomes. The amount of bioaccessible chlorogenic, however, was similar for FE and L-FE. The percentage of chlorogenic acid absorbed through a Caco-2 cell monolayer after 3 h of incubation, was significantly similar for the extract and the liposomes (~1.5%), without finding significant differences once the extract and liposomes were digested.
Collapse
Affiliation(s)
- Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, 28040 Madrid, Spain; (D.M.-P.); (P.F.d.P.); (M.d.C.G.-G.)
| | | | | | | | - Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, 28040 Madrid, Spain; (D.M.-P.); (P.F.d.P.); (M.d.C.G.-G.)
| |
Collapse
|
68
|
Gao Y, Li J, Fan S, Chen P, Huang M, Bi H. Lipid Analysis of Follicular Fluids by UHPLC-ESI-HRMS Discovers Potential Biomarkers for Ovarian Hyperstimulation Syndrome. Front Endocrinol (Lausanne) 2022; 13:895116. [PMID: 35846297 PMCID: PMC9276923 DOI: 10.3389/fendo.2022.895116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a serious iatrogenic complication during ovarian stimulation. Even though the incidence of OHSS was relatively low in clinical practice, the consequence can be potentially devastating and life-threatening. Abnormal lipid metabolism may relate to the pathological development of OHSS, but there is still a research gap in the lipidomic research. So here in our study, an ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS) based lipidomic analysis was performed using follicular fluid samples obtained from 17 patients undergoing OHSS. The lipid profiles of OHSS patients were characterized by increased cholesterol ester (ChE) and decreased lysophosphatidylcholine (LPC), phosphatidylinositol (PI), sphingomyelin (SM), dimethylphosphatidylethanolamine (dMePE) and lysodimethylphosphatidylethanolamine (LdMePE). Totally 10 lipids including LPC(18:0), SM(d18:1/16:0), PC(18:0/18:1), PC(20:2/20:5), PC(16:0/18:1), TG(16:0/18:1/18:1), TG(16:0/18:2/18:2), TG(16:0/16:1/18:1), ChE(20:4) and TG(8:0/8:0/10:0) were selected as differential lipids. In conclusion, this study demonstrated the alteration of various lipids in OHSS patients, which suggested the key role of lipids during the development of OHSS and shed light on the further pathophysiological research of OHSS.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingjie Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Pan Chen
- Pharmacy Department, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Huichang Bi, ;
| |
Collapse
|
69
|
Rezvani M, Manca ML, Muntoni A, De Gioannis G, Pedraz JL, Gutierrez G, Matos M, Fadda AM, Manconi M. From process effluents to intestinal health promotion: Developing biopolymer-whey liposomes loaded with gingerol to heal intestinal wounds and neutralize oxidative stress. Int J Pharm 2021; 613:121389. [PMID: 34923053 DOI: 10.1016/j.ijpharm.2021.121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
As a sustainable strategy to valorize the main effluent of the cheese industry and potent environmental pollutant, whey, several biopolymer-whey vesicles loaded with gingerol were tailored for counteracting intestinal oxidative stress and boosting wound healing. An eco-friendly method was used to combine whey with four different water-dispersible biopolymers (xanthan gum, tragacanth, Arabic gum and sodium alginate), phospholipid and a natural antioxidant (gingerol). The results of cryogenic transmission microscopy and dynamic light scattering indicated that the vesicles were mostly unilamellar and small in size (∼100 nm) with low polydispersity index, high negative zeta potential and ability to entrap a high amount of gingerol (up to 94%). The vesicles could maintain their structures in acidic and neutral media and Turbiscan® technology confirmed their stability during the storage. Vesicles prepared with whey and tragacanth exhibited the highest capability to protect intestinal cells from damages induced by hydrogen peroxide. When Arabic and tragacanth gums were added to the whey vesicles, the closure rate of the scratched area was fast and no trace of the wound was observed after 72 h of treatment. These promising findings could open a new horizon in the application of whey in nanomedicine for the treatment of intestinal damages.
