51
|
Li Z, Xue L, Wang P, Ren X, Zhang Y, Wang C, Sun J. Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1429. [PMID: 36837058 PMCID: PMC9961196 DOI: 10.3390/ma16041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xueqian Ren
- Clinical Medical Engineering Department, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing 210009, China
| | - Yunyang Zhang
- Center of Modern Analysis, Nanjing University, Nanjing 210000, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
52
|
Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers (Basel) 2023; 15:polym15040795. [PMID: 36850078 PMCID: PMC9963335 DOI: 10.3390/polym15040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The development of accurate drug delivery systems is one of the main challenges in the biomedical field. A huge variety of structures, such as vesicles, nanoparticles, and nanofibers, have been proposed as carriers for bioactive agents, aiming for precision in administration and dosage, safety, and bioavailability. This review covers the use of electrohydrodynamic techniques both for the immobilization and for the synthesis of vesicles in a non-conventional way. The state of the art discusses the most recent advances in this field as well as the advantages and limitations of electrospun and electrosprayed amphiphilic structures as precursor templates for the in situ vesicle self-assembly. Finally, the perspectives and challenges of combined strategies for the development of advanced structures for the delivery of bioactive agents are analyzed.
Collapse
|
53
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
54
|
Anaya Mancipe JM, Boldrini Pereira LC, de Miranda Borchio PG, Dias ML, da Silva Moreira Thiré RM. Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications. J Biomed Mater Res B Appl Biomater 2023; 111:366-381. [PMID: 36068930 DOI: 10.1002/jbm.b.35156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Type I collagen (Col_1) is one of the main proteins present in the skin extracellular matrix, serving as support for skin regeneration and maturation in its granulation stage. Electrospun materials have been intensively studied as the next generation of skin wound dressing mainly due to their high surface area and fibrous porosity. However, the electrospinning of collagen-based solutions causes degradation of its structure. In this work, a coaxial electrospinning process was proposed to overcome this limitation. The production of mats of polycaprolactone (PCL)-Col_1/PVA (collagen/poly(vinyl alcohol)) composed of core-shell nanofibers was investigated. PCL solution was used as the core solution, while Col_1/PVA was used as the shell solution. PVA was used to improve the processability of collagen, while PCL was employed to improve the mechanical properties and morphology of Col_1/PVA fibers. The morphology and the cytotoxicity of the fibers were highly dependent on the processing parameters. Defect-free core-shell nanofibers were obtained with a shell/core flow rates ratio = 4, flight distance of 12 cm, and an applied voltage of 16 kV. Using this strategy, the triple helix structure characteristic of the collagen molecule was preserved. Moreover, the common post-processing of solvent removal could be suppressed, simplifying the manufacturing processing of these biomaterials. The nanostructured mats showed no cytotoxicity, high liquid absorption, structural stability, hydrophilic character, and collagen release capacity, making them a potential novel dressing for skin damage regeneration, in special in the case of chronic wounds treatment, in which exogenous collagen delivery is necessary.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE, Cidade Universitária, Rio de Janeiro, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, IMA, Cidade Universitária, Rio de Janeiro, Brazil
| | - Leonardo Cunha Boldrini Pereira
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Diretoria de Metrologia Aplicada as Ciências da Vida, DIMAV, Programa de Pós-graduação em Biomedicina Translacional - BIOTRANS, Duque de Caxias, Brazil
| | - Priscila Grion de Miranda Borchio
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Diretoria de Metrologia Aplicada as Ciências da Vida, DIMAV, Programa de Pós-graduação em Biomedicina Translacional - BIOTRANS, Duque de Caxias, Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, IMA, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
55
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
56
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
57
|
Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
58
|
Ahmed ASA, Negm ANRM, Mohammed M, Abd El-Majeed M, Ali AK, Abdelmotalleib M. Biodegradable Polymers for Industrial Applications. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:451-476. [DOI: 10.1007/978-3-031-09710-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
59
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
60
|
Talimi R, Shahsavari Z, Dadashzadeh S, Ten Hagen TLM, Haeri A. Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity. Drug Dev Ind Pharm 2022; 48:694-707. [PMID: 36594256 DOI: 10.1080/03639045.2022.2161559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Breast cancer accounts for significant mortality worldwide. Here, we develop a localized, sustained-release delivery system for breast cancer therapy. METHODS Sirolimus (SIR) core-shell nanofibers (NFs) are fabricated by coaxial electrospinning with poly(ε-caprolactone) (PCL) for the core and chitosan and PCL for the shell. The NFs were characterized by SEM, AFM, TEM, XRD, FTIR, water uptake, water contact angle, mechanical properties, drug content, and in vitro release. In vitro and in vivo anticancer effects were investigated. RESULTS A sustained release behavior is observed during 480 h that is more extended compared to monoaxial NFs. In vitro cytotoxicity and Annexin V/propidium iodide assays indicate that SIR-loaded coaxial NFs are effective in inhibiting proliferation of 4T1 and MCF-7 cells. Implantation of SIR NFs in 4T1 breast tumor-bearing mice inhibits tumor growth significantly compared to free drug. Histopathological examination shows that suppression of tumor growth by SIR NFs is associated with apoptotic cell death. Furthermore, anti-cancer effects are also confirmed by decreased expression levels of Ki-67, MMP-2, and MMP-9. Histological observation of organs, serological analyses, and the lack of body weight changes indicate in vivo safety of SIR NFs. CONCLUSIONS Altogether, we show here that incorporation of SIR into core-shell NFs could act as an effective drug release depot and induce a sustained antitumor response.
Collapse
Affiliation(s)
- Rozhin Talimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
62
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
63
|
Core/Double-Sheath Composite Fibers from Poly(ethylene oxide), Poly(L-lactide) and Beeswax by Single-Spinneret Electrospinning. Polymers (Basel) 2022; 14:polym14225036. [PMID: 36433168 PMCID: PMC9699041 DOI: 10.3390/polym14225036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The conventional approach for preparation of core-sheath fibers is coaxial electrospinning. Single-spinneret electrospinning of emulsions is a much less common method to obtain core-sheath fibers. Core-sheath structure may be generated by electrospinning of homogeneous blend solutions; however, reports on such cases are still scarce. Herein, the preparation of nanofibrous composites from poly(ethylene oxide) (PEO), poly(L-lactide) (PLA) and beeswax (BW) by single-spinneret electrospinning of their homogeneous blend solutions in chloroform is reported. The produced fibers had core/double-sheath structure with a PEO core, PLA inner sheath and BW outer sheath. This original fiber structure was evidenced by transmission electron microