51
|
Role of GTPases in the Regulation of Mitochondrial Dynamics in Alzheimer's Disease and CNS-Related Disorders. Mol Neurobiol 2018; 56:4530-4538. [PMID: 30338485 DOI: 10.1007/s12035-018-1397-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Data obtained from several studies have shown that mitochondria are involved and play a central role in the progression of several distinct pathological conditions. Morphological alterations and disruptions on the functionality of mitochondria may be related to metabolic and energy deficiency in neurons in a neurodegenerative disorder. Several recent studies demonstrate the linkage between neurodegeneration and mitochondrial dynamics in the spectrum of a promising era called precision mitochondrial medicine. In this review paper, an analysis of the correlation between mitochondria, Alzheimer's disease, and other central nervous system (CNS)-related disorders like the Parkinson's disease and the autism spectrum disorder is under discussion. The role of GTPases like the mfn1, mfn2, opa1, and dlp1 in mitochondrial fission and fusion is also under investigation, influencing mitochondrial population and leading to oxidative stress and neuronal damage.
Collapse
|
52
|
Interplay between NAD + and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2060-2067. [PMID: 30261291 DOI: 10.1016/j.bbadis.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl‑CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl‑CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP‑ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl‑CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.
Collapse
|
53
|
Sood A, Mehrotra A, Dhawan DK, Sandhir R. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke. Metab Brain Dis 2018; 33:1261-1274. [PMID: 29671210 DOI: 10.1007/s11011-018-0234-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.
Collapse
Affiliation(s)
- Abhilasha Sood
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Arpit Mehrotra
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Devinder K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
54
|
Martin LJ, Chang Q. DNA Damage Response and Repair, DNA Methylation, and Cell Death in Human Neurons and Experimental Animal Neurons Are Different. J Neuropathol Exp Neurol 2018; 77:636-655. [PMID: 29788379 PMCID: PMC6005106 DOI: 10.1093/jnen/nly040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders affecting individuals in infancy to old age elude interventions for meaningful protection against neurodegeneration, and preclinical work has not translated to humans. We studied human neuron responses to injury and death stimuli compared to those of animal neurons in culture under similar settings of insult (excitotoxicity, oxidative stress, and DNA damage). Human neurons were differentiated from a cortical neuron cell line and the embryonic stem cell-derived H9 line. Mouse neurons were differentiated from forebrain neural stem cells and embryonic cerebral cortex; pig neurons were derived from forebrain neural stem cells. Mitochondrial morphology was different in human and mouse neurons. Human and mouse neurons challenged with DNA-damaging agent camptothecin showed different chromatin condensation, cell death, and DNA damage sensor activation. DNA damage accumulation and repair kinetics differed among human, mouse, and pig neurons. Promoter CpG island methylation microarrays showed significant differential DNA methylation in human and mouse neurons after injury. Therefore, DNA damage response, DNA repair, DNA methylation, and autonomous cell death mechanisms in human neurons and experimental animal neurons are different.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology
- Pathobiology Graduate Training Program
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qing Chang
- Department of Pathology, Division of Neuropathology
| |
Collapse
|
55
|
Khodadadian A, Hemmati-Dinarvand M, Kalantary-Charvadeh A, Ghobadi A, Mazaheri M. Candidate biomarkers for Parkinson's disease. Biomed Pharmacother 2018; 104:699-704. [PMID: 29803930 DOI: 10.1016/j.biopha.2018.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common diseases associated with neurodegenerative disorders. It affects 3% to 4% of the population over the age of 65 years. The neuropathological dominant symptoms of PD include the destruction of neurons in the substantia nigra, thus causing striatal dopamine deficiency and the presence of intracellular inclusions that contain aggregates of α‑synuclein. The premature form of PD is familial and is known as early onset PD (EOPD). It involves a small portion of patients with PD, displaying symptoms before the age of 60 years. Although individuals who are suffering from the EOPD may have genetic changes, the molecular mechanisms that differentiate between EOPD and late onset PD (LOPD) remain unclear. Owing to the complexity of discriminating between the different forms, treatment, and management of PD, the identification of biomarkers for early diagnosis seems necessary. For this purpose, many studies have been undertaken for the introduction of several biological molecules through various techniques as potential biomarkers. The main focus of these studies was on α-synuclein. However, there are other molecules that are potential biomarkers, such as microRNAs and peptoids. In this article, we tried to review some of these studies.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ghobadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
56
|
Abstract
Repeat expansions in the promoter region of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and related disorders of the ALS/frontotemporal lobar degeneration (FTLD) spectrum. Remarkable clinical heterogeneity among patients with a repeat expansion has been observed, and genetic anticipation over different generations has been suggested. Genetic factors modifying the clinical phenotype have been proposed, including genetic variation in other known disease genes, the genomic context of the C9orf72 repeat, and expanded repeat size, which has been estimated between 45 and several thousand units. The role of variability in normal and expanded repeat sizes for disease risk and clinical phenotype is under debate. Different pathogenic mechanisms have been proposed, including loss of function, RNA toxicity, and dipeptide repeat (DPR) protein toxicity resulting from abnormal translation of the expanded repeat, but the major mechanism is yet unclear.
Collapse
|
57
|
Menzie-Suderam JM, Mohammad-Gharibani P, Modi J, Ma Z, Tao R, Prentice H, Wu JY. Granulocyte-colony stimulating factor protects against endoplasmic reticulum stress in an experimental model of stroke. Brain Res 2018; 1682:1-13. [DOI: 10.1016/j.brainres.2017.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
58
|
Abstract
With the ever-growing geriatric population, research on brain diseases such as dementia is more imperative now than ever. The most prevalent of all dementias is Alzheimer's disease, a progressive neurodegenerative disease that presents with deficits in memory, cognition, motor skills, and a general decline in the quality of life. The social and economic burden associated with Alzheimer's disease is tremendous and is projected to grow even greater over the coming years. There is a specific need to elucidate and improve the treatments available, not only to alleviate the symptoms related to dementias such as Alzheimer's but also to prevent the formation of the disease. This is an effort that can be expedited and made more efficient by utilizing an animal model such as the zebrafish. This paper reviews the utility of zebrafish in Alzheimer's research by examining research on a sampling of the treatments available for the disease, specifically donepezil, memantine, and methylene blue. The human model and the shortcomings of the rodent model are also discussed.