Collapse
Affiliation(s)
- Maryam Rezvani
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gemma Gutierrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Maria Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
70
|
Ginkgolide B Regulates CDDP Chemoresistance in Oral Cancer via the Platelet-Activating Factor Receptor Pathway. Cancers (Basel) 2021; 13:cancers13246299. [PMID: 34944919 PMCID: PMC8699349 DOI: 10.3390/cancers13246299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The platelet-activating factor receptor (PAFR) is a key molecule that participates in intracellular signaling pathways. It is involved in cancer progression, but the detailed mechanism of its chemosensitivity is unknown. The purpose of the current study was to elucidate the mechanism regulating cisplatin (CDDP) sensitivity through PAFR functions in oral squamous cell carcinoma (OSCC). These results suggest that PAFR is a therapeutic target for modulating CDDP sensitivity in OSCC cells. In addition, we found that ginkgolide B (GB), a specific inhibitor of PAFR, enhanced both CDDP chemosusceptibility and apoptosis. Thus, GB may be a novel drug that could enhance combination chemotherapy with CDDP for OSCC patients. Abstract The platelet-activating factor receptor (PAFR) is a key molecule that participates in intracellular signaling pathways, including regulating the activation of kinases. It is involved in cancer progression, but the detailed mechanism of its chemosensitivity is unknown. The purpose of the current study was to elucidate the mechanism regulating cisplatin (CDDP) sensitivity through PAFR functions in oral squamous cell carcinoma (OSCC). We first analyzed the correlation between PAFR expression and CDDP sensitivity in seven OSCC-derived cell lines based upon cell viability assays. Among them, we isolated 2 CDDP-resistant cell lines (Ca9-22 and Ho-1-N-1). In addition to conducting PAFR-knockdown (siPAFR) experiments, we found that ginkgolide B (GB), a specific inhibitor of PAFR, enhanced both CDDP chemosusceptibility and apoptosis. We next evaluated the downstream signaling pathway of PAFR in siPAFR-treated cells and GB-treated cells after CDDP treatment. In both cases, we observed decreased phosphorylation of ERK and Akt and increased expression of cleaved caspase-3. These results suggest that PAFR is a therapeutic target for modulating CDDP sensitivity in OSCC cells. Thus, GB may be a novel drug that could enhance combination chemotherapy with CDDP for OSCC patients.
Collapse
|
71
|
Huang YZ, Jin Z, Wang ZM, Qi LB, Song S, Zhu BW, Dong XP. Marine Bioactive Compounds as Nutraceutical and Functional Food Ingredients for Potential Oral Health. Front Nutr 2021; 8:686663. [PMID: 34926539 PMCID: PMC8675007 DOI: 10.3389/fnut.2021.686663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Oral diseases have received considerable attention worldwide as one of the major global public health problems. The development of oral diseases is influenced by socioeconomic, physiological, traumatic, biological, dietary and hygienic practices factors. Currently, the main prevention strategy for oral diseases is to inhibit the growth of biofilm-producing plaque bacteria. Tooth brushing is the most common method of cleaning plaque, aided by mouthwash and sugar-free chewing gum in the daily routine. As the global nutraceutical market grows, marine bioactive compounds are becoming increasingly popular among consumers for their antibacterial, anti-inflammatory and antitumor properties. However, to date, few systematic summaries and studies on the application of marine bioactive compounds in oral health exist. This review provides a comprehensive overview of different marine-sourced bioactive compounds and their health benefits in dental caries, gingivitis, periodontitis, halitosis, oral cancer, and their potential use as functional food ingredients for oral health. In addition, limitations and challenges of the application of these active ingredients are discussed and some observations on current work and future trends are presented in the conclusion section.
Collapse
Affiliation(s)
- Yi-Zhen Huang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zheng Jin
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhe-Ming Wang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Li-Bo Qi
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
72
|
Enomoto H, Takeda S. Mass spectrometry imaging of diacyl-, alkylacyl-, and plasmalogen-phosphatidylethanolamines in pork chop tissues. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01075-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Lopes D, Rey F, Leal MC, Lillebø AI, Calado R, Domingues MR. Bioactivities of Lipid Extracts and Complex Lipids from Seaweeds: Current Knowledge and Future Prospects. Mar Drugs 2021; 19:686. [PMID: 34940685 PMCID: PMC8708724 DOI: 10.3390/md19120686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023] Open
Abstract
While complex lipids of seaweeds are known to display important phytochemical properties, their full potential is yet to be explored. This review summarizes the findings of a systematic survey of scientific publications spanning over the years 2000 to January 2021 retrieved from Web of Science (WoS) and Scopus databases to map the state of the art and identify knowledge gaps on the relationship between the complex lipids of seaweeds and their reported bioactivities. Eligible publications (270 in total) were classified in five categories according to the type of studies using seaweeds as raw biomass (category 1); studies using organic extracts (category 2); studies using organic extracts with identified complex lipids (category 3); studies of extracts enriched in isolated groups or classes of complex lipids (category 4); and studies of isolated complex lipids molecular species (category 5), organized by seaweed phyla and reported bioactivities. Studies that identified the molecular composition of these bioactive compounds in detail (29 in total) were selected and described according to their bioactivities (antitumor, anti-inflammatory, antimicrobial, and others). Overall, to date, the value for seaweeds in terms of health and wellness effects were found to be mostly based on empirical knowledge. Although lipids from seaweeds are little explored, the published work showed the potential of lipid extracts, fractions, and complex lipids from seaweeds as functional ingredients for the food and feed, cosmeceutical, and pharmaceutical industries. This knowledge will boost the use of the chemical diversity of seaweeds for innovative value-added products and new biotechnological applications.
Collapse
Affiliation(s)
- Diana Lopes
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel C. Leal
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Ana I. Lillebø
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Maria Rosário Domingues
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
74
|
Couto D, Melo T, Conde TA, Moreira ASP, Ferreira P, Costa M, Silva J, Domingues R, Domingues P. Food grade extraction of Chlorella vulgaris polar lipids: A comparative lipidomic study. Food Chem 2021; 375:131685. [PMID: 34865930 DOI: 10.1016/j.foodchem.2021.131685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Glycolipids and phospholipids are the main reservoirs of omega polyunsaturated fatty acids in microalgae. Their extraction for the food industry requires food grade solvents, however, the use of these solvents is generally associated with low extraction yields. In this study, we evaluated the lipid extraction efficiency of food-grade ethanol, ultrasound-assisted ethanol (UAE) and dichloromethane/methanol (DCM) from Chlorella vulgaris cultivated under autotrophic and heterotrophic conditions. Yields of lipids, fatty acids (FA), and complex lipid profiles were determined by gravimetry, GC-MS, and LC-MS/MS, respectively. UAE and DCM showed the highest lipid yields with similar purity. The FA profiles were identical for all extracts. The polar lipidome of the DCM and UAE extracts was comparable, while the EtOH extracts were significantly different. These results demonstrated the effectiveness of UAE extraction to obtain high yields of polar lipids and omega-3 and -6-rich extracts from C. vulgaris that can be used for food applications.
Collapse
Affiliation(s)
- Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago A Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
75
|
Local inflammatory mediators alterations induced by Daboia siamensis venom. Toxicon X 2021; 12:100085. [PMID: 34693275 PMCID: PMC8517603 DOI: 10.1016/j.toxcx.2021.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
The ability of Russell's viper (Daboia siamensis) venom (total RVV) and phospholipase A2 (purified PLA2) to induce the local pathological effects were investigated by the local inflammatory events and the release of inflammatory mediators. Both 0.5 μg of total RVV/mouse and 0.15 μg of purified PLA2/mouse were administered via intra-peritoneal injection. After 30 min, 1 h, 2 h, and 4 h incubation time, the peritoneal cavity was flooded with normal saline and the total leukocytes were collected. The eicosanoids (lipid mediators) and the leukocyte expression of cyclooxygenase (COX-1 and COX-2) were investigated by ELISA assay and western blotting, respectively. The amounts of total leukocytes were increased from 30 min to 2 h, then decreased at 4 h, by both total RVV and purified PLA2. Both treatments also induced the expression of COX-2 which was increased at 2 h and then decreased at 4 h, whereas only purified PLA2 induced the expression level of a COX-1 protein which was increased at 30 min, then constantly expressed until 4 h. In addition, total RVV and purified PLA2 caused the release of the eicosanoids; PGE2, TXB2, and LTB4, which reached the peak after 2 h. The findings of this study indicate that purified PLA2 has the potential effects to induce the local inflammation relating the amounts of leukocytes cells, lipid mediators and COX-2 more than the total RVV. Purified phospholipase A2 or the venom could induce eicosanoids and cyclooxygenase-2 expression relating to leukocytes cells. Thromboxane B2 could be the important mediator induced by Russell's viper venom and purified phospholipase A2. Russell's viper venom and purified phospholipase A2 involved the cyclooxygenase-2 expression, but not cyclooxygenase-1. The purified phospholipase A2 showed more predominant inflammatory response at site than total Russell's viper venom.
Collapse
|
76
|
Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021; 19:md19110593. [PMID: 34822464 PMCID: PMC8624173 DOI: 10.3390/md19110593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.
Collapse
|
77
|
Effect of Antarctic krill phospholipid (KOPL) on high fat diet-induced obesity in mice. Food Res Int 2021; 148:110456. [PMID: 34507719 DOI: 10.1016/j.foodres.2021.110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Phospholipids are the main lipid components in Antarctic krill oil, and the combination of n-3 polyunsaturated fatty acids (n-3 PUFAs) shows multiple nutritional advantages. At present, the research about Antarctic krill phospholipid (KOPL) mainly focuses on the purification, and there are few reports on the anti-obesity effect. Thus, this study aimed at evaluating the effect of KOPL on the high-fat diet (HFD)-induced obesity mice. All the mice were divided into five groups, which were fed chow diet, HFD, and different doses of KOPL + HFD, respectively. The results showed that KOPL treatment could reduce the weight gain, fat accumulation, and liver tissue damage in HFD-induced mice. KOPL treatment could reduce the levels of serum lipid (TC, TG, L-LDL) and fasting blood glucose in HFD-induced mice, and the inflammatory cytokines (IL-1β and TNF-α) in serum. Further analysis showed that KOPL could promote the normal expression of lipid-synthesis-related genes and proteins, including sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthetase (FAS), and peroxisome proliferator-activated receptor alpha (PPAR-α) in liver tissue. Besides, it inhibited the overexpression of inflammatory cytokine genes (IL-1β and TNF-α), but increased the expression of tight junction genes (ZO-1 and Occludin) in the colon tissue. Additionally, KOPL improved the decrease of diversity and imbalance of intestinal microbiota, which could contribute to its beneficial effects. In summary, the KOPL treatment improves the effects of HFD-induced obese mice by maintaining normal lipid levels, protecting the liver tissue, reducing inflammation response and intestinal damage, and regulating intestinal microbiota abnormalities. It refer to KOPL could be a promising dietary strategy for treating obesity and improving its related metabolic diseases.
Collapse
|
78
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
79
|
Yahia A, Elsayed LEO, Valter R, Hamed AAA, Mohammed IN, Elseed MA, Salih MA, Esteves T, Auger N, Abubaker R, Koko M, Abozar F, Malik H, Adil R, Emad S, Musallam MA, Idris R, Eltazi IZM, Babai A, Ahmed EAA, Abd Allah ASI, Mairey M, Ahmed AKMA, Elbashir MI, Brice A, Ibrahim ME, Ahmed AE, Lamari F, Stevanin G. Pathogenic Variants in ABHD16A Cause a Novel Psychomotor Developmental Disorder With Spastic Paraplegia. Front Neurol 2021; 12:720201. [PMID: 34489854 PMCID: PMC8417901 DOI: 10.3389/fneur.2021.720201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion:ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Liena E O Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Remi Valter
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Typhaine Esteves
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Rayan Abubaker
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tubingen, Germany
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hiba Malik
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rawaa Adil
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Emad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Razaz Idris
- Letterkenny University Hospital, Letterkenny, Ireland
| | - Isra Z M Eltazi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Arwa Babai
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Elhami A A Ahmed
- UNESCO Chair on Bioethics, University of Khartoum, Khartoum, Sudan
| | | | - Mathilde Mairey
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ahmed K M A Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Foudil Lamari
- APHP, Pitié-Salpêtrière Hospital, Metabolic Biochemistry unit, Department of Biochemistry of Neurometabolic Diseases, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
80
|
Wang K, Xu L, Wang X, Chen A, Xu Z. Discrimination of beef from different origins based on lipidomics: A comparison study of DART-QTOF and LC-ESI-QTOF. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
81
|
Tsoupras A, Pappas KM, Sotiroudis TG, Demopoulos CA. One-step separation system of bio-functional lipid compounds from natural sources. MethodsX 2021; 8:101380. [PMID: 34430276 PMCID: PMC8374514 DOI: 10.1016/j.mex.2021.101380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/30/2021] [Indexed: 10/25/2022] Open
Abstract
Lipids are a very heterogeneous class of biomolecules with distinct structures and functions. Total lipids (TLs) obtained from natural sources are regularly further separated into lipid subclasses, with the two major ones being the polar lipids (PLs) and neutral lipids (NLs). Traditional analytical methods for fractionating TLs into NLs, PLs, and their subclasses, usually comprise difficult, costly and time-consuming steps. Instead, several benefits and applications are derived by implementing a novel one-step semi-preparative and reversed-phase HPLC-analysis for separating TLs into all kinds of lipid subclasses. This method allows a one-step separation/fractionation of several subclasses of bio-functional PLs (i.e. phospholipids, glycolipids, phenolic compounds, N-acyl-homoserine-lactones, etc.) and NLs (i.e. triacylglycerols, fatty acids, esters, etc.) from TL-extracts of a natural source, prior to further testing them for their bio-functionality (i.e. in bioassays/cell models) and structure-activity relationships (i.e. LC-MS/GC-MS).