51
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
52
|
Parcheta M, Świsłocka R, Orzechowska S, Akimowicz M, Choińska R, Lewandowski W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1984. [PMID: 33921014 PMCID: PMC8071393 DOI: 10.3390/ma14081984] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular mechanism of antioxidant processes. Our researches and sparing literature data prove that the ligand antioxidant properties complexed by selected metals may significantly affect the free radical neutralization. According to our preliminary observation, this efficiency is improved mainly by the metals of high ion potential, e.g., Fe(III), Cr(III), Ln(III), Y(III). The complexes of delocalized electronic charge are better antioxidants. Experimental literature results of antioxidant assays, such as diphenylpicrylhydrazyl (DPPH) and ferric reducing activity power assay (FRAP), were compared to thermodynamic parameters obtained with computational methods. The mechanisms of free radicals creation were described based on the experimental literature data. Changes in HOMO energy distribution in phenolic acids with an increasing number of hydroxyl groups were observed. The antioxidant properties of flavonoids are strongly dependent on the hydroxyl group position and the catechol moiety. The number of methoxy groups in the phenolic acid molecules influences antioxidant activity. The use of synchrotron techniques in the antioxidants electronic structure analysis was proposed.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| | - Sylwia Orzechowska
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland;
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Akimowicz
- Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.A.); (R.C.)
| | - Renata Choińska
- Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.A.); (R.C.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| |
Collapse
|
53
|
The involvement of Nile tilapia (Oreochromis niloticus) Neu4 sialidase in neural differentiation during early ontogenesis. Biochimie 2021; 185:105-116. [PMID: 33746065 DOI: 10.1016/j.biochi.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Neurogenesis is an important process for the formation of the central nervous system during ontogenesis. Mammalian sialidases are involved in neurogenesis through desialylation of sialo-glycoconjugates. However, the significance of fish sialidases, unlike that of mammals, in neurogenesis has not been investigated. The present study focuses on Nile tilapia (Oreochromis niloticus) because of its unique profiles of sialidases related to enzymatic properties, subcellular localization, and tissue-specific gene expression. First, the fish were cultured under aphotic condition, which is known to cause the delayed development of the retina and brain in various fish. Next, we investigate the effect of aphotic condition on the levels of tilapia sialidases. Our results revealed that the tilapia showed a decrease in the number of ganglion cell in the retina. The expression level of neu4 mRNA is up-regulated in the eyes from tilapia reared in Dark accompanied by the increase of retinal differentiation markers. These results indicated that tilapia Neu4 is involved in retinal development in Nile tilapia. Furthermore, we tried to clarify the function of tilapia Neu4 in the neuronal cells using two neuroblast cell lines (SH-SY5Y and Neuro2a cell lines). Tilapia Neu4 decreased sialic acid level of both nuclear glycoproteins as well as glycolipids. Moreover, tilapia Neu4 accelerated neurite formation in both two neural cell lines and, increased the acetylcholinesterase activity, but it did not affect cell proliferation. Collectively, these results suggest that Neu4 accelerates neurite differentiation during ontogenesis in tilapia.
Collapse
|
54
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
55
|
Supplementation with milk enriched with complex lipids during pregnancy: A double-blind randomized controlled trial. PLoS One 2021; 16:e0244916. [PMID: 33626041 PMCID: PMC7904220 DOI: 10.1371/journal.pone.0244916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Gangliosides are a class of sphingolipids that are present in the cell membranes of vertebrates. Gangliosides influence a broad range of cellular processes through effects on signal transduction, being found abundantly in the brain, and having a role in neurodevelopment. Objective We aimed to assess the effects of maternal daily consumption of ganglioside-enriched milk vs non-enriched milk and a non-supplemented group of pregnant women on maternal ganglioside levels and pregnancy outcomes. Design Double-blind parallel randomized controlled trial. Methods 1,500 women aged 20–40 years were recruited in Chongqing (China) between 11 and 14 weeks of a singleton pregnancy, and randomized into three groups: Control–received standard powdered milk formulation (≥4 mg gangliosides/day); Complex milk lipid-enhanced (CML-E) group–same formulation enriched with complex milk lipids (≥8 mg gangliosides/day) from milk fat globule membrane; Reference–received no milk. Serum ganglioside levels were measured in a randomly selected subsample of 250 women per group. Results CML-E milk was associated with marginally greater total gangliosides levels in maternal serum compared to Control (13.02 vs 12.69 μg/ml; p = 0.034) but not to Reference group. CML-E milk did not affect cord blood ganglioside levels. Among the 1500 women, CML-E milk consumption was associated with a lower rate of gestational diabetes mellitus than control milk [relative risk 0.80 (95% CI 0.64, 0.99)], but which was not different to the Reference group. CML-E milk supplementation had no other effects on maternal or newborn health. Conclusions Maternal supplementation with milk fat globule membrane, as a source of gangliosides, was not associated with any adverse health outcomes, and did not increase serum gangliosides compared with the non-supplemented reference group. Trial registration Chinese Clinical Trial Register (ChiCTR-IOR-16007700). Clinical trial registration ChiCTR-IOR-16007700; www.chictr.org.cn/showprojen.aspx?proj=12972.
Collapse
|
56
|
Gaspar R, Idini I, Carlström G, Linse S, Sparr E. Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation. Front Cell Dev Biol 2021; 9:622764. [PMID: 33681202 PMCID: PMC7930334 DOI: 10.3389/fcell.2021.622764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
α-Synuclein is a membrane-interacting protein involved in Parkinson's disease. Here we have investigated the co-association of α-synuclein and lipids from ganglioside-containing model membranes. Our study relies on the reported importance of ganglioside lipids, which are found in high amounts in neurons and exosomes, on cell-to-cell prion-like transmission of misfolded α-synuclein. Samples taken along various stages of the aggregation process were imaged using cryogenic transmission electron microscopy, and the composition of samples corresponding to the final state analyzed using NMR spectroscopy. The combined data shows that α-synuclein co-assembles with lipids from the ganglioside (GM1)-containing model membranes. The lipid-protein samples observed during the aggregation process contain non-vesicular objects not present at the final stage, thus capturing the co-existence of species under non-equilibrium conditions. A range of different lipid-protein co-assemblies are observed during the time course of the reaction and some of these appear to be transient assemblies that evolve into other co-aggregates over time. At the end of the aggregation reaction, the samples become more homogeneous, showing thin fibrillar structures heavily decorated with small vesicles. From the NMR analysis, we conclude that the ratio of GM1 to phosphatidyl choline (PC) in the supernatant of the co-aggregated samples is significantly reduced compared to the GM1/PC ratio of the lipid dispersion from which these samples were derived. Taken together, this indicates a selective uptake of GM1 into the fibrillar aggregates and removal of GM1-rich objects from the solution.
Collapse
Affiliation(s)
- Ricardo Gaspar
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.,Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ilaria Idini
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
57
|
Bailey LS, Huang F, Gao T, Zhao J, Basso KB, Guo Z. Characterization of Glycosphingolipids and Their Diverse Lipid Forms through Two-Stage Matching of LC-MS/MS Spectra. Anal Chem 2021; 93:3154-3162. [PMID: 33534538 DOI: 10.1021/acs.analchem.0c04542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) play a key role in various biological and pathological events. Thus, determination of the complete GSL compositions in human tissues is essential for comparative and functional studies of GSLs. In this work, a new strategy was developed for GSL characterization and glycolipidomics analysis based on two-stage matching of experimental and reference MS/MS spectra. In the first stage, carbohydrate fragments, which contain only glycans and thus are conserved within a GSL species, are directly matched to yield a species identification. In the second stage, glycolipid fragments from the matched GSL species, which contain both the lipid and glycans and thus shift due to lipid structural changes, are treated according to lipid rule-based matching to characterize the lipid compositions. This new strategy uses the whole spectrum for GSL characterization. Furthermore, simple databases containing only a single lipid form per GSL species can be utilized to identify multiple GSL lipid forms. It is expected that this method will help accelerate glycolipidomics analysis and disclose new and diverse lipid forms of GSLs.
Collapse
|
58
|
Zhong J, Li RW, Wang J, Wang Y, Ge HF, Xian JS, Feng H, Tan L. Neuroprotection by cattle encephalon glycoside and ignotin beyond the time window of thrombolysis in ischemic stroke. Neural Regen Res 2021; 16:312-318. [PMID: 32859790 PMCID: PMC7896241 DOI: 10.4103/1673-5374.290899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 01/01/2023] Open
Abstract
Cattle encephalon glycoside and ignotin (CEGI) injection is known as a multi-target neuroprotective drug that contains numerous liposoluble molecules, such as polypeptides, monosialotetrahexosyl ganglioside (GM-1), free amino acids, hypoxanthine and carnosine. CEGI has been approved by the Chinese State Food and Drug Administration and widely used in the treatments of various diseases, such as stroke and Alzheimer's disease. However, the neuroprotective effects of CEGI beyond the time window of thrombolysis (within 4.5 hours) on acute ischemic stroke remain unclear. This study constructed a rat middle cerebral artery occlusion model by suture-occluded method to simulate ischemic stroke. The first daily dose was intraperitoneally injected at 8 hours post-surgery and the CEGI treatments continued for 14 days. Results of the modified five-point Bederson scale, beam balance test and rotameric test showed the neurological function of ischemic stroke rats treated with 4 mL/kg/d CEGI improved significantly, but the mortality within 14 days did not change significantly. Brain MRI and 2,3,5-triphenyltetrazolium chloride staining confirmed that the infarct size in the 4 mL/kg/d CEGI-treated rats was significantly reduced compared with ischemic insult only. The results of transmission electron microscopy and double immunofluorescence staining showed that the hippocampal neuronal necrosis in the ischemic penumbra decreased whereas the immunopositivity of new neuronal-specific protein doublecortin and the percentage of Ki67/doublecortin positive cells increased in CEGI-treated rats compared with untreated rats. Our results suggest that CEGI has an effective neuroprotective effect on ischemic stroke when administered after the time window of thrombolysis. The study was approved by the Animal Ethics Committee of The Third Military Medical University, China.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong-Wei Li
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Wang
- Department of Oncology, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Hong-Fei Ge
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ji-Shu Xian
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
59
|
Chatterjee D, Mahabir S, Chatterjee D, Gerlai R. Lasting alterations induced in glial cell phenotypes by short exposure to alcohol during embryonic development in zebrafish. Addict Biol 2021; 26:e12867. [PMID: 31919968 DOI: 10.1111/adb.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Despite the known teratogenic effects of alcohol (ethanol) on the developing human fetus, the prevalence of fetal alcohol spectrum disorder (FASD) is not decreasing. Appropriate treatment for this life-long disease has not been developed, and even diagnostic biomarkers are unavailable. FASD remains a large unmet medical need. Numerous animal models have been developed to mimic FASD and study potential underlying biological mechanisms. However, most of these models focused on neuronal phenotypes. Given that glial cells represent the majority of cells in the vertebrate brain, and given the increasingly appreciated roles they play in a myriad of neuronal functions as well as CNS disorders, we decided to investigate potential embryonic alcohol exposure induced changes in them. Building upon a previously introduced zebrafish model of milder and most prevalent forms of FASD, we investigated the effect of a 2-hour-long exposure to alcohol (1% vol/vol bath concentration) employed at the 24th hour postfertilization stage of development of zebrafish on a number of glial cell-related phenotypes. We studied oligodendrocyte, astrocyte as well as microglia-related phenotypes using immunohistochemistry, lipid, and enzyme activity analyses. We report significant changes in wide-spread glial cell phenotypes induced by embryonic alcohol exposure in the zebrafish brain and conclude that the zebrafish will advance our understanding of the mechanisms of this devastating disorder.
Collapse
Affiliation(s)
| | - Samantha Mahabir
- Department of Cell and Systems Biology University of Toronto Toronto Canada
| | - Diptendu Chatterjee
- Department of Psychology University of Toronto Mississauga Mississauga Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology University of Toronto Toronto Canada
- Department of Psychology University of Toronto Mississauga Mississauga Canada
| |
Collapse
|
60
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kamata K, Mizutani K, Takahashi K, Marchetti R, Silipo A, Addy C, Park SY, Fujii Y, Fujita H, Konuma T, Ikegami T, Ozeki Y, Tame JRH. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci Rep 2020; 10:22102. [PMID: 33328520 PMCID: PMC7744527 DOI: 10.1038/s41598-020-78926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α(2-3)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc) and its precursor, asialo-GM1 (Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.
Collapse
Affiliation(s)
- Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Christine Addy
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Fujii
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Hideaki Fujita
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
62
|
Bouscary A, Quessada C, René F, Spedding M, Turner BJ, Henriques A, Ngo ST, Loeffler JP. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin Cell Dev Biol 2020; 112:82-91. [PMID: 33160824 DOI: 10.1016/j.semcdb.2020.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Frédérique René
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Michael Spedding
- Spedding Research Solutions SAS, 6 rue Ampere, 78650 Le Vesinet, France
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | | | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Rd, Brisbane city, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia; Queensland Brain Institute Building 79, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France.
| |
Collapse
|
63
|
Mahaq O, P. Rameli MA, Jaoi Edward M, Mohd Hanafi N, Abdul Aziz S, Abu Hassim H, Mohd Noor MH, Ahmad H. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav 2020; 10:e01817. [PMID: 32886435 PMCID: PMC7667319 DOI: 10.1002/brb3.1817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Edible bird nest (EBN) is a natural food product produced from edible nest swiftlet's saliva which consists of glycoproteins as one of its main components; these glycoproteins contain an abundant of sialic acid. The dietary EBN supplementation has been reported to enhance brain functions in mammals and that the bioactivities and nutritional value of EBN are important during periods of rapid brain growth particularly for preterm infant. However, the effects of EBN in maternal on multigeneration learning and memory function still remain unclear. Thus, the present study aimed to determine the effects of maternal EBN supplementation on learning and memory function of their first (F1)- and second (F2)-generation mice. METHODS CJ57BL/6 breeder F0 mice were fed with EBN (10 mg/kg) from different sources. After 6 weeks of diet supplementations, the F0 animals were bred to produce F1 and F2 animals. At 6 weeks of age, the F1 and F2 animals were tested for spatial recognition memory using a Y-maze test. The sialic acid content from EBN and brain gene expression were analyzed using HPLC and PCR, respectively. RESULTS All EBN samples contained glycoprotein with high level of sialic acid. Dietary EBN supplementation also showed an upregulation of GNE, ST8SiaIV, SLC17A5, and BDNF mRNA associated with an improvement in Y-maze cognitive performance in both generations of animal. Qualitatively, the densities of synaptic vesicles in the presynaptic terminal were higher in the F1 and F2 animals which might derive from maternal EBN supplementation. CONCLUSION This study provided a solid foundation toward the growing research on nutritional intervention from dietary EBN supplementation on cognitive and neurological development in the generation of mammals.