Collapse
|
59
|
Abstract
Increasing research suggests that mitochondrial defects play a major role in Alzheimer's disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. 'Medullary corpuscle', which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD.
Collapse
|
60
|
Chi J, Xie Q, Jia J, Liu X, Sun J, Deng Y, Yi L. Integrated Analysis and Identification of Novel Biomarkers in Parkinson's Disease. Front Aging Neurosci 2018; 10:178. [PMID: 29967579 PMCID: PMC6016006 DOI: 10.3389/fnagi.2018.00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/24/2018] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a quite common neurodegenerative disorder with a prevalence of approximately 1:800-1,000 in subjects over 60 years old. The aim of our study was to determine the candidate target genes in PD through meta-analysis of multiple gene expression arrays datasets and to further combine mRNA and miRNA expression analyses to identify more convincing biological targets and their regulatory factors. Six included datasets were obtained from the Gene Expression Omnibus database by systematical search, including five mRNA datasets (150 substantia nigra samples in total) and one miRNA dataset containing 32 peripheral blood samples. A chip meta-analysis of five microarray data was conducted by using the metaDE package and 94 differentially expressed (DE) mRNAs were comprehensively obtained. And 19 deregulated DE miRNAs were obtained through the analysis of one miRNAs dataset by Qlucore Omics Explorer software. An interaction network formed by DE mRNAs, DE miRNAs, and important pathways was discovered after we analyzed the functional enrichment, protein-protein interactions, and miRNA targetome prediction analysis. In conclusion, this study suggested that five significantly downregulated mRNAs (MAPK8, CDC42, NDUFS1, COX4I1, and SDHC) and three significantly downregulated miRNAs (miR-126-5p, miR-19-3p, and miR-29a-3p) were potentially useful diagnostic markers in clinic, and lipid metabolism (especially non-alcoholic fatty liver disease pathway) and mitochondrial dysregulation may be the keys to biochemically detectable molecular defects. However, the role of these new biomarkers and molecular mechanisms in PD requires further experiments in vivo and in vitro and further clinical evidence.
Collapse
Affiliation(s)
- Jieshan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Jingjing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaoma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanfei Deng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- National Clinical Research Center for Geriatric Diseases Shenzhen Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- National Clinical Research Center for Geriatric Diseases Shenzhen Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Li Yi,
| |
Collapse
|
61
|
Jodeiri Farshbaf M, Kiani-Esfahani A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion 2017; 42:77-83. [PMID: 29225013 DOI: 10.1016/j.mito.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Onset of Alzheimer's, Parkinson's and Huntington's diseases as neurodegenerative disorders is increased by age. Alleviation of clinical symptoms and protection of neurons against degeneration are the main aspects of researches to establish new therapeutic strategies. Many studies have shown that mitochondria play crucial roles in high energy demand tissues like brain. Impairments in mitochondrial activity and physiology can makes neurons vulnerable to stress and degeneration. Succinate dehydrogenase (SDH) connects tricarboxylic cycle to the electron transport chain. Therefore, dysfunction of the SDH could impair mitochondrial activity, ATP generation and energy hemostasis in the cell. Exceed lipid synthesis, induction of the excitotoxicity in neurodegenerative disorders could be controlled by SDH through direct and indirect mechanism. In addition, mutation in SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as a key regulator in neuroprotection. This review will present recent findings which are about SDH activity and related pathways which could play important roles in neuronal survival. Additionally, we will discuss about all possibilities which candidate SDH as a neuroprotective agent.
Collapse
Affiliation(s)
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 816513-1378, Iran
| |
Collapse
|
62
|
Liu XL, Wang YD, Yu XM, Li DW, Li GR. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review). Int J Mol Med 2017; 41:615-623. [PMID: 29207041 DOI: 10.3892/ijmm.2017.3255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are important organelles in virtually all eukaryotic cells, and are involved in a wide range of physiological and pathophysiological processes. Besides the generation of cellular energy in the form of adenosine triphosphate, mitochondria are also involved in calcium homeostasis, reactive oxygen species production and the activation of the intrinsic cell death pathway, thus determining cell survival and death. Mitochondrial abnormalities have been implicated in a wide range of disorders, including neurodegenerative disease such as Parkinson's disease (PD), and considered as a primary cause and central event responsible for the progressive loss of dopaminergic neurons in PD. Thus, reversion or attenuation of mitochondrial dysfunction should alleviate the severity or progression of the disease. The present review systematically summarizes the possible mechanisms associated with mitochondria‑mediated dopaminergic neuron damage in PD, in an attempt to elucidate the requirement for further studies for the development of effective PD treatments.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 132021, P.R. China
| | - Ying-Di Wang
- Department of Urinary Surgery, The Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Xiu-Ming Yu
- Department of Immunology, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
63
|
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci 2017; 10:352. [PMID: 29163029 PMCID: PMC5671573 DOI: 10.3389/fnmol.2017.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ahmad R. Arshad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Siti A. Sulaiman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Amalia A. Saperi
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| |
Collapse
|
64
|
Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson's disease model. Bioorg Med Chem Lett 2017; 27:5207-5212. [PMID: 29089232 DOI: 10.1016/j.bmcl.2017.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022]
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a flavonoid compound isolated from Flos Chrysanthemi Indici, chrysanthemum, safflower, and Calamintha and Linaria species has been shown to have anti-cancer activity, indicating its potential clinical value in cancer treatment. In this study, we sought to study the potentials of acacetin in preventing human dopaminergic neuronal death via inhibition of 6-hydroxydopamine (6-OHDA)-induced neuronal cell death in the SH-SY5Y cells. Our results suggest that acacetin was effective in preventing 6-OHDA-induced neuronal cell death through regulation of mitochondrial-mediated cascade apoptotic cell death. Pretreatment with acacetin significantly inhibited neurotoxicity and neuronal cell death through reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) dysfunction. Acacetin also markedly acted on key molecules in apoptotic cell death pathways and reduced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β). These results suggested that acacetin could inhibit 6-OHDA-induced neuronal cell death originating from ROS-mediated cascade apoptosis pathway. Thus, the results of our study suggest that acacetin is a potent therapeutic agent for PD progression.