•This method can be applied in several natural sources, such as animal and marine sources, plants, microorganisms of biotechnological and agricultural interest, foods, beverages and related products, and by-products.•This method can also be applied for separating specific bio-functional lipids from complex medical and pharmaceutical samples (i.e. cells, tissues, blood, plasma, liposomes, etc.), either for evaluating their role in diseases (i.e. PAF/PAF-like molecules) or by elucidating their protective roles (i.e. PLs rich in ω3 PUFA) for supplements and nutraceuticals' applications.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Health Research Institute, University of Limerick, Ireland.,Bernal Institute, University of Limerick, Ireland
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Theodore G Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 116 35, Greece
| | | |
Collapse
|
82
|
Kikut J, Konecka N, Ziętek M, Kulpa D, Szczuko M. Diet supporting therapy for inflammatory bowel diseases. Eur J Nutr 2021; 60:2275-2291. [PMID: 33788019 PMCID: PMC8275544 DOI: 10.1007/s00394-021-02489-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-specific inflammatory bowel diseases (IBD) include Crohn's disease and ulcerative colitis. More and more often attention is paid to the possibility of dietary support for inflammatory bowel diseases. METHODS The following review article considers the role of dietary components in the treatment of IBD as: pteridines, probiotics, bovine immunoglobulin, vitamin D, omega-3, flavonoids, polyphenols, curcumin and phosphatidylcholine. The article also discusses plant raw materials of arjuna, soy protein and nettles, trying to summarize their effect on quenching the inflammatory process within the intestines. This review focuses on the possibilities of dietary components and supplementation use to improve the pharmacotherapy response as well as the general clinical patients' condition. RESULTS The mechanism of action of supportive therapy is based on reduction in oxidative stress, maintaining the adequate balance between Th1 and Th2 lymphocytes by affecting cytokines, increasing riboflavin supply for macrophages, increasing expression of vitamin D receptor, regulation by decreasing the expression of NF-κB in liver cells and ability to inhibit the COX2 entrance and inactivate prostaglandins that are involved in the inflammatory process and 12-lipoxygenase pathway inhibition. CONCLUSION Considering clinical researches, it seems that the use of the above-mentioned ingredients in the diet of patients suffering IBD may positively influence the treatment process and maintenance of remission.
Collapse
Affiliation(s)
- Justyna Kikut
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Nina Konecka
- Department of Applied Neurocognitivistic, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University, Szczecin, Poland
| | - Danuta Kulpa
- Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
83
|
|
84
|
da Costa E, Melo T, Reis M, Domingues P, Calado R, Abreu MH, Domingues MR. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia turuturu. Mar Drugs 2021; 19:md19080414. [PMID: 34436254 PMCID: PMC8401436 DOI: 10.3390/md19080414] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2'-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS●+) radical (IC50 ca. 130.4 μg mL-1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) radical (IC25 ca. 129.1 μg mL-1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL-1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Elisabete da Costa
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-370-696
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mariana Reis
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
| | - Ricardo Calado
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Maria Helena Abreu
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
85
|
Ahmmed MK, Carne A, Bunga S, Sabrina Tian H, Bekhit AEDA. Lipidomic signature of Pacific lean fish species head and skin using gas chromatography and nuclear magnetic resonance spectroscopy. Food Chem 2021; 365:130637. [PMID: 34329878 DOI: 10.1016/j.foodchem.2021.130637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
The present study investigated the lipid profile (fatty acid profile, positional distribution of n-3 fatty acids and phospholipid content) of head and skin of three lean fishes (gurnard, ribaldo and snapper). Gurnard head (GH) and snapper head (SnH) were found to contain a higher amount of total lipid (5.9-6.3%) than other samples (1.2-3.9%) including a considerable amount of bioactive n-3 fatty acids such as EPA (GH = 9.05%; SnH = 5.06%), DPA (GH = 2.78% ; SnH = 2.93%) and DHA (GH = 12.8% ; SnH = 7.72%) in the polar lipid fraction. DHA was found to predominate in the sn-2 position for gurnard head and snapper head. Partial least squares discriminant analysis showed that both gurnard and snapper samples were positively correlated with the n-3 fatty acids (EPA, DPA and DHA). Gurnard and snapper head had higher phospholipid content than the skin. Therefore, among the studied samples, GH and SnH are the best source of bioactive n-3 phospholipids.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh.