Collapse
Affiliation(s)
- Obaidullah Mahaq
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Department of Veterinary Preclinical ScienceFaculty of Veterinary MedicineShaikh Zayed UniversityKhostAfghanistan
| | - Mohd Adha P. Rameli
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Marilyn Jaoi Edward
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Nursyuhaida Mohd Hanafi
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology and MicrobiologyFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversity Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- University Agriculture ParkUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| |
Collapse
|
64
|
Tan S, Chen C, Zhao A, Wang M, Zhao W, Zhang J, Li H, Zhang Y. The dynamic changes of gangliosides in breast milk and the intake of gangliosides in maternal and infant diet in three cities of China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2870-2888. [PMID: 33284868 PMCID: PMC7716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study the ganglioside intake of lactating mothers and its effect on the breast milk and infants. METHODS The related information of mothers and infants was obtained by questionnaire survey, including the recipe, family information, and so on. The content of gangliosides in the mothers' food and breast milk was tested by HPLC-MS. The intake of gangliosides for infants was recorded and calculated. Then the dynamic changes of the content of gangliosides in breast milk and the impact on the development of infants were evaluated. RESULTS GD3 was rich in milk and dairy products. The average intake of gangliosides for lactating mothers was 6.33 mg/day, of which GM3 was 3.02 mg/day and GD3 was 1.51 mg/day. The main food sources of gangliosides were meat (46.6%), eggs (26.6%), and dairy products (18.9%). The average content of gangliosides in breast milk was 9.58 mg/L. The content in 0-7 days after delivery (15.95 mg/L) was the highest, and then gradually decreased with time, getting the lowest in 6 months after delivery (6.47 mg/L). GM3 and GD3 were the two main types in breast milk. The average milk intake of infants under 6 months gradually increased from 570 mL to 1367 mL, and the daily intake of gangliosides was relatively stable, with a median of 6.4 mg. There was no significant relationship between the intake of gangliosides and physical development in infants. CONCLUSION This study is the first to report the dietary ganglioside intake of Chinese city mothers. This study is also the first to indirectly infer the demand of infant ganglioside by detecting the components of breast milk. It will accumulate basic data for improving the diet of Chinese mothers and the recommended amount of infant nutrients.
Collapse
Affiliation(s)
- Shengjie Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Chang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical UniversityYouyi Road 1, Yuzhong District, Chongqing, China
| | - Ai Zhao
- Department of Social Medicine and Health Education, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Meichen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Wenzhi Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Jian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Hao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking UniversityXueyuan Road 38, Haidian District, Beijing, China
| |
Collapse
|
65
|
Tauzin AS, Pereira MR, Van Vliet LD, Colin PY, Laville E, Esque J, Laguerre S, Henrissat B, Terrapon N, Lombard V, Leclerc M, Doré J, Hollfelder F, Potocki-Veronese G. Investigating host-microbiome interactions by droplet based microfluidics. MICROBIOME 2020; 8:141. [PMID: 33004077 PMCID: PMC7531118 DOI: 10.1186/s40168-020-00911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- CAPES Foundation, Ministry of Education of Brazil, BrasÍlia, DF, 70040-020, Brazil
| | - Liisa D Van Vliet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Drop-Tech, Canterbury Court, Cambridge, CB4 3QU, UK
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Elisabeth Laville
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Jeremy Esque
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Sandrine Laguerre
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Terrapon
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Marion Leclerc
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
- Metagenopolis, INRAE, F-78350, Jouy-en-Josas, France
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
66
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
67
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
68
|
Daly RM, Gianoudis J, De Ross B, O'Connell SL, Kruger M, Schollum L, Gunn C. Effects of a multinutrient-fortified milk drink combined with exercise on functional performance, muscle strength, body composition, inflammation, and oxidative stress in middle-aged women: a 4-month, double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 2020; 112:427-446. [PMID: 32469393 DOI: 10.1093/ajcn/nqaa126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multinutrient protein-enriched supplements are promoted to augment the effects of exercise on muscle mass and strength, but their effectiveness in middle-aged women, or whether there are any additional benefits to physical function, remains uncertain. OBJECTIVES We aimed to evaluate whether a multinutrient-fortified milk drink (MFMD) could enhance the effects of exercise on functional muscle power (stair climbing) in middle-aged women. Secondary aims were to evaluate the intervention effects on physical function, muscle strength, lean mass (LM), fat mass (FM), bone mineral content (BMC), muscle cross-sectional area (CSA), muscle density, balance, flexibility, aerobic fitness, inflammation, oxidative stress, bone and cartilage turnover, blood pressure, and blood lipids. METHODS In this 4-mo, double-blind, placebo-controlled, randomized trial, 244 women (45-65 y) participated in a multimodal resistance-type exercise program 3 d/wk, with random allocation to a twice-daily MFMD containing added protein, vitamin D, calcium, milk fat globule membrane (phospholipids and other bioactives), and other micronutrients (Ex + MFMD, n = 123) or an energy-matched placebo (Ex + placebo, n = 121). RESULTS A total of 216 women (89%) completed the study. After 4 mo, both groups experienced similar 3.6%-4.3% improvements in the primary outcomes of fast-pace 5- and 10-step stair ascent power. In contrast, Ex + MFMD experienced greater improvements in 5-step regular-pace stair descent time [net difference (95% CI): -0.09 s (-0.18, 0.00 s), P = 0.045], countermovement jump height [0.5 cm (0.04, 1.0 cm), P = 0.038], total body LM [0.3 kg (0.04, 0.60 kg), P = 0.020], FM [-0.6 kg (-1.0, -0.2 kg), P = 0.004], BMC [0.4% (0.1%, 0.6%), P = 0.020], muscle CSA [thigh: 1.8% (0.6%, 2.9%), P = 0.003; lower leg: 0.9% (0.3%, 1.6%), P = 0.005], balance eyes closed [3.3 s (1.1, 5.4 s), P = 0.005], 2-min step performance [8 steps (3, 12 steps), P = 0.003], and sit-and-reach flexibility [1.4 cm (0.6, 2.2 cm), P = 0.026]. MFMD did not enhance the effects of exercise on any measures of muscle strength, gait speed, dynamic balance, reaction time, or blood lipids, and there was no effect of either intervention on blood pressure, markers of inflammation, or cartilage turnover. Ex + placebo had a greater improvement in the oxidative stress marker protein carbonyls (P < 0.01). CONCLUSIONS In middle-aged women, daily consumption of an MFMD did not enhance the effects of a multimodal exercise program on the primary outcome of stair climbing ascent power, but did elicit greater improvements in multiple secondary outcomes including various other measures of functional performance, LM, muscle size, FM, balance, aerobic capacity, flexibility, and bone metabolism.This trial was registered at www.anzctr.org.au as ACTRN12617000383369.
Collapse
Affiliation(s)
- Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Jenny Gianoudis
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Belinda De Ross
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Stella L O'Connell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Marlena Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Linda Schollum
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| | - Caroline Gunn
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| |
Collapse
|
69
|
Dietary Oligofructose Alone or in Combination with 2'-Fucosyllactose Differentially Improves Recognition Memory and Hippocampal mRNA Expression. Nutrients 2020; 12:nu12072131. [PMID: 32709093 PMCID: PMC7400822 DOI: 10.3390/nu12072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2'-fucosyllactose (2'-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2'-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32-33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2'-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2'-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2'-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2'-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.
Collapse
|
70
|
Gupta UC, Gupta SC. Optimizing Modifiable and Lifestyle-related Factors in the Prevention of Dementia Disorders with Special Reference to Alzheimer, Parkinson and Autism Diseases. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190801120306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dementia is a syndrome and an umbrella term that encompasses Alzheimer, Parkinson and
autism diseases. These diseases are by far the most common cause of dementia; therefore this investigation
will chiefly include these disorders, with a limited discussion of few other disorders related
to dementia. Alzheimer’s disease (AD) is characterized by the accumulation of cerebral β-amyloid
plaques, tau proteins and memory loss; Parkinson by the deterioration of brain cells which regulate
the movement of body parts and produce dopamine; and autism by abnormalities of social disorder
and difficulty in communicating and forming relationships. Alzheimer’s disease and cognitive impairment
in dementia are age-related and manageable only with early diagnosis and prevention. Data
based on several decades of research has shown that the major factors responsible for the induction
of inflammation in dementia and many chronic diseases are infections, obesity, alcohol, radiation,
environmental pollutants, improper nutrition, lack of physical activity, depression, anxiety, genetic
factors, and sleep deprivation. There are some studied preventive measures for dementia including
continued physical activity and consuming predominantly a plant-based Mediterranean diet comprising
olive oil and foods containing flavonoids and other phytochemicals having strong antioxidant and
anti-inflammatory properties and along with management of chronic conditions.
Collapse
Affiliation(s)
- Umesh C. Gupta
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, 440 University Avenue, Charlottetown, PE, Canada
| | - Subhas C. Gupta
- The Department of Plastic Surgery, Loma Linda University School of Medicine, Loma Linda, California 92354, United States
| |
Collapse
|
71
|
Palmano KP, MacGibbon AKH, Gunn CA, Schollum LM. In Vitro and In Vivo Anti-inflammatory Activity of Bovine Milkfat Globule (MFGM)-derived Complex Lipid Fractions. Nutrients 2020; 12:E2089. [PMID: 32679677 PMCID: PMC7400859 DOI: 10.3390/nu12072089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous health related properties have been reported for bovine milk fat globule membrane (MFGM) and its components. Here we present novel data on the in vitro and in vivo anti-inflammatory activity of various MFGM preparations which confirm and extend the concept of MFGM as a dietary anti-inflammatory agent. Cell-based assays were used to test the ability of MFGM preparations to modulate levels of the inflammatory mediators IL-1β, nitric oxide, superoxide anion, cyclo-oxygenase-2, and neutrophil elastase. In rat models of arthritis, using MFGM fractions as dietary interventions, the phospholipid-enriched MFGM isolates were effective in reducing adjuvant-induced paw swelling while there was a tendency for the ganglioside-enriched isolate to reduce carrageenan-induced rat paw oedema. These results indicate that the anti-inflammatory activity of MFGM, rather than residing in a single component, is contributed to by an array of components acting in concert against various inflammatory targets. This confirms the potential of MFGM as a nutritional intervention for the mitigation of chronic and acute inflammatory conditions.
Collapse
Affiliation(s)
- Kate P. Palmano
- Retired from Fonterra Research & Development Centre, Palmerston North 4442, New Zealand;
| | | | - Caroline A. Gunn
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| | - Linda M. Schollum
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| |
Collapse
|
72
|
Kim BH, Choi YH, Yang JJ, Kim S, Nho K, Lee JM. Identification of Novel Genes Associated with Cortical Thickness in Alzheimer’s Disease: Systems Biology Approach to Neuroimaging Endophenotype. J Alzheimers Dis 2020; 75:531-545. [DOI: 10.3233/jad-191175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center of Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
73
|
Toro-Campos R, Algarín C, Peirano P, Peña M, Murguia-Peniche T, Wu SS, Uauy R. Effect of feeding mode on infant growth and cognitive function: study protocol of the Chilean infant Nutrition randomized controlled Trial (ChiNuT). BMC Pediatr 2020; 20:225. [PMID: 32423392 PMCID: PMC7236373 DOI: 10.1186/s12887-020-02087-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/15/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A central aim for pediatric nutrition is to develop infant formula compositionally closer to human milk. Milk fat globule membranes (MFGM) have shown to have functional components that are found in human milk, suggesting that addition of bovine sources of MFGM (bMFGM) to infant formula may promote beneficial outcomes potentially helping to narrow the gap between infants who receive human breast milk or infant formula. The objective of the current study is to determine how the addition of bMFGM in infant formula and consumption in early infancy affects physical growth and brain development when compared to infants fed with a standard formula and a reference group of infants fed with mother's own milk. METHODS Single center, double-blind, and parallel randomized controlled trial. Planned participant enrollment includes: infants exclusively receiving breast milk (n = 200; human milk reference group; HM) and infants whose mothers chose to initiate exclusive infant formula feeding before 4 months of age (n = 340). The latter were randomized to receive one of two study formulas until 12 months of age: 1) cow's milk based infant formula that had docosahexaenoic (DHA) (17 mg/100 kcal) and arachidonic acid (ARA) (25 mg/100 kcal); 1.9 g protein/100 kcal; 1.2 mg Fe/100 kcal (Standard formula; SF) or 2) a similar infant formula with an added source of bovine MFGM (whey protein-lipid concentrate (Experimental formula; EF). Primary outcomes will be: 1) Physical growth (Body weight, length, and head circumference) at 730 days of age; and 2) Cognitive development (Auditory Event-Related Potential) at 730 days of age. Data will be analyzed for all participants allocated to each study feeding group. DISCUSSION The results of this study will complement the knowledge regarding addition of bMFGM in infant formula including support of healthy growth and improvement of neurodevelopmental outcomes. TRIAL REGISTRATION NCT02626143, registered on December 10th 2015.
Collapse
Affiliation(s)
- Rosario Toro-Campos
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Cecilia Algarín
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Patricio Peirano
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Marcela Peña
- Psychology Department, Pontific Catholic University, Santiago, Chile
| | | | - Steven S. Wu
- Medical Affairs, Mead Johnson Nutrition, Evansville, IN USA
| | - Ricardo Uauy
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| |
Collapse
|
74
|
Ica R, Petrut A, Munteanu CVA, Sarbu M, Vukelić Ž, Petrica L, Zamfir AD. Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4502. [PMID: 31961034 DOI: 10.1002/jms.4502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have developed here a superior approach based on high-resolution (HR) mass spectrometry (MS) for monitoring the changes occurring with development and aging in the composition and structure of cerebellar gangliosidome. The experiments were focused on the comparative screening and structural analysis of gangliosides expressed in fetal and aged cerebellum by Orbitrap MS with nanoelectrospray ionization (nanoESI) in the negative ion mode. The employed ultrahigh-resolution MS platform allowed the discrimination, without the need of previous separation, of 159 ions corresponding to 120 distinct species in the native ganglioside mixtures from fetal and aged cerebellar biopsies, many more than detected before, when MS platforms of lower resolution were employed. A number of gangliosides, in particular polysialylated belonging to GT, GQ, GP, and GS classes, modified by O-fucosylation, O-acetylation, or CH3 COO- were discovered here, for the first time in human cerebellum. These components, found differently expressed in fetal and aged tissues, indicated that the ganglioside profile in cerebellum is development stage- and age-specific. Following the fragmentation analysis by high-energy collision-induced dissociation (HCD) tandem MS (MS/MS), we have also observed that the intimate structure of certain compounds has not changed during the development and aging of the brain, an aspect which could open new directions in the investigation of ganglioside biomarkers in cerebellar tissue.
Collapse
Affiliation(s)
- Raluca Ica
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina Petrut
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Cristian V A Munteanu
- Molecular Cell Biology Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Mirela Sarbu
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | - Ligia Petrica
- Department of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D Zamfir
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department for Research, Development, Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
75
|
Cutillo G, Saariaho AH, Meri S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell Mol Immunol 2020; 17:313-322. [PMID: 32152553 PMCID: PMC7109116 DOI: 10.1038/s41423-020-0388-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are structurally and functionally polymorphic sialic acid containing glycosphingolipids that are widely distributed in the human body. They play important roles in protecting us against immune attacks, yet they can become targets for autoimmunity and act as receptors for microbes, like the influenza viruses, and toxins, such as the cholera toxin. The expression patterns of gangliosides vary in different tissues, during different life periods, as well as in different animals. Antibodies against gangliosides (AGA) can target immune attack e.g., against neuronal cells and neutralize their complement inhibitory activity. AGAs are important especially in acquired demyelinating immune-mediated neuropathies, like Guillain-Barré syndrome (GBS) and its variant, the Miller-Fisher syndrome (MFS). They can emerge in response to different microbial agents and immunological insults. Thereby, they can be involved in a variety of diseases. In addition, antibodies against GM3 were found in the sera of patients vaccinated with Pandemrix®, who developed secondary narcolepsy, strongly supporting the autoimmune etiology of the disease.
Collapse
Affiliation(s)
- Gianni Cutillo
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Humanitas University, Milan, Rozzano, Italy
| | - Anna-Helena Saariaho
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
- Humanitas University, Milan, Rozzano, Italy.
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
76
|
Brink LR, Herren AW, McMillen S, Fraser K, Agnew M, Roy N, Lönnerdal B. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J Dairy Sci 2020; 103:3002-3016. [DOI: 10.3168/jds.2019-17179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022]
|
77
|
Furukawa K, Ohmi Y, Yesmin F, Tajima O, Kondo Y, Zhang P, Hashimoto N, Ohkawa Y, Bhuiyan RH, Furukawa K. Novel Molecular Mechanisms of Gangliosides in the Nervous System Elucidated by Genetic Engineering. Int J Mol Sci 2020; 21:ijms21061906. [PMID: 32168753 PMCID: PMC7139306 DOI: 10.3390/ijms21061906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Acidic glycosphingolipids, i.e., gangliosides, are predominantly and consistently expressed in nervous tissues of vertebrates at high levels. Therefore, they are considered to be involved in the development and function of nervous systems. Recent studies involving genetic engineering of glycosyltransferase genes have revealed novel aspects of the roles of gangliosides in the regulation of nervous tissues. In this review, novel findings regarding ganglioside functions and their modes of action elucidated mainly by studies of gene knockout mice are summarized. In particular, the roles of gangliosides in the regulation of lipid rafts to maintain the integrity of nervous systems are reported with a focus on the roles in the regulation of neuro-inflammation and neurodegeneration via complement systems. In addition, recent advances in studies of congenital neurological disorders due to genetic mutations of ganglioside synthase genes and also in the techniques for the analysis of ganglioside functions are introduced.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan;
- Correspondence: ; Tel./Fax: +81-568-51-9512
| | - Yuhsuke Ohmi
- Department of Medical Technology, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan;
| | - Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan;
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan;
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan;
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, 3-18-5, Kuramoto-cho, Tokushima 770-8504, Japan;
| | - Yuki Ohkawa
- Department of Glycooncology, Osaka International Cancer Institute, Osaka 541-8567, Japan;
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan; (F.Y.); (O.T.); (P.Z.); (R.H.B.); (K.F.)