Collapse
|
65
|
Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, Wall RV, Hone E, Deng L, Dheer Y, Abbasi M, Rezaeian M, Braidy N, You Y, Salekdeh GH, Haynes PA, Molloy MP, Martins R, Cristea IM, Gygi SP, Graham SL, Gupta VK. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep 2017; 7:12685. [PMID: 28978942 PMCID: PMC5627288 DOI: 10.1038/s41598-017-12858-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 12/05/2022] Open
Abstract
Glaucoma is a chronic disease that shares many similarities with other neurodegenerative disorders of the central nervous system. This study was designed to evaluate the association between glaucoma and other neurodegenerative disorders by investigating glaucoma-associated protein changes in the retina and vitreous humour. The multiplexed Tandem Mass Tag based proteomics (TMT-MS3) was carried out on retinal tissue and vitreous humour fluid collected from glaucoma patients and age-matched controls followed by functional pathway and protein network interaction analysis. About 5000 proteins were quantified from retinal tissue and vitreous fluid of glaucoma and control eyes. Of the differentially regulated proteins, 122 were found linked with pathophysiology of Alzheimer’s disease (AD). Pathway analyses of differentially regulated proteins indicate defects in mitochondrial oxidative phosphorylation machinery. The classical complement pathway associated proteins were activated in the glaucoma samples suggesting an innate inflammatory response. The majority of common differentially regulated proteins in both tissues were members of functional protein networks associated brain changes in AD and other chronic degenerative conditions. Identification of previously reported and novel pathways in glaucoma that overlap with other CNS neurodegenerative disorders promises to provide renewed understanding of the aetiology and pathogenesis of age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia. .,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yunqi Wu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Liting Deng
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mahdie Rezaeian
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Ralph Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
66
|
CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel) 2017; 8:genes8060148. [PMID: 28545252 PMCID: PMC5485512 DOI: 10.3390/genes8060148] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a major epigenetic mark with important roles in genetic regulation. Methylated cytosines are found primarily at CpG dinucleotides, but are also found at non-CpG sites (CpA, CpT, and CpC). The general functions of CpG and non-CpG methylation include gene silencing or activation depending on the methylated regions. CpG and non-CpG methylation are found throughout the whole genome, including repetitive sequences, enhancers, promoters, and gene bodies. Interestingly, however, non-CpG methylation is restricted to specific cell types, such as pluripotent stem cells, oocytes, neurons, and glial cells. Thus, accumulation of methylation at non-CpG sites and CpG sites in neurons seems to be involved in development and disease etiology. Here, we provide an overview of CpG and non-CpG methylation and their roles in neurological diseases.
Collapse
|
67
|
|
68
|
Olajide OJ, Ugbosanmi AT, Enaibe BU, Ogunrinola KY, Lewu SF, Asogwa NT, Akapa T, Imam A, Ibrahim A, Gbadamosi IT, Yawson EO. Cerebellar Molecular and Cellular Characterization in Rat Models of Alzheimer's Disease: Neuroprotective Mechanisms of Garcinia Biflavonoid Complex. Ann Neurosci 2017; 24:32-45. [PMID: 28827919 DOI: 10.1159/000464421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent evidences suggest that cerebellar degeneration may be associated with the development of Alzheimer's disease (AD). However, previous reports were mainly observational, lacking substantial characterization of cellular and molecular cerebellar features during AD progression. PURPOSE This study is aimed at characterizing the cerebellum in rat models of AD and assessing the corresponding neuroprotective mechanisms of Garcinia biflavonoid complex (GBc). METHODS Male Wistar rats were grouped and treated alone or in combination with PBS (ad libitum)/day, corn oil (CO; 2 mL/kgBw/day), GBc (200 mg/kgBw/day), sodium azide (NaN3) (15 mg/kgBw/day) and aluminium chloride (AlCl3) (100 mg/kgBw/day). Groups A and B received PBS and CO, respectively; C received GBc; D received NaN3; E received AlCl3; F received NaN3 then GBc subsequently; G received AlCl3 then GBc subsequently; H received NaN3 and GBc simultaneously while I received AlCl3 and GBc simultaneously. Following treatments, cerebellar cortices were processed for histology, immunohistochemistry and colorimetric assays. RESULTS Our data revealed that cryptic granule neurons and pyknotic Purkinje cell bodies (characterized by short dendritic/axonal processes) correspond to indistinctly demarcated cerebellar layers in rats treated with AlCl3 and NaN3. These correlates, with observed hypertrophic astrogliosis, increased the neurofilament deposition, depleted the antioxidant system-shown by expressed superoxide dismutase and glutathione peroxidase, and cerebellar glucose bioenergetics dysfunction-exhibited in assayed lactate dehydrogenase and glucose-6-phosphate dehydrogenase. We further showed that GBc reverses cerebellar degeneration through modulation of neurochemical signaling pathways and stressor molecules that underlie AD pathogenesis. CONCLUSION Cellular, molecular and metabolic neurodegeneration within the cerebellum is associated with AlCl3 and NaN3-induced AD while GBc significantly inhibits corresponding neurotoxicity and is more efficacious when pre-administered.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Anita Temi Ugbosanmi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Bernard Ufuoma Enaibe
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde Yomi Ogunrinola
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Susan Folashade Lewu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Tosan Akapa
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulmumin Ibrahim
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Emmanuel Olusola Yawson
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
69
|
Singh NS, Habicht KL, Moaddel R, Shimmo R. Development and characterization of mitochondrial membrane affinity chromatography columns derived from skeletal muscle and platelets for the study of mitochondrial transmembrane proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:144-148. [PMID: 28475928 DOI: 10.1016/j.jchromb.2017.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Mitochondrial membrane fragments from human platelets and monkey skeletal muscles were successfully immobilized onto immobilized artificial membrane chromatographic support for the first time, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. These columns were validated by characterization of translocator protein (TSPO), where multiple concentrations of dipyridamole were run and the binding affinities (Kd) determined. Further, the relative ranking data of TSPO ligands was consistent with previously reported rankings for both, the platelet (MMAC-Platelet) and the skeletal muscle (MMAC-Muscle) column (dipyridamole>PK11195>protoporphyrin IX>rotenone). The functional immobilization of the F-ATPase/ATP synthase was demonstrated on MMAC-Muscle column. Online hydrolysis of ATP to ADP and synthesis of ATP from ADP were both demonstrated on the MMAC-Muscle column. Hydrolysis of ATP to ADP was inhibited by oligomycin A with an IC50 of 40.2±13.5nM (∼60% reduction in ATP hydrolysis, p<0.001), similar to previously reported values. Additionally, the Michaelis-Menten constant (Km) for ADP was found to be 1525±461μM based on the on column dose-dependent increase in ATP production.