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Senni Bunga
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
86
|
Li P, Zhang M, Xie D, Zhang X, Zhang S, Gao F, Wang Y, Hsiao CD, Li X, Liu K. Characterization and bioactivities of phospholipids from squid viscera and gonads using ultra-performance liquid chromatography-Q-exactive orbitrap/mass spectrometry-based lipidomics and zebrafish models. Food Funct 2021; 12:7986-7996. [PMID: 34259702 DOI: 10.1039/d1fo00796c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been great interest in phospholipids (PLs) from marine by-products due to their long-chain polyunsaturated fatty acids with unique health and functional properties. Here, marine PLs from squid viscera and gonads were comprehensively characterized and compared by UPLC-Q-Exactive Orbitrap/MS-based lipidomics analysis. A total of thirteen phospholipid classes including 1223 molecular species were identified and quantified in both resources. PC, PE and SM were further isolated from the total PLs of squid viscera and gonads, respectively. All isolated squid PL components were first evaluated for anti-inflammatory, antioxidant and cardiovascular effects using in vivo zebrafish models. Our results showed the diversity, content and physiological functions of PLs from squid by-products, which provided a basis for their future application in the nutritional and pharmaceutical industry.
Collapse
Affiliation(s)
- Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
88
|
Zhang L, Ding L, Shi H, Wang C, Xue C, Zhang T, Wang Y. The Different Protective Effects of Phospholipids Against Obesity‐Induced Renal Injury Mainly Associate with Fatty Acid Composition. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lingyu Zhang
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
| | - Lin Ding
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
| | - Haohao Shi
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
| | - Chengcheng Wang
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
- Laboratory of Marine Drugs & Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong Province 266237 P. R. China
| | - Tiantian Zhang
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China Qingdao Shandong Province 266003 P. R. China
- Laboratory of Marine Drugs & Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong Province 266237 P. R. China
| |
Collapse
|
89
|
Quiroz-Acosta T, Flores-Martinez YM, Becerra-Martínez E, Pérez-Hernández E, Pérez-Hernández N, Bañuelos-Hernández AE. Aberrant sphingomyelin 31P-NMR signatures in giant cell tumour of bone. Biochem Cell Biol 2021; 99:717-724. [PMID: 34096319 DOI: 10.1139/bcb-2020-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An understanding of the biochemistry of the giant cell tumour of bone (GCTB) provides an opportunity for the development of prognostic markers and identification of therapeutic targets. Based on metabolomic analysis, we proposed glycerophospholipid metabolism as the altered pathway in GCTB and the objective of this study was to identify these altered metabolites. Using phosphorus-31 nuclear magnetic resonance spectroscopy (31P-NMR), sphingomyelin was determined as the most dysregulated phospholipid in tissue samples from six patients with GCTB; subsequently, enzymes related to its biosynthesis and hydrolysis were examined using immunodetection techniques. High expression of sphingomyelin synthases 1 and 2, but low expression of neutral sphingomyelinase 2 (nSMase2), was found in GCTB tissues compared to non-neoplastic bone tissues. Sphingomyelin/ ceramide biosynthesis is dysregulated in GCTB due to alterations in the expression of SMS1, SMS2, and nSMase2.
Collapse
Affiliation(s)
- Tayde Quiroz-Acosta
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Yazmin Montserrat Flores-Martinez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, México, Ciudad de México, Mexico;
| | - Elizabeth Pérez-Hernández
- UMAE de Traumatología, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Mexico, Ciudad de México, Mexico;
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Angel Ernesto Bañuelos-Hernández
- Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 42576, Departamento de Farmacologia, Ciudad de Mexico, Mexico City, Mexico;
| |
Collapse
|
90
|
Liu W, Liu J, Xing S, Li X, Han L, Liu K, Wei T, Zhou M. Marine Phospholipids from Fishery By‐Products Attenuate Atherosclerosis. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Jianmin Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Shu Xing
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Liwen Han
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Kechun Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Tao Wei
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| |
Collapse
|
91
|
Reactive Deep Eutectic Solvents (RDESs): A New Tool for Phospholipase D-Catalyzed Preparation of Phospholipids. Catalysts 2021. [DOI: 10.3390/catal11060655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of Reactive Deep Eutectic Solvents (RDESs) in the preparation of polar head modified phospholipids (PLs) with phospholipase D (PLD)-catalyzed biotransformations has been investigated. Natural phosphatidylcholine (PC) has been submitted to PLD-catalyzed transphosphatidylations using a new reaction medium composed by a mixture of RDES/buffer. Instead of exploiting deep eutectic solvents conventionally, just as the reaction media, these solvents have been designed here in order to contribute actively to the synthetic processes by participating as reagents. RDESs were prepared using choline chloride or trimethyl glycine as hydrogen-bond acceptors and glycerol or ethylene glycol, as hydrogen-bond donors as well as nucleophiles for choline substitution. Specifically designed RDES/buffer reaction media allowed the obtainment of PLs with optimized yields in the perspective of a sustainable process implementation.
Collapse
|
92
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomed Pharmacother 2021; 140:111680. [PMID: 34020247 DOI: 10.1016/j.biopha.2021.111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
The great diversity of marine habitats and organisms renders them a high-value source to find/develop novel drugs and formulations. Therefore, herein, sardine (Sardina pilchardus) roe was used as a lipidic source to produce liposomes. This fish product presents high nutritional value, being its lipidic content associated with important health benefits. Consequently, it can be advantageously used to produce therapeutically active delivery devices. Roe lipids were extracted using the Matyash method. After lipid film hydration and extrusion, sardine roe-derived large unilamellar liposomes (LUVs), designated as fishroesomes, presented a size of ≈330 nm and a significant negative surface charge (≈-27 mV). Radical scavenging assays demonstrated that fishroesomes efficiently neutralized peroxyl, hydroxyl and nitric oxide radicals. Moreover, fishroesomes significantly reduced the expression of pro-inflammatory cytokines and chemokines by LPS-stimulated macrophages at non-toxic concentrations for L929 and THP-1 cells. Consequently, the developed liposomes exhibit unique properties as bioactive drug carriers for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
93
|
Semproli R, Robescu MS, Cambò M, Mema K, Bavaro T, Rabuffetti M, Ubiali D, Speranza G. Chemical and Enzymatic Approaches to Esters of
sn
‐Glycero‐3‐Phosphoric Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marina S. Robescu
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Mattia Cambò
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Klodiana Mema
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
- Consorzio Italbiotec Piazza della Trivulziana 4/A 20126 Milano Italy
| | - Teodora Bavaro
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marco Rabuffetti
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Daniela Ubiali
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Giovanna Speranza
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| |
Collapse
|
94
|
Feeney EL, Lamichhane P, Sheehan JJ. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health – A food science and a human nutrition perspective. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12755] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emma L Feeney
- Institute of Food and Health University College Dublin 2.16a Science Centre South Dublin 4Ireland
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
| | - Prabin Lamichhane
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| | - Jeremiah J Sheehan
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| |
Collapse
|
95
|
Gonzalez-Uarquin F, Sommerfeld V, Rodehutscord M, Huber K. Interrelationship of myo-inositol pathways with systemic metabolic conditions in two strains of high-performance laying hens during their productive life span. Sci Rep 2021; 11:4641. [PMID: 33633252 PMCID: PMC7907342 DOI: 10.1038/s41598-021-84169-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Adaptation to metabolic challenges is an individual process in animals and human, most likely based on genetic background. To identify novel pathways of importance for individual adaptation to a metabolic challenge such as egg production in laying hens, myo-inositol (MI) metabolism and plasma metabolite profiles during the productive lifespan were examined in two genetically different strains, Lohmann Brown-Classic (LB) and LSL-Classic (LSL) hens. They were housed during the productive lifespan and sampled at 10, 16, 24, 30 and 60 weeks of age. The targeted AbsoluteIDQ p180 Kit was used for metabolite profiling in plasma whereas a MI enzymatic kit and ELISAs were used to quantify tissue MI concentrations and MI key enzymes (IMPase 1 and MIOX), respectively. As major finding, kidney MIOX was differently expressed in LB and LSL hens with higher amounts in LB. The onset of egg laying between week 16 and 24 of life span was associated with a clear change in the metabolite profiles, however LSL hens and LB hens adapt differently. Pearson's correlation analyses over all hens at all time points indicated that higher expression of MI degrading enzyme MIOX was related to markers indicating metabolic stress.
Collapse
Affiliation(s)
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
96
|
Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil. Mar Drugs 2021; 19:md19030124. [PMID: 33669109 PMCID: PMC7996531 DOI: 10.3390/md19030124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The phospholipids (PLs) from Antarctic krill oil were purified (>97.2%) using adsorption column chromatography. Forty-nine PL molecular species were characterized by ultrahigh-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Most of molecular species contained eicosapentaenoic acid (EPA, 20:5), docosahexaenoic acid (DHA, 22:6), docosapentaenoic acid (DPA, 22:5), and arachidonic acid (AA, 20:4). Notably, a special species PC (20:5/22:6) (1298.17 nmol/g) and many ether PLs were detected. The Antarctic krill PL liposome (IC50 = 0.108 mg/mL) showed better anti-inflammatory activity than crude Antarctic krill oil (IC50 = 0.446 mg/mL). It could block NF-κB signaling pathway via suppression of IκB-α degradation and p65 activation and dose-dependently reduce the cellular content of inflammatory mediators including nitric oxide (NO), reactive oxygen species (ROS), and inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In addition, it can suppress carrageenan-induced mouse paw swelling. Results from the present study could provide a reference for better evaluation of nutritional and medicinal values of Antarctic krill oil.