| |
Collapse
|
78
|
Skolnick J, Chou C, Miklavcic J. Insights into Novel Infant Milk Formula Bioactives . NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s192099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
79
|
Gralle M, Labrecque S, Salesse C, De Koninck P. Spatial dynamics of the insulin receptor in living neurons. J Neurochem 2020; 156:88-105. [PMID: 31886886 DOI: 10.1111/jnc.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Insulin signaling through the insulin receptor has long been studied in classic target organs, such as adipose tissue and skeletal muscle, where one of its effects is to increase glucose uptake. Insulin and insulin receptor are present in many areas of the brain, but the functions of brain insulin signaling outside feeding circuits are not well defined. It has been proposed that hippocampal insulin signaling is important for memory, that brain insulin signaling is deficient in Alzheimer's disease, and that intranasal insulin treatment improves cognition, but the mechanisms remain unclear and do not seem to involve increased glucose uptake by neurons. The molecular behavior of the insulin receptor itself is not well known in living neurons; therefore, we investigated the spatial dynamics of the insulin receptor on somatodendritic membranes of live rat hippocampal neurons in culture. Using single-molecule tracking of quantum dot-tagged insulin receptors and single-particle tracking photoactivation localization microscopy, we show that the insulin receptor is distributed over both dendritic shafts and spines. Using colocalization with synaptic markers, we also show that in contrast to the glutamate receptor subunit glutamate receptor subunit A1, the dynamics of the insulin receptor are not affected by association with excitatory synapses; however, the insulin receptor is immobilized by components of inhibitory synapses. The mobility of the insulin receptor is reduced both by low concentrations of the pro-inflammatory cytokine tumor necrosis factor α and by cholesterol depletion, suggesting an association with sphingolipid-rich membrane domains. On the other hand, the insulin receptor dynamics in hippocampal neurons are not affected by increased excitatory signaling. Finally, using real-time single-event quantification, we find evidence of strong insulin receptor exocytosis on dendritic shafts. Our results suggest an association of the neuronal insulin receptor with specific elements of the dendritic shaft, rather than excitatory synapses.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,CERVO Brain Research Center, Québec, QC, Canada
| | | | | | - Paul De Koninck
- CERVO Brain Research Center, Québec, QC, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
80
|
Dietary Control of Ganglioside Expression in Mammalian Tissues. Int J Mol Sci 2019; 21:ijms21010177. [PMID: 31887977 PMCID: PMC6981639 DOI: 10.3390/ijms21010177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are series of glycosphingolipids containing sialic acids in the oligosaccharide portion in mammalian cells. Gangliosides are a component of cellular membranes and play roles in modulating membrane function and the activity of membrane proteins. Abnormal expression and metabolism of gangliosides lead to the onset of several conditions in humans, such as neurologic diseases, diabetes, and cancer. A number of studies have been carried out to date to investigate the role of gangliosides in these diseases, and the effect of diet on tissue expression of gangliosides has recently become a topic of interest in this field. As gangliosides are degraded in the intestinal tract, ingested food-derived gangliosides are not directly absorbed into tissues in vivo, but the degradation products can be absorbed and affect ganglioside expression in the tissues. Recent studies have also shown that the expression of gangliosides in tissue cells can be indirectly induced by controlling the expression of ganglioside metabolism-related genes via the diet. These results indicate that dietary control can regulate the expression levels of gangliosides in tissues, which is expected to play a role in preventing and treating ganglioside-related diseases. This review introduces recent studies on the effect of diet on the expression of gangliosides in tissues, with a focus on our findings.
Collapse
|
81
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
82
|
Meng XY, Yau LF, Huang H, Chan WH, Luo P, Chen L, Tong TT, Mi JN, Yang Z, Jiang ZH, Wang JR. Improved approach for comprehensive profiling of gangliosides and sulfatides in rat brain tissues by using UHPLC-Q-TOF-MS. Chem Phys Lipids 2019; 225:104813. [DOI: 10.1016/j.chemphyslip.2019.104813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
|
83
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
84
|
Santos‐Silva A, Piña‐Rodrigues FM, Mermelstein CDS, Allodi S, Barradas PC, Cavalcante LA. A role for gangliosides and β1-integrin in the motility of olfactory ensheathing glia. J Anat 2019; 235:977-983. [PMID: 31373393 PMCID: PMC6794200 DOI: 10.1111/joa.13057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing glia (OEG) are found in the olfactory mucosa, nerve and bulb, and provide in vivo ensheathment for the unmyelinated olfactory axons within the central and peripheral nervous system domains. OEG cells are able to migrate long distances within the neuropil of the central nervous system. Because gangliosides such as 9-O-acetyl GD3 have crucial regulatory roles in neuronal migration during development, we analyzed whether OEG in organotypical cultures are revealed by anti-9-O-acetyl GD3 and/or gangliosides are recognized by the A2B5 antibody (G-A2B5), and whether these gangliosides are involved in OEG migration. Our results showed that all OEG migrating out of a section of olfactory bulb onto a laminin substrate bound to the 9-O-acetyl GD3 and A2B5 antibodies, and that 2',3'-cyclic nucleotide phosphodiesterase (CNPase) colocalized with 9-O-acetyl GD3 and with G-A2B5. Additionally, we showed that the immune blockade of 9-O-acetyl GD3 or G-A2B5 reduced the migration of OEG on laminin, and that 9-O-acetyl GD3 and G-A2B5 colocalized with the β1-integrin subunit. We also confirmed the phenotype of in-vitro-grown OEG cells derived from adult rats, showing that they express CNPase, and also α-smooth muscle actin, which is not expressed by Schwann cells. Our data showed that the gangliosides 9-O-acetyl GD3 and G-A2B5 participate in the migratory activity of OEG cells, and that the β1-integrin subunit colocalizes with these gangliosides. These results suggest a new role for β1-integrin and gangliosides in the polarized migration of OEG cells, and provide new information on the molecules controlling OEG motility and behavior.
Collapse
Affiliation(s)
- Alessandra Santos‐Silva
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
- Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroRJ, Brazil
| | - Felipe Márquez Piña‐Rodrigues
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Penha C. Barradas
- Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroRJ, Brazil
| | - Leny A. Cavalcante
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| |
Collapse
|
85
|
Quin C, Gibson DL. Dietary Fatty Acids and Host-Microbial Crosstalk in Neonatal Enteric Infection. Nutrients 2019; 11:E2064. [PMID: 31484327 PMCID: PMC6770655 DOI: 10.3390/nu11092064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human milk is the best nutritional choice for infants. However, in instances where breastfeeding is not possible, infant formulas are used as alternatives. While formula manufacturers attempt to mimic the performance of human breast milk, formula-fed babies consistently have higher incidences of infection from diarrheal diseases than those breastfed. Differences in disease susceptibility, progression and severity can be attributed, in part, to nutritional fatty acid differences between breast milk and formula. Despite advances in our understanding of breast milk properties, formulas still present major differences in their fatty acid composition when compared to human breast milk. In this review, we highlight the role of distinct types of dietary fatty acids in modulating host inflammation, both directly and through the microbiome-immune nexus. We present evidence that dietary fatty acids influence enteric disease susceptibility and therefore, altering the fatty acid composition in formula may be a potential strategy to improve infectious outcomes in formula-fed infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, Okanagan Campus, University of British Columbia, Okanagan Campus ASC 386, 3187 University Way, Kelowna, BC V1V 1V7, Canada
| | - Deanna L Gibson
- Department of Biology, Okanagan Campus, University of British Columbia, Okanagan Campus ASC 386, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
86
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
87
|
Sarbu M, Ica R, Petrut A, Vukelić Ž, Munteanu CVA, Petrescu AJ, Zamfir AD. Gangliosidome of human anencephaly: A high resolution multistage mass spectrometry study. Biochimie 2019; 163:142-151. [PMID: 31201844 DOI: 10.1016/j.biochi.2019.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Widely dispersed throughout the entire body tissues, gangliosides (GGs) are essential components of neuronal cell membranes, where exhibit a vital role in neuronal function and brain development, directly influencing the neural tube formation, neurogenesis, neurotransmission, etc. Due to several factors, partial or complete closing faults of the fetal neural tube may occur in the first trimester of pregnancy, generating a series of neural tube defects (NTD), among which anencephaly. The absence in anencephaly of the forebrain and skull bones determines the exposure to the amniotic fluid of the remaining brain tissue and the spinal cord, causing the degeneration of the nervous system tissue. Based on the previously achieved information related to the direct alteration of neural development with deficient concentration of several GGs, a systematic and comparative mass spectrometry (MS) mapping assay on GGs originating from fetuses in different intrauterine developmental stages, i.e. the 29th (denoted An29), 35th (An35) and the 37th (An37) gestational weeks was here conducted. Our approach, based on Orbitrap MS under high sensitivity, resolution and mass accuracy conditions, enabled for the first time the nanoelectrospray ionization, detection and identification of over 150 glycoforms, mainly novel, polysialylated species. Such a pattern, specific for incipient developmental stages reliably documents the brain development stagnation, characteristic for anencephaly. Further, the fragmentation MS2-MS3 experiments by collision induced dissociation (CID) confirmed the incidence in all three samples of GT2(d18:1/16:2) as a potential biomarker. Therefore, this fingerprinting of the anencephalic gangliosidome may serve in development of approaches for routine screening and early diagnosis.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Alina Petrut
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Andrei J Petrescu
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; "Aurel Vlaicu" University of Arad, Arad, Romania.
| |
Collapse
|
88
|
Subaraja M, Vanisree AJ. Counter effects of Asiaticosids-D through putative neurotransmission on rotenone induced cerebral ganglionic injury in Lumbricus terrestris. IBRO Rep 2019; 6:160-175. [PMID: 31193360 PMCID: PMC6526298 DOI: 10.1016/j.ibror.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Asiaticoside-D (AD) was shown to efficacy of ganglionic degenerated Lumbricus terrestris as a pioneering observation in our earlier research. Though, extract molecular mechanisms of AD for degenerative diseases (DDs) remains largely unknown. We investigated the neuroprotective effects of AD against ROT in cerebral ganglions (CGs) of degenerative L. terrestris. Worms were exposed to 0.4 ppm ROT for 7 days were subjected to co- treatment with 15 ppm of AD. After, CGs was removed. The levels oxidant, non-antioxidant, antioxidant status, ganglioside, ceramide and ceramide glycanase (CGase) were estimated. The m-RNA levels of dopamine transporter (DAT), octopamine transporter (OAT), innexins-9 (inx-9), ionotropic glutamate receptor 3 (iGlu3), heat shock proteins (hsp70), XPRLamide neuropeptide precursor, tyramine beta-hydroxylase (tbh-1) and β- adrenergic receptor kinase-2 (β-ARK2-3) by semi-qRT- PCR. The expression pattern of tyramine beta hydroxylase (TBH), glutamate receptor (iGluR), serotonin transporter (SERT), dopamine transporters (DAT), nerve growth factors (NGF), cytochrome C oxidase (COC), NADH dehydogenase subunit-1 (ND-1), neurotrophin receptor p75 (p75NTR), neuronal nitric oxiside synthase (nNOs) interleukin 1- beta (IL1-β) and tumor necrosis factor alpha (TNF-α) by western blotting. Glutaminergic, serotogenic and dopaminergic toxicity variations were also performed. The levels of oxidant, non-antioxidant, antioxidant status, lipids, proteins and m-RNAs were significantly altered (p < 0.001) on ROT-induced (group II) and their levels were significantly changes (p < 0.05) by ROT+AD in CGs. The sensitive study plan concluded the neuroprotective effects of AD against ROT induced degeneration in worms and suggest that the AD deserves future studies for its use as an effective alternative medicine that could minimize the morbidity of ganglionic degenerative diseases patients.
Collapse
Key Words
- 5HT, serotonin
- AD, Asitiacoside-D
- AD’, Alzheimer disease
- ALS, amyotrophic lateral sclerosis
- Asitiacoside-D
- CGase, ceramide glycanase
- CGs, cerebral ganglions
- CNS, central nervous system
- COC, cytochrome C oxidase
- Cerebral ganglions
- DA, dopamine
- DAT, dopamine transporter
- DDs, degenerative diseases
- GABARB, gama amninobutric acids -B receptor
- GDD, ganglionic degenerative disease
- HD, Huntington disease
- IL1β, interleukin-1beta
- Inx-9, innexins-9
- Lumbricus terrestris
- ND, neurodegeneration
- ND-1, NADH dehydogenase subunite-1
- NGF, nerve growth factors
- NS, nervous system
- NT, neurotransmission
- NTs, neurotransmitters
- Neurotransmission pathway
- OAT, octopamine transporter
- P75NTR, P75 neurotrophin receptor
- PD, Parkinson’s disease
- ROT, rotenone
- Rotenone
- SERT, serotonin transporter
- TBH, tyramine beta-hydroxylase
- TNF-α, tumour necrosis factor-α
- XPRL amide NP, XPR Lamide neuropeptide precursor
- iGlu3, ionotropic glutamate receptor 3
- nNOS, neuronal niticoxide synthase
- Βeta-ARK2–3, β- adrenergic receptor kinase-2
Collapse
Affiliation(s)
- Mamangam Subaraja
- Department of Biochemistry, University of Madras, Guindy Campus, Tamil Nadu, Chennai, 600 025, India
| | | |
Collapse
|
89
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
90
|
Gaspar R, Pallbo J, Weininger U, Linse S, Sparr E. Reprint of “Ganglioside lipids accelerate α-synuclein amyloid formation”. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:508-518. [DOI: 10.1016/j.bbapap.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
|
91
|
Brink LR, Gueniot JP, Lönnerdal B. Effects of milk fat globule membrane and its various components on neurologic development in a postnatal growth restriction rat model. J Nutr Biochem 2019; 69:163-171. [PMID: 31096073 DOI: 10.1016/j.jnutbio.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Milk fat globule membrane (MFGM) is a component of breast milk that consists of glycosylated membrane-bound proteins, polar lipids and carbohydrates originating from the mammary gland plasma membrane. A commercially available bovine MFGM added to infant formula has been shown to improve cognitive development in infants at 12 months of age. OBJECTIVE Considering that MFGM is a complex mixture, our aim was to determine which component(s) may be leading to these cognitive outcomes. METHODS Growth-restricted rat pups were supplemented with one of five treatments: (a) bovine MFGM, (b) bovine phospholipid concentrate (PL), (c) sialic acid (SIA) at 200 mg/kg body weight (bw) SIA100, (d) SIA at 2 mg/kg bw and (e) nonfat milk as control. Pups were randomized, cross-fostered into litters of 17 pups per dam and supplemented from postnatal day (PD) 2 to PD 21. The following behavioral tests were performed at adulthood: T-Maze Spontaneous Alternation, Novel Object Recognition and Morris Water Maze. Hippocampus was isolated at PD14 and PD21. Expression of four genes were measured including brain-derived neurotrophic factor (BDNF), dopamine receptor 1, (Drd1), glutamate receptor (GluR-1) and ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 4 (St8Sia4). Following behavioral testing, brains were collected for nonbiased stereology. RESULTS Increased expression of genes due to supplementation was most pronounced at the PD14 time point. The MFGM group exhibited higher T-Maze scores compared to the SIA group (P=.01), whereas the SIA100 group visited the novel object more frequently than the MFGM group in the Novel Object test (P=.02). No differences due to supplementation were found in the Morris Water Maze or nonbiased stereology, CONCLUSIONS: In this trial, MFGM, compared to its individual components, had the largest impact on neurodevelopment in rat pups through up-regulation of genes and improved T-Maze scores compared to the SIA group.