Collapse
Affiliation(s)
- Nagendra Surendra Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, 21224 Baltimore, MD, USA
| | - Kaia-Liisa Habicht
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, 21224 Baltimore, MD, USA; School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, 21224 Baltimore, MD, USA
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| |
Collapse
|
70
|
Nguyen TMD. Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions. Front Cell Dev Biol 2017; 5:25. [PMID: 28386541 PMCID: PMC5362614 DOI: 10.3389/fcell.2017.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Physiologie de la Reproduction et des Comportements, INRANouzilly, France; Quy Nhon UniversityQuy Nhon, Vietnam
| |
Collapse
|
71
|
Włodarczyk A, Sonakowska L, Kamińska K, Marchewka A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska M. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca). PLoS One 2017; 12:e0173563. [PMID: 28282457 PMCID: PMC5345833 DOI: 10.1371/journal.pone.0173563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- University of Silesia, Department of Animal Histology and Embryology, Katowice, Poland
| | - Lidia Sonakowska
- University of Silesia, Department of Animal Histology and Embryology, Katowice, Poland
| | - Karolina Kamińska
- University of Silesia, Department of Animal Histology and Embryology, Katowice, Poland
| | - Angelika Marchewka
- University of Silesia, Department of Animal Histology and Embryology, Katowice, Poland
| | - Grażyna Wilczek
- University of Silesia, Department of Animal Physiology and Ecotoxicology, Katowice, Poland
| | - Piotr Wilczek
- Heart Prosthesis Institute, Bioengineering Laboratory, Zabrze, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | | |
Collapse
|
72
|
Abstract
Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca2+ homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| |
Collapse
|
73
|
Jimenez-Pacheco A, Franco JM, Lopez S, Gomez-Zumaquero JM, Magdalena Leal-Lasarte M, Caballero-Hernandez DE, Cejudo-Guillén M, Pozo D. Epigenetic Mechanisms of Gene Regulation in Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:255-275. [DOI: 10.1007/978-3-319-53889-1_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
74
|
Mantzavinos V, Alexiou A. Biomarkers for Alzheimer's Disease Diagnosis. Curr Alzheimer Res 2017; 14:1149-1154. [PMID: 28164766 PMCID: PMC5684784 DOI: 10.2174/1567205014666170203125942] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/07/2016] [Accepted: 01/30/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The dramatic increase in the population with dementia expected in the next decades is accompanied by the establishment of novel and innovated methods that will offer accurate and efficient detection of the disease in its early stages. While Alzheimer's disease is the most common cause of dementia, by the time it is typically diagnosed, substantial neuronal loss and neuropathological lesions can damage many brain regions. The aim of this study is to investigate the main risk factors that affect and increase Alzheimer's disease progression over time even in cases with no significant memory impairment present. Several potential markers are discussed such as oxidative stress, metal ions, vascular disorders, protein dysfunctions and alterations in the mitochondrial populations. CONCLUSION A multiparametric model of Alzheimer's biomarkers is presented according to the latest classification of the disease.
Collapse
Affiliation(s)
- Vasileios Mantzavinos
- Novel Global Community Educational Foundational, Australia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100Lamia, Greece
| | | |
Collapse
|
75
|
Hsueh KW, Chiou TW, Chiang SF, Yamashita T, Abe K, Borlongan CV, Sanberg PR, Huang A(YH, Lin SZ, Harn HJ. Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice. Neuropharmacology 2016; 108:152-60. [DOI: 10.1016/j.neuropharm.2016.03.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
|
76
|
Fayzullina S, Martin LJ. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2016; 75:889-902. [PMID: 27452406 DOI: 10.1093/jnen/nlw064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| | - Lee J Martin
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| |
Collapse
|
77
|
Martin LJ, Wong M. Enforced DNA repair enzymes rescue neurons from apoptosis induced by target deprivation and axotomy in mouse models of neurodegeneration. Mech Ageing Dev 2016; 161:149-162. [PMID: 27364693 DOI: 10.1016/j.mad.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
It is unknown whether DNA damage accumulation is an upstream instigator or secondary effect of the cell death process in different populations of adult postmitotic neurons in the central nervous system. In two different mouse models of injury-induced neurodegeneration characterized by relatively synchronous accumulation of mitochondria, oxidative stress, and DNA damage prior to neuronal apoptosis, we enforced the expression of human 8-oxoguanine DNA glycosylase (hOGG1) and human apurinic-apyrimidinic endonuclease-1/Ref1 (hAPE) using recombinant adenoviruses (Ad). Thalamic lateral geniculate neurons and lumbar spinal cord motor neurons were transduced by Ad-hOGG1 and Ad-hAPE injections into the occipital cortex and skeletal muscle, respectively, prior to their target deprivation- and axotomy-induced retrograde apoptosis. Enforced expression of hOGG1 and hAPE in thalamus and spinal cord was confirmed by western blotting and immunohistochemistry. In injured populations of neurons in thalamus and spinal cord, a DNA damage response (DDR) was registered, as shown by localization of phospho-activated p53, Rad17, and replication protein A-32 immunoreactivities, and this DDR was attenuated more effectively by enforced hAPE expression than by hOGG1 expression. Enforced expression of hOGG1 and hAPE significantly protected thalamic neurons and motor neurons from retrograde apoptosis induced by target deprivation and axotomy. We conclude that a DDR response is engaged pre-apoptotically in different types of injured mature CNS neurons and that DNA repair enzymes can regulate the survival of retrogradely dying neurons, suggesting that DNA damage and activation of DDR are upstream mechanisms for this form of adult neurodegeneration in vivo, thus identifying DNA repair as a therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
78
|
El-Horany HE, El-Latif RNA, ElBatsh MM, Emam MN. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson's Disease: Modulating Autophagy (Quercetin on Experimental Parkinson's Disease). J Biochem Mol Toxicol 2016; 30:360-9. [PMID: 27252111 DOI: 10.1002/jbt.21821] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/15/2023]
Abstract
Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death.
Collapse
Affiliation(s)
- Hemat E El-Horany
- Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | | | - Maha M ElBatsh
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Marwa N Emam
- Physiology Department, Faculty of Medicine, Tanta University, Egypt.
| |
Collapse
|
79
|
Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 2016; 11:e0147582. [PMID: 26844766 PMCID: PMC4741826 DOI: 10.1371/journal.pone.0147582] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022] Open
Abstract
The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.
Collapse
|
80
|
Dlamini Z, Tshidino SC, Hull R. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases. Int J Mol Sci 2015; 16:27171-90. [PMID: 26580598 PMCID: PMC4661875 DOI: 10.3390/ijms161126017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.
Collapse
Affiliation(s)
- Zodwa Dlamini
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban 4026, South Africa.
| | - Shonisani C Tshidino
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Polokwane 0727, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, Department of Life and Consumer Sciences, Florida Science Campus, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
81
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|
82
|
Xiang Q, Zhou WY, Hu WX, Wen Z, He D, Wu XM, Wei HP, Wang WD, Hu GZ. Neuroprotective effects of Rhizoma Dioscoreae polysaccharides against neuronal apoptosis induced by in vitro hypoxia. Exp Ther Med 2015; 10:2063-2070. [PMID: 26668596 PMCID: PMC4665171 DOI: 10.3892/etm.2015.2819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022] Open
Abstract
Rhizoma Dioscoreae polysaccharides (RDPS) are the primary active ingredient of Rhizoma Dioscoreae, which is a traditional Chinese medicine. RDPS have previously been shown to scavenge reactive oxygen species, and protect against D-galactose-induced mimetic aging. The present study aimed to investigate the neuroprotective effects of RDPS against hypoxia-induced neuronal cell apoptosis. Neuronal cells harvested from pregnant Sprague-Dawley rats were divided into groups, as follows: i) Normal control group; ii) hypoxia-induced apoptosis neuronal cell model; iii) 0.025 g/l RDPS-treated group; iv) 0.05 g/l RDPS-treated group; v) 0.1 g/l RDPS-treated group; and vi) 0.25 g/l RDPS treated group. Neuronal cell viability was investigated using an MTT assay, and neuronal cell apoptosis was analyzed using Annexin V-fluorescein isothiocyanate/propidium iodide double-staining, Hoechst 33342 fluorescent staining, Rhodamine 123 staining, polymerase chain reaction and immunocytochemical staining. The RDPS-treated neuronal cells exhibited improved viability, and decreased hypoxia-induced mitochondrial injury and apoptosis. In addition, the mRNA and protein expression levels of caspase-3 and B-cell lymphoma (Bcl)-2-associated X protein (Bax) were significantly downregulated, whereas the mRNA and protein expression levels of Bcl-2 were significantly upregulated, in the RDPS-treated hypoxic neurons, as compared with the apoptosis model (P<0.05). Furthermore, the ratio of Bcl-2 expression:Bax expression significantly increased following RDPS treatment, as compared with the apoptosis model (P<0.05). The results of the present study suggested that RDPS may attenuate hypoxia-induced neuronal cell apoptosis by altering the expression levels of key apoptosis-regulating proteins in hypoxic neurons.
Collapse
Affiliation(s)
- Qin Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Wen-Yun Zhou
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Wei-Xu Hu
- Department of Radiotherapy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhu Wen
- Department of Hematology, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, P.R. China
| | - Dan He
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Mu Wu
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Hui-Ping Wei
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Ding Wang
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-Zhu Hu
- Institute of Clinical Medical Sciences, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
83
|
Ortega-Martínez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015; 8:46. [PMID: 26379491 PMCID: PMC4549561 DOI: 10.3389/fnmol.2015.00046] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis is the process by which new neurons are generated in the brains of adults. Since its discovery 50 years ago, adult neurogenesis has been widely studied in the mammalian brain and has provided a new perspective on the pathophysiology of many psychiatric and neurodegenerative disorders, some of which affect memory. In this regard, adult hippocampal neurogenesis (AHN), which occurs in the subgranular zone (SGZ) of the dentate gyrus (DG), has been suggested to play a role in the formation and consolidation of new memories. This process involves many transcription factors, of which cyclic AMP (cAMP)-responsive element-binding protein (CREB) is a well-documented one. In the developing brain, CREB regulates crucial cell stages (e.g., proliferation, differentiation, and survival), and in the adult brain, it participates in neuronal plasticity, learning, and memory. In addition, new evidence supports the hypothesis that CREB may also participate in learning and memory through its involvement in AHN. This review examines the CREB family of transcription factors, including the different members and known signaling pathways. It highlights the role of CREB as a modulator of AHN, which could underlie its function in memory consolidation mechanisms.