Collapse
|
97
|
Komalla V, Mehta M, Achi F, Dua K, Haghi M. The Potential for Phospholipids in the Treatment of Airway Inflammation: An Unexplored Solution. Curr Mol Pharmacol 2021; 14:333-349. [PMID: 33557743 DOI: 10.2174/1874467214666210208114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are major inflammatory respiratory diseases. Current mainstay therapy for asthma, and chronic obstructive pulmonary disease are corticosteroids, which have well-established side effect profiles. Phospholipids (PLs) are ubiquitous, diverse compounds with varying functions such as their structural role incell membrane, energy storage, and cell signaling.Recent advances in understanding PLs role as inflammatory mediators in the body as well as their widespread long-standing use as carrier molecules in drug delivery demonstrate the potential application of phospholipids in modulating inflammatory conditions. This review briefly explains the main mechanisms of inflammation in chronic respiratory diseases, currentanti-inflammatory treatments and areas of unmet need. The structural features, roles of endogenous and exogenous phospholipids, including their use as pharmaceutical excipients are reviewed. Current research on the immunomodulatory properties of PLs and their potentialapplication in inflammatory diseasesis the major section of this review. Considering the roles of PLs as inflammatory mediators and their safety profile established in pharmaceutical formulations, these small molecules demonstrate great potential as candidates in respiratory inflammation. Future studies need to focus on the immunomodulatory properties and the underlying mechanisms of phospholipids in respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Varsha Komalla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Fatima Achi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| |
Collapse
|
98
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
99
|
Ntzouvani A, Antonopoulou S, Fragopoulou E, Kontogianni MD, Nomikos T, Mikellidi A, Xanthopoulou Μ, Kalogeropoulos N, Panagiotakos D. Effect of Differently Fed Farmed Gilthead Sea Bream Consumption on Platelet Aggregation and Circulating Haemostatic Markers among Apparently Healthy Adults: A Double-Blind Randomized Crossover Trial. Nutrients 2021; 13:nu13020286. [PMID: 33498445 PMCID: PMC7909403 DOI: 10.3390/nu13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023] Open
Abstract
Fish consumption beneficially affects coagulation markers. Few dietary intervention studies have investigated differently fed farmed fish against these cardio-metabolic risk factors in humans. This double-blind randomized crossover trial evaluated differently fed farmed gilthead sea bream consumption against platelet aggregation and circulating haemostatic markers among apparently healthy adults. Subjects aged 30-65 years, with a body mass index 24.0-31.0 kg/m2, consuming less than 150 g cooked fish per week, were recruited in Attica, Greece. Participants were randomized (n = 38, 1:1) to one of two sequences; consumption of fish fed with fish oil diet (conventional fish, CF)/fish fed with olive pomace-enriched diet (enriched fish, EF) versus EF/CF. The primary outcomes were ex vivo human platelet aggregation and circulating plasminogen activator inhibitor-1 (PAI-1) and P-selectin (sP-selectin) concentrations. EF consumption had no significant effect on platelet sensitivity or haemostatic markers compared to CF. Platelet sensitivity to platelet-activating factor (PAF) decreased after CF consumption during the second period (p < 0.01). Plasma PAI-1 and sP-selectin concentrations increased after CF consumption during both periods (p < 0.01 for both). Based on current findings, consumption of enriched farmed gilthead sea bream had no greater effect on coagulation markers in adults compared to the conventionally fed fish.
Collapse
|
100
|
Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Mar Drugs 2021; 19:md19010028. [PMID: 33435162 PMCID: PMC7827044 DOI: 10.3390/md19010028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable source of the above bioactive lipids, the present study was undertaken. The total lipids of microalga Chlorococcum sp., isolated from the Irish coast, were fractionated into neutral-, glyco-, and phospho-lipids, and were tested in vitro for their anti-inflammatory and antithrombotic activities. All tested lipid fractions showed strong anti-platelet-activating factor (PAF) and antithrombin activities in human platelets (half maximal inhibitory concentration (IC50) values ranging ~25–200 μg of lipid) with the highest activities in glyco- and phospho-lipid fractions. The structural analysis of the bioactive lipid fraction-2 revealed the presence of specific sulfoquinovosyl diacylglycerols (SQDG) bioactive molecules and the HexCer-t36:2 (t18:1/18:1 and 18:2/18:0) cerebrosides with a phytosphingosine (4-hydrosphinganine) base, while fraction-3 contained bioactive phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules. These novel bioactive lipids of Chlorococcum sp. with putative health benefits may indicate that marine microalgae can be a sustainable alternative source for bioactive lipids production for food supplements and nutraceutical applications. However, further studies are required towards the commercial technology pathways development and biosafety analysis for the use of the microalga.
Collapse
|