Collapse
|
92
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
93
|
Gil-Tommee C, Vidal-Martinez G, Annette Reyes C, Vargas-Medrano J, Herrera GV, Martin SM, Chaparro SA, Perez RG. Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp Neurol 2019; 311:265-273. [PMID: 30393144 PMCID: PMC6319267 DOI: 10.1016/j.expneurol.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/14/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Carolina Gil-Tommee
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - C Annette Reyes
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Gloria V Herrera
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Silver M Martin
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Stephanie A Chaparro
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA..
| |
Collapse
|
94
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
95
|
Virgolini MJ, Feliziani C, Cambiasso MJ, Lopez PH, Bollo M. Neurite atrophy and apoptosis mediated by PERK signaling after accumulation of GM2-ganglioside. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:225-239. [PMID: 30389374 DOI: 10.1016/j.bbamcr.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.
Collapse
Affiliation(s)
- María José Virgolini
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Universidad Nacional de Villa María, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo H Lopez
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
96
|
Figueroa-Lozano S, de Vos P. Relationship Between Oligosaccharides and Glycoconjugates Content in Human Milk and the Development of the Gut Barrier. Compr Rev Food Sci Food Saf 2018; 18:121-139. [DOI: 10.1111/1541-4337.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
97
|
Gaspar R, Pallbo J, Weininger U, Linse S, Sparr E. Ganglioside lipids accelerate α-synuclein amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30116-X. [PMID: 30077783 PMCID: PMC6121081 DOI: 10.1016/j.bbapap.2018.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions. Although the extent of this catalytic effect was slightly higher for gangliosides, the results imply that charge interactions are more important than headgroup chemistry in triggering aggregation. In support of this idea, uncharged lipids with large headgroups were not found to induce any conformational change and only weakly catalyse aggregation. Intriguingly, aggregation was also triggered by free ganglioside headgroups, while these caused no conformational change of α-synuclein monomers. Our data reveal that partially folded α-synuclein helical intermediates are not required species in triggering of α-synuclein aggregation.
Collapse
Affiliation(s)
- Ricardo Gaspar
- Departments of Physical-Chemistry, Lund University, Sweden; Biochemistry and Structural Biology, Lund University, Sweden
| | - Jon Pallbo
- Departments of Physical-Chemistry, Lund University, Sweden
| | - Ulrich Weininger
- Institute of Physics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Sweden
| | - Emma Sparr
- Departments of Physical-Chemistry, Lund University, Sweden.
| |
Collapse
|
98
|
Dietary Sialyllactose Does Not Influence Measures of Recognition Memory or Diurnal Activity in the Young Pig. Nutrients 2018; 10:nu10040395. [PMID: 29570610 PMCID: PMC5946180 DOI: 10.3390/nu10040395] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/05/2023] Open
Abstract
Sialic acid (SA) is an integral component of gangliosides and signaling molecules in the brain and its dietary intake may support cognitive development. We previously reported that feeding sialyllactose, a milk oligosaccharide that contains SA, alters SA content and diffusivity in the pig brain. The present research sought to expand upon such results and describe the effects of feeding sialyllactose on recognition memory and sleep/wake activity using a translational pig model. Pigs were provided ad libitum access to a customized milk replacer containing 0 g/L or 380 g/L of sialyllactose from postnatal day (PND) 2-22. Beginning on PND 15, pigs were fitted with accelerometers to track home-cage activity and testing on the novel object recognition task began at PND 17. There were no significant effects of diet on average daily body weight gain, average daily milk intake, or the gain-to-feed ratio during the study (all p ≥ 0.11). Pigs on both diets were able to display recognition memory on the novel object recognition task (p < 0.01), but performance and exploratory behavior did not differ between groups (all p ≥ 0.11). Total activity and percent time spent sleeping were equivalent between groups during both day and night cycles (all p ≥ 0.56). Dietary sialyllactose did not alter growth performance of young pigs, and there was no evidence that providing SA via sialyllactose benefits the development of recognition memory or gross sleep-related behaviors.
Collapse
|
99
|
Olsen ASB, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 2018; 7:rsob.170069. [PMID: 28566300 PMCID: PMC5451547 DOI: 10.1098/rsob.170069] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are highly enriched in the nervous system where they are pivotal constituents of the plasma membranes and are important for proper brain development and functions. Sphingolipids are not merely structural elements, but are also recognized as regulators of cellular events by their ability to form microdomains in the plasma membrane. The significance of such compartmentalization spans broadly from being involved in differentiation of neurons and synaptic transmission to neuronal–glial interactions and myelin stability. Thus, perturbations of the sphingolipid metabolism can lead to rearrangements in the plasma membrane, which has been linked to the development of various neurological diseases. Studying microdomains and their functions has for a long time been synonymous with studying the role of cholesterol. However, it is becoming increasingly clear that microdomains are very heterogeneous, which among others can be ascribed to the vast number of sphingolipids. In this review, we discuss the importance of microdomains with emphasis on sphingolipids in brain development and function as well as how disruption of the sphingolipid metabolism (and hence microdomains) contributes to the pathogenesis of several neurological diseases.
Collapse
Affiliation(s)
- Anne S B Olsen
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
100
|
Hunter M, Demarais NJ, Faull RLM, Grey AC, Curtis MA. Layer-specific lipid signatures in the human subventricular zone demonstrated by imaging mass spectrometry. Sci Rep 2018; 8:2551. [PMID: 29416059 PMCID: PMC5803191 DOI: 10.1038/s41598-018-20793-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
The subventricular zone is a key site of adult neurogenesis and is also implicated in neurodegenerative diseases and brain cancers. In the subventricular zone, cell proliferation, migration and differentiation of nascent stem cells and neuroblasts are regulated at least in part by lipids. The human subventricular zone is distinctly layered and each layer contains discrete cell types that support the processes of neuroblast migration and neurogenesis. We set out to determine the lipid signatures of each subventricular layer in the adult human brain (n = 4). We utilised matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry and liquid chromatography-mass spectrometry to characterise the lipidome of the subventricular zone, with histology and microscopy used for identifying anatomical landmarks. Our findings showed that the subventricular zone was rich in sphingomyelins and phosphatidylserines but deficient in phosphatidylethanolamines. The ependymal layer had an abundance of phosphatidylinositols, whereas the myelin layer was rich in sulfatides and triglycerides. The hypocellular layer showed enrichment of sphingomyelins. No discrete lipid signature was seen in the astrocytic ribbon. The biochemical functions of these lipid classes are consistent with the localisation we observed within the SVZ. Our study may, therefore, shed new light on the role of lipids in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Mandana Hunter
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Angus C Grey
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand. .,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|