Collapse
Affiliation(s)
- Sylvia Ortega-Martínez
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| |
Collapse
|
84
|
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2015; 7:376-85. [PMID: 25774178 PMCID: PMC4350122 DOI: 10.3969/j.issn.1673-5374.2012.05.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/22/2011] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2−) and hydroxyl radical (OH−), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| | - Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| |
Collapse
|
85
|
Meramat A, Rajab NF, Shahar S, Sharif R. Cognitive impairment, genomic instability and trace elements. J Nutr Health Aging 2015; 19:48-57. [PMID: 25560816 DOI: 10.1007/s12603-014-0489-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.
Collapse
Affiliation(s)
- A Meramat
- Dr Razinah Sharif, Email address: razinah.fsk.ukm.my, Telephone: +603-9289 7459, Fax number: +60326947621
| | | | | | | |
Collapse
|
86
|
Li L, Yu Q, Liang W. Molecular pathways of mitochondrial dysfunctions: Possible cause of cell death in anesthesia-induced developmental neurotoxicity. Brain Res Bull 2015; 110:14-9. [DOI: 10.1016/j.brainresbull.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 02/05/2023]
|
87
|
Martin LJ, Fancelli D, Wong M, Niedzwiecki M, Ballarini M, Plyte S, Chang Q. GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:433. [PMID: 25565966 PMCID: PMC4271619 DOI: 10.3389/fncel.2014.00433] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder in humans characterized by progressive degeneration of skeletal muscle and motor neurons in spinal cord, brainstem, and cerebral cortex causing skeletal muscle paralysis, respiratory insufficiency, and death. There are no cures or effective treatments for ALS. ALS can be inherited, but most cases are not associated with a family history of the disease. Mitochondria have been implicated in the pathogenesis but definitive proof of causal mechanisms is lacking. Identification of new clinically translatable disease mechanism-based molecular targets and small molecule drug candidates are needed for ALS patients. We tested the hypothesis in an animal model that drug modulation of the mitochondrial permeability transition pore (mPTP) is therapeutic in ALS. A prospective randomized placebo-controlled drug trial was done in a transgenic (tg) mouse model of ALS. We explored GNX-4728 as a therapeutic drug. GNX-4728 inhibits mPTP opening as evidenced by increased mitochondrial calcium retention capacity (CRC) both in vitro and in vivo. Chronic systemic treatment of G37R-human mutant superoxide dismutase-1 (hSOD1) tg mice with GNX-4728 resulted in major therapeutic benefits. GNX-4728 slowed disease progression and significantly improved motor function. The survival of ALS mice was increased significantly by GNX-4728 treatment as evidence by a nearly 2-fold extension of lifespan (360 days-750 days). GNX-4728 protected against motor neuron degeneration and mitochondrial degeneration, attenuated spinal cord inflammation, and preserved neuromuscular junction (NMJ) innervation in the diaphragm in ALS mice. This work demonstrates that a mPTP-acting drug has major disease-modifying efficacy in a preclinical mouse model of ALS and establishes mitochondrial calcium retention, and indirectly the mPTP, as targets for ALS drug development.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Pathobiology Graduate Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Mark Niedzwiecki
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | | | - Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
88
|
Wang Y, Arun P, Wei Y, Oguntayo S, Gharavi R, Valiyaveettil M, Nambiar MP, Long JB. Repeated blast exposures cause brain DNA fragmentation in mice. J Neurotrauma 2014; 31:498-504. [PMID: 24074345 DOI: 10.1089/neu.2013.3074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of blast-induced traumatic brain injury (TBI) and subsequent behavioral deficits are not well understood. Unraveling the mechanisms of injury is critical to derive effective countermeasures against this form of neurotrauma. Preservation of the integrity of cellular DNA is crucial for the function and survival of cells. We evaluated the effect of repeated blast exposures on the integrity of brain DNA and tested the utility of cell-free DNA (CFD) in plasma as a biomarker for the diagnosis and prognosis of blast-induced polytrauma. The results revealed time-dependent breakdown in cellular DNA in different brain regions, with the maximum damage at 24 h post-blast exposures. CFD levels in plasma showed a significant transient increase, which was largely independent of the timing and severity of brain DNA damage; maximum levels were recorded at 2 h after repeated blast exposure and returned to baseline at 24 h. A positive correlation was observed between the righting reflex time and CFD level in plasma at 2 h after blast exposure. Brain DNA damage subsequent to repeated blast was associated with decreased mitochondrial membrane potential, increased release of cytochrome C, and up-regulation of caspase-3, all of which are indicative of cellular apoptosis. Shock-wave-induced DNA damage and initiation of mitochondrial-driven cellular apoptosis in the brain after repeated blast exposures indicate that therapeutic strategies directed toward inhibition of DNA damage or instigation of DNA repair may be effective countermeasures.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser DA, Meister P, Nagoshi E. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet 2014; 10:e1004718. [PMID: 25340742 PMCID: PMC4207665 DOI: 10.1371/journal.pgen.1004718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. Parkinson's disease is a common movement disorder with no known cure. Its characteristic motor symptoms are primarily caused by the progressive loss of midbrain dopaminergic neurons. Although studies have shown that various environmental and genetic factors both contribute to the development of the disease, the underlying mechanisms remain unknown. Here we use powerful invertebrate model organisms, fruit flies and nematode worms, and identify a new gene required for the survival of dopaminergic neurons. We show that homologs of the p48/ptf1-a gene in both flies and worms are expressed in dopaminergic neurons and mutations in p48 increase the susceptibility of dopaminergic neuron death when animals are under oxidative stress. Importantly, genetic variations in p48 in humans have been detected in the sporadic Parkinson's disease patients, indicating the possibility that similar mechanism might play a role in the death of dopaminergic neurons in humans. Oxidative stress has been regarded as a major pathogenic factor for Parkinson's disease. Our results add evidence to the link between oxidative stress and neurodegeneration, and suggest that p48 mutant flies and worms can be used to study mechanisms of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Peter Bou Dib
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Gnägi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Fiona Daly
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Virginie Sabado
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Damla Tas
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Dominique A. Glauser
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Emi Nagoshi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
90
|
Krestinina O, Azarashvili T, Baburina Y, Galvita A, Grachev D, Stricker R, Reiser G. In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochem Int 2014; 80:41-50. [PMID: 25277077 DOI: 10.1016/j.neuint.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022]
Abstract
Aging is accompanied by progressive dysfunction of mitochondria associated with a continuous decrease of their capacity to produce ATP. Mitochondria isolated from brain of aged animals show an increased mitochondrial permeability transition pore (mPTP) opening. We recently detected new regulators of mPTP function in brain mitochondria, the enzyme 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and its substrates 2', 3'-cAMP and 2', 3'-cNADP, and the neuronal protein p42(IP4). Here, we compared parameters of mPTP opening in non-synaptic brain mitochondria isolated from young and old rats. In mitochondria from old rats (>18 months), mPTP opening occurred at a lower threshold of Ca(2+) concentration than in mitochondria from young rats (<3 months). mPTP opening in mitochondria from old rats was accelerated by 2', 3'-cAMP, which further lowered the threshold Ca(2+) concentration. In non-synaptic mitochondria from old rats, the CNP level was decreased by 34%. Lowering of the CNP level in non-synaptic mitochondria with aging was accompanied by decreased levels of voltage-dependent anion channel (VDAC; by 69%) and of p42(IP4) (by 59%). Thus, reduced levels of CNP in mitochondria could lead to a rise in the concentration of the mPTP promoter 2', 3'-cAMP. The level of CNP and p42(IP4) and, probably VDAC, might be essential for myelination and electrical activity of axons. We propose that in aging the reduction in the level of these proteins leads to mitochondrial dysfunction, in particular, to a decreased threshold Ca(2+) concentration to induce mPTP opening. This might represent initial steps of age-related mitochondrial dysfunction, resulting in myelin and axonal pathology.
Collapse
Affiliation(s)
- Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Anastasia Galvita
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Dmitry Grachev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow region, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Rolf Stricker
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - Georg Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany.
| |
Collapse
|
91
|
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2014; 8:2003-14. [PMID: 25206509 PMCID: PMC4145906 DOI: 10.3969/j.issn.1673-5374.2013.21.009] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Li Sun
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba R3E 0J9, Canada
| | - Danshen Zhang
- Hebei University of Science and Technology, Shijiazhuang 050018, Hebei Province, China
| |
Collapse
|
92
|
Ramos A, Kazachkova N, Silva F, Maciel P, Silva-Fernandes A, Duarte-Silva S, Santos C, Lima M. Differential mtDNA damage patterns in a transgenic mouse model of Machado-Joseph disease (MJD/SCA3). J Mol Neurosci 2014; 55:449-53. [PMID: 25001003 DOI: 10.1007/s12031-014-0360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction has been associated with late onset neurodegenerative disorders, among which is Machado-Joseph disease (MJD/SCA3). In a previous study, using a transgenic mouse model of MJD, we reported a decrease in mitochondrial DNA (mtDNA) copy number and an accumulation of the 3876-bp deletion with age and with phenotype development. We extended this study by analyzing the pattern of mtDNA depletion and the accumulation of the 3876-bp deletion in 12 older transgenic (TG) and 4 wild-type (wt) animals, and by investigating the accumulation of somatic mutations in the D-loop region in 76 mice (42 TG and 34 wt). mtDNA damage was studied in TG and wt mice at different ages and tissues (blood, pontine nuclei, and hippocampus). Results for older mice demonstrate an accumulation of the mtDNA 3867-bp deletion with age, which was more pronounced in TG animals. Furthermore, the tendency for mtDNA copy number decrease with age, in all analyzed tissues of TG and wt animals, was also confirmed. No point mutations were detected in the D-loop, neither in TG nor wt animals, in any of the tissues analyzed. Due to the absence of mtDNA somatic mutations, we can suggest that mtDNA point mutation accumulation cannot be used to monitor the development and progression of the phenotype in this mouse model and likely in any MJD mice model. The present results further confirm not only the association between mtDNA alterations (copy number and deletions) and age, but also between such alterations and the expression of the mutant ataxin-3 in TG mice.
Collapse
Affiliation(s)
- Amanda Ramos
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, Ponta Delgada, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Fernandes MP, Leite ACR, Araújo FFB, Saad STO, Baratti MO, Correia MTS, Coelho LCBB, Gadelha FR, Vercesi AE. The Cratylia mollis
Seed Lectin Induces Membrane Permeability Transition in Isolated Rat Liver Mitochondria and a Cyclosporine A-Insensitive Permeability Transition in Trypanosoma cruzi
Mitochondria. J Eukaryot Microbiol 2014; 61:381-8. [DOI: 10.1111/jeu.12118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mariana P. Fernandes
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - Ana C. R. Leite
- Departamento de Fisiologia e Biofísica; Instituto de Biologia, Universidade Estadual de Campinas; Campinas Brazil
| | - Flavia F. B. Araújo
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Sara T. O. Saad
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. O. Baratti
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. T. S. Correia
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Luana C. B. B. Coelho
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Fernanda R. Gadelha
- Departamento de Bioquímica; Instituto de Biologia; Universidade Estadual de Campinas; Campinas Brazil
| | - Anibal E. Vercesi
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| |
Collapse
|
94
|
Kopp VJ. Might hyperoxia during surgical anaesthesia contribute to older patients' higher dementia risk? Br J Psychiatry 2014; 204:163. [PMID: 24493655 DOI: 10.1192/bjp.204.2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Disruption of oxidative phosphorylation and synaptic Na(+), K(+)-ATPase activity by pristanic acid in cerebellum of young rats. Life Sci 2014; 94:67-73. [PMID: 24211616 DOI: 10.1016/j.lfs.2013.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022]
Abstract
AIMS Peroxisomal biogenesis disorders (PBD) are inherited disorders clinically manifested by neurological symptoms and brain abnormalities, in which the cerebellum is usually involved. Biochemically, patients affected by these neurodegenerative diseases accumulate branched-chain fatty acids, including pristanic acid (Prist) in the brain and other tissues. MAIN METHODS In the present investigation we studied the in vitro influence of Prist, at doses found in PBD, on oxidative phosphorylation, by measuring the activities of the respiratory chain complexes I-IV and ATP production, as well as on creatine kinase and synaptic Na(+), K(+)-ATPase activities in rat cerebellum. KEY FINDINGS Prist significantly decreased complexes I-III (65%), II (40%) and especially II-III (90%) activities, without altering the activities of complex IV of the respiratory chain and creatine kinase. Furthermore, ATP formation and synaptic Na(+), K(+)-ATPase activity were markedly inhibited (80-90%) by Prist. We also observed that this fatty acid altered mitochondrial and synaptic membrane fluidity that may have contributed to its inhibitory effects on the activities of the respiratory chain complexes and Na(+), K(+)-ATPase. SIGNIFICANCE Considering the importance of oxidative phosphorylation for mitochondrial homeostasis and of Na(+), K(+)-ATPase for the maintenance of cell membrane potential, the present data indicate that Prist compromises brain bioenergetics and neurotransmission in cerebellum. We postulate that these pathomechanisms may contribute to the cerebellar alterations observed in patients affected by PBD in which Prist is accumulated.
Collapse
|
96
|
Wong M, Gertz B, Chestnut BA, Martin LJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 2013; 7:279. [PMID: 24399935 PMCID: PMC3872319 DOI: 10.3389/fncel.2013.00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Cytosine methylation is an epigenetic modification of DNA catalyzed by DNA methyltransferases. Cytosine methylation of mitochondrial DNA (mtDNA) is believed to have relative underrepresentation; however, possible tissue and cell differences in mtDNA methylation and relationships to neurodegenerative disease have not been examined. We show by immunoblotting that DNA methyltransferase 3A (Dnmt3a) isoform is present in pure mitochondria of adult mouse CNS, skeletal muscle, and testes, and adult human cerebral cortex. Dnmt1 was not detected in adult mouse CNS or skeletal muscle mitochondria but appeared bound to the outer mitochondrial membrane. Immunofluorescence confirmed the mitochondrial localization of Dnmt3a and showed 5-methylcytosine (5mC) immunoreactivity in mitochondria of neurons and skeletal muscle myofibers. DNA pyrosequencing of two loci (D-loop and 16S rRNA gene) and twelve cytosine-phosphate-guanine (CpG) sites in mtDNA directly showed a tissue differential presence of 5mC. Because mitochondria have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the disease mechanisms are uncertain, we evaluated mitochondrial Dnmt3a and 5mC levels in human superoxide dismutase-1 (SOD1) transgenic mouse models of ALS. Mitochondrial Dnmt3a protein levels were reduced significantly in skeletal muscle and spinal cord at presymptomatic or early disease. Immunofluorescence showed that 5mC immunoreactivity was present in mitochondria of neurons and skeletal myofibers, and 5mC immunoreactivity became aggregated in motor neurons of ALS mice. DNA pyrosequencing revealed significant abnormalities in 16S rRNA gene methylation in ALS mice. Immunofluorescence showed that 5mC immunoreactivity can be sequestered into autophagosomes and that mitophagy was increased and mitochondrial content was decreased in skeletal muscle in ALS mice. This study reveals a tissue-preferential mitochondrial localization of Dnmt3a and presence of cytosine methylation in mtDNA of nervous tissue and skeletal muscle and demonstrates that mtDNA methylation patterns and mitochondrial Dnmt3a levels are abnormal in skeletal muscle and spinal cord of presymptomatic ALS mice, and these abnormalities occur in parallel with loss of myofiber mitochondria.
Collapse
Affiliation(s)
- Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Barry Gertz
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, Pathobiology Graduate Program, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Barry A Chestnut
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, Pathobiology Graduate Program, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, Pathobiology Graduate Program, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
97
|
Kopp VJ, Jobson M. Does isoflurane or isoflurane plus hyperoxia induce apoptotic cell death? Anesth Analg 2013; 117:1023. [PMID: 24057952 DOI: 10.1213/ane.0b013e3182a231b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vincent J Kopp
- Departments of Anesthesiology and Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
98
|
de Oliveira GP, Alves CJ, Chadi G. Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. Front Cell Neurosci 2013; 7:216. [PMID: 24302897 PMCID: PMC3831149 DOI: 10.3389/fncel.2013.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.
Collapse
Affiliation(s)
- Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | | | | |
Collapse
|
99
|
Martin LJ, Semenkow S, Hanaford A, Wong M. Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice. Neurobiol Aging 2013; 35:1132-52. [PMID: 24325796 DOI: 10.1016/j.neurobiolaging.2013.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is a movement disorder caused by neurodegeneration in neocortex, substantia nigra and brainstem, and synucleinopathy. Some inherited PD is caused by mutations in α-synuclein (αSyn), and inherited and idiopathic PD is associated with mitochondrial perturbations. However, the mechanisms of pathogenesis are unresolved. We characterized a human αSyn transgenic mouse model and tested the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the disease mechanisms. C57BL/6 mice expressing human A53T-mutant αSyn driven by a thymic antigen-1 promoter develop a severe, age-related, fatal movement disorder involving ataxia, rigidity, and postural instability. These mice develop synucleinopathy and neocortical, substantia nigra, and cerebello-rubro-thalamic degeneration involving mitochondriopathy and apoptotic and non-apoptotic neurodegeneration. Interneurons undergo apoptotic degeneration in young mice. Mutant αSyn associated with dysmorphic neuronal mitochondria and bound voltage-dependent anion channels. Genetic ablation of cyclophilin D, an mPTP modulator, delayed disease onset, and extended lifespans of mutant αSyn mice. Thus, mutant αSyn transgenic mice on a C57BL/6 background develop PD-like phenotypes, and the mPTP is involved in their disease mechanisms.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Samantha Semenkow
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison Hanaford
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
100
|
Pharmacological effects of active compounds on neurodegenerative disease with gastrodia and uncaria decoction, a commonly used poststroke decoction. ScientificWorldJournal 2013; 2013:896873. [PMID: 24348193 PMCID: PMC3851952 DOI: 10.1155/2013/896873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 01/14/2023] Open
Abstract
Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases.
Collapse
|