51
|
Sangartit W, Pakdeechote P, Kukongviriyapan V, Donpunha W, Shibahara S, Kukongviriyapan U. Tetrahydrocurcumin in combination with deferiprone attenuates hypertension, vascular dysfunction, baroreflex dysfunction, and oxidative stress in iron-overloaded mice. Vascul Pharmacol 2016; 87:199-208. [PMID: 27713040 DOI: 10.1016/j.vph.2016.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022]
Abstract
Excessive iron can generate reactive oxygen species (ROS), leading to oxidative stress that is closely associated with cardiovascular dysfunction. Iron overload was induced in male ICR mice by injection of iron sucrose (10mg/kg/day) for eight weeks. Iron overload was evidenced by increased serum iron indices. The mice developed increased blood pressure, impaired vascular function and blunted response of the autonomic nervous system. These effects were accompanied by increased malondialdehyde levels in various tissues, increased nitric oxide metabolites in plasma and urine, and decreased blood glutathione. Tetrahydrocurcumin (THU, 50mg/kg/day), deferiprone (or L1, 50mg/kg/day) or both was orally administered throughout the period of iron sucrose injection. The treatments significantly alleviated the deleterious cardiovascular effects of iron overload, and were associated with modulation of nitric oxide levels. An imbalance between endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) expression in response to iron overload was normalized by THU, L1 or the combination treatment. Moreover, the treatment decreased the upregulated expression levels of gp91phox, p47phox and HO-1. The combination of THU and L1 exerted a greater effect than THU or L1 monotherapy. These results suggest beneficial effects of THU and L1 on iron-induced oxidative stress, hypertension, and vascular dysfunction.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
52
|
Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. ACTA ACUST UNITED AC 2016; 68:1481-1500. [PMID: 27747859 DOI: 10.1111/jphp.12611] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. KEY FINDINGS Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. SUMMARY Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness.
Collapse
Affiliation(s)
- Soumitra Shome
- Departments of Botany and Biotechnology, Karimganj College, Karimganj, Assam, India.,Department of Life Science and Bioinformatics, Assam University, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam, India
| | | | | | | |
Collapse
|
53
|
Choudhary R, Bodakhe SH. Olmesartan, an angiotensin II receptor blocker inhibits the progression of cataract formation in cadmium chloride induced hypertensive albino rats. Life Sci 2016; 167:105-112. [PMID: 27744053 DOI: 10.1016/j.lfs.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023]
Abstract
AIMS Previously we found that cadmium chloride (CdCl2) exposure substantially elevates hypertension and potentiates cataract formation. In the present study, we investigated the protective effects of olmesartan, an angiotensin II receptor blocker against cataractogenesis in the CdCl2-induced hypertensive animal model. MAIN METHODS Male Sprague-Dawley albino rats (150-180g) were randomly selected and assigned to four groups (n=6). Among the four groups, one group (normal) received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.), another group (CdCl2 control) received CdCl2 (0.5mg/kg/day, i.p.), and remaining two groups received olmesartan at two doses level (2 and 4mg/kg/day, p.o.) concurrently with CdCl2 for six consecutive weeks. Blood pressure and cataract formation were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. KEY FINDINGS The olmesartan treatment significantly restored the blood pressure, lenticular opacity, serum and lens antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reduced), and malondialdehyde level. Additionally, it significantly restored the proteins, ions (Na+, K+, and Ca2+), and ATPase pumps activity (Na+K+ ATPase and Ca2+ ATPase) in the lens as compared to CdCl2 control group. SIGNIFICANCE The findings demonstrate that olmesartan potentially inhibits the risk of cataract formation in the hypertensive state via restoration of lenticular oxidative stress, ATPase function, and ionic contents in the eye lenses. The results suggest that angiotensin II receptor blockers play an important role to prevent cataract formation in several pathogenic conditions like hypertension, diabetes, and oxidative stress.
Collapse
Affiliation(s)
- Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009, India.
| |
Collapse
|
54
|
Choudhary R, Bodakhe SH. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals. Biomed Pharmacother 2016; 84:836-844. [PMID: 27728893 DOI: 10.1016/j.biopha.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 02/02/2023] Open
Abstract
Previously we found that hypertension potentiates the risk the cataractogenesis. In the present study, we investigated the protective effects of magnesium taurate (MgT) on hypertension and associated lenticular damages against cadmium chloride (CdCl2)-induced hypertensive animals. Male Sprague-Dawley albino rats (150-180g) were assigned to five experimental groups (n=6). Among the five groups, normal group received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.). Hypertension control group received CdCl2 (0.5mg/kg/day, i.p.). Tests and standard groups received MgT (3 and 6mg/kg/day, p.o.) and amlodipine (3mg/kg/day, p.o.) concurrently with CdCl2 respectively, for six consecutive weeks. Blood pressure, heart rate, and eyes were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. The chronic administration of MgT concurrently with CdCl2 significantly restored the blood pressure, serum and lens antioxidants (CAT, SOD, GPx, and GSH), MDA level, and ions (Na+, K+, and Ca2+). Additionally, MgT treatment led to significant increase in the lens proteins (total and soluble), Ca2+ ATPase, and Na+K+ ATPase activity as compared to hypertension control group. Ophthalmoscope observations indicated that MgT treatments delayed the progression of cataract against the hypertensive state. The study shows that MgT prevents the progression of cataractogenesis via restoration of blood pressure, lenticular oxidative damages, and lens ATPase functions in the hypertensive state. The results suggest that MgT supplement may play a beneficial role to manage hypertension and associated cataractogenesis.
Collapse
Affiliation(s)
- Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|
55
|
Abstract
Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.
Collapse
|
56
|
Abstract
The Trial to Assess Chelation Therapy (TACT) was a randomized double-blind placebo-controlled trial enrolling patients age ≥50 years with prior myocardial infarction. TACT used a 2 × 2 factorial design to study ethylene diamine tetraacetic acid (EDTA) chelation and high-dose vitamin supplementation. Chelation provided a modest but significant reduction in cardiovascular endpoints. The benefit was stronger and significant among participants with diabetes but absent in those without diabetes. Mechanisms by which chelation might reduce cardiovascular risk in persons with diabetes include the effects of EDTA chelation on transition and toxic metals. Transition metals, particularly copper and iron, play important roles in oxidative stress pathways. Toxic metals, in particular cadmium and lead, are toxic for the cardiovascular system. This review discusses the epidemiologic evidence and animal and human studies supporting the role of these metals in the development of diabetes and ischemic heart disease and potential ways by which EDTA chelation could confer cardiovascular benefit.
Collapse
|
57
|
Yao Y, Wang W, Li M, Ren H, Chen C, Wang J, Wang WE, Yang J, Zeng C. Curcumin Exerts its Anti-hypertensive Effect by Down-regulating the AT1 Receptor in Vascular Smooth Muscle Cells. Sci Rep 2016; 6:25579. [PMID: 27146402 PMCID: PMC4857140 DOI: 10.1038/srep25579] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Curcumin exerts beneficial effects on cardiovascular diseases, including hypertension. However, its mechanisms are unknown. We propose that curcumin prevents the development of hypertension by regulating AT1 receptor (AT1R) expression in arteries. The present study examined how curcumin regulates AT1R expression in vascular smooth muscle cells and investigated the physiological significance of this regulation in angiotensin (Ang) II-induced hypertension. The results showed that curcumin decreased AT1R expression in a concentration- and time-dependent manner in vascular smooth muscle cells. Using luciferase reporters with an entire AT1 or a mutant AT1R in A10 cells, the AT1R promoter activity was inhibited by 10−6 M curcumin, and the proximal element (from −61 to +25 bp) of the AT1R promoter was crucial for curcumin-induced AT1R down-regulation. An electrophoretic mobility shift assay showed that curcumin decreased specificity protein 1 (SP1) binding with the AT1R promoter in A10 cells. Curcumin treatment reduced Ang II-induced hypertension in C57Bl/6J mice, which was accompanied by lower AT1R expression in the arteries and decreased Ang II-mediated vasoconstriction in the mesenteric artery. These findings indicate that curcumin down-regulates AT1R expression in A10 cells by affecting SP1/AT1R DNA binding, thus reducing AT1R-mediated vasoconstriction and subsequently prevents the development of hypertension in an Ang II-induced hypertensive model.
Collapse
Affiliation(s)
- Yonggang Yao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Meixiang Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China.,Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| |
Collapse
|
58
|
Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. TOHOKU J EXP MED 2016; 239:25-38. [PMID: 27151191 DOI: 10.1620/tjem.239.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity potential. Humans are exposed to Cd present in diet, polluted air, and cigarette smoke. Cd exposure has been associated with increased risk of chronic diseases, including hypertension, atherosclerosis, diabetes, and nephropathy, all of which could be attributable to dysfunctional endothelial and smooth muscle cells. Cd toxicity is correlated with increased reactive oxygen formation and depletion of antioxidants, resulting in an oxidative stress. Chelation of Cd has proved useful in the removal of the Cd burden. However, several chelating agents cause side effects in clinical usage. Recent studies have shown that the antioxidant compounds curcumin and tetrahydrocurcumin can alleviate vascular dysfunction and high blood pressure caused by Cd toxicity. In chronic Cd exposure, these antioxidants protect vascular endothelium by increasing nitric oxide (NO•) bioavailability and improving vascular function. Antioxidant activity against Cd intoxication results directly and/or indirectly through free radical scavenging, metal chelation, enhanced expression of the antioxidant defense system, regulation of inflammatory enzymes, increase in NO• bioavailability, and reduction of gastrointestinal absorption and tissue Cd accumulation. This review summarizes current knowledge of Cd-induced oxidative stress and cardiovascular dysfunction and a possible protective effect conferred by the antioxidants curcumin and tetrahydrocurcumin.
Collapse
|
59
|
Kerdsomboon K, Tatip S, Kosasih S, Auesukaree C. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 121:543-9. [DOI: 10.1016/j.jbiosc.2015.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022]
|
60
|
Chen D, Tao X, Wang Y, Tian F, Wei Y, Chen G, Shen H, Wang Z, Yu Z, Li H, Chen G. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med 2015; 36:1563-71. [PMID: 26459716 PMCID: PMC4678154 DOI: 10.3892/ijmm.2015.2365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022] Open
Abstract
Delayed reendothelialization and intimal hyperplasia (IH) contribute to the failure of vascular interventions. Curcumin (Cur) has been used for various types of diseases with antioxidant, antiproliferative and anti-inflammatory effects. However, investigations involving the application of Cur in inhibiting IH are limited. The aim of the present study was to evaluate the potential therapeutic effects of Cur and its underlying mechanisms on a rat model of carotid artery (CA) intimal injury. In vitro, an endothelial cell (EC) migration assay was conducted using cultured primary human umbilical vein endothelial cells (HUVECs) that were exposed to Cur. In vivo, CA angioplasty injury was used to generate a rat model of intimal injury. CAs were collected at 3 days, and 1 and 4 weeks after injury, respectively, for western blot analysis and double-immunofluorescence analyses, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, oxidative stress indicator analysis and hematoxylin and eosin staining of the neointima. In vivo, Cur significantly enhanced the migration and healing of HUVECs and simultaneously promoted microtubule-associated protein light chain 3-II (LC3-II) expression when HUVECs were subjected to an artificial scratch. In vitro, endangium from the Cur-treated rats exhibited a significantly reduced number of apoptotic ECs and oxidative stress level compared to that of the sham group. In addition, Cur treatment markedly improved quantification of the LC3-II concomitant with the downregulation of p62 in the injured CA. At 1 week following injury, sizable neointimal lesions had developed, although prominent intima thickening was not observed. At 4 weeks, apparent hemadostenosis occurred resulting from the exorbitance IH. Cur treatment markedly reduced the thickness of the neointimal lesion. It is noteworthy that high-dose Cur may have exerted more significant effects than low-dose Cur. Cur can potentially become a therapeutic drug for angiostenosis by imparting a protective effect that accelerates reendothelialization and ameliorates IH and was mediated by its pro-autophagic effect.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaoyang Tao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yang Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengxuan Tian
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxin Wei
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhengquan Yu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
61
|
Ellinsworth DC. Arsenic, reactive oxygen, and endothelial dysfunction. J Pharmacol Exp Ther 2015; 353:458-64. [PMID: 25788710 DOI: 10.1124/jpet.115.223289] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/17/2015] [Indexed: 03/08/2025] Open
Abstract
Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health.
Collapse
|
62
|
Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, Greenwald SE. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One 2014; 9:e114908. [PMID: 25502771 PMCID: PMC4263715 DOI: 10.1371/journal.pone.0114908] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice. METHODS Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment. RESULTS Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues. CONCLUSIONS Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanida Donpunha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Praphassorn Surawattanawan
- Research and Development Institute, The Government Pharmaceutical Organization, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Stephen E. Greenwald
- Pathology Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, United Kingdom
| |
Collapse
|
63
|
Khojastehfar A, Aghaei M, Gharagozloo M, Panjehpour M. Cadmium induces reactive oxygen species-dependent apoptosis in MCF-7 human breast cancer cell line. Toxicol Mech Methods 2014; 25:48-55. [DOI: 10.3109/15376516.2014.985353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Meng Z, Yu XH, Chen J, Li L, Li S. Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation. Acta Pharmacol Sin 2014; 35:1247-56. [PMID: 25132338 DOI: 10.1038/aps.2014.63] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of curcumin (Cur) on cardiac fibrosis in spontaneously hypertensive rats (SHRs) and the mechanisms underlying the anti-fibrotic effect of Cur in rat cardiac fibroblasts (CFs) in vitro. METHODS SHRs were orally treated with Cur (100 mg·kg(-1)·d(-1)) or Cur (100 mg·kg(-1)·d(-1)) plus the PPAR-γ antagonist GW9662 (1 mg·kg(-1)·d(-1)) for 12 weeks. Cultured CFs were treated with angiotensin II (Ang II, 0.1 μmol/L) in vitro. The expression of relevant proteins and mRNAs was analyzed using Western blotting and real-time PCR, respectively. The expression and activity of peroxisome proliferator-activated receptor-γ (PPAR-γ) were detected using Western blotting and a DNA-binding assay, respectively. RESULTS Treatment of SHRs with Cur significantly decreased systolic blood pressure, blood Ang II concentration, heart weight/body weight ratio and left ventricle weight/body weight ratio, with concurrently decreased expression of connective tissue growth factor (CTGF), plasminogen activator inhibitor (PAI)-1, collagen III (Col III) and fibronectin (FN), and increased expression and activity of PPAR-γ in the left ventricle. Co-treatment with GW9662 partially abrogated the anti-fibrotic effects of Cur in SHRs. Pretreatment of CFs with Cur (5, 10, 20 μmol/L) dose-dependently inhibited Ang II-induced expression of CTGF, PAI-1, Col III and FN, and increased the expression and binding activity of PPAR-γ. Pretreatment with GW9662 partially reversed anti-fibrotic effects of Cur in vitro. Furthermore, pretreatment of CFs with Cur inhibited Ang II-induced expression of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3, which were reversed by GW9662. CONCLUSION Cur attenuates cardiac fibrosis in SHRs and inhibits Ang II-induced production of CTGF, PAI-1 and ECM in CFs in vitro. The crosstalk between PPAR-γ and TGF-β1/Smad2/3 signaling is involved in the anti-fibrotic and anti-proliferative effects of Cur.
Collapse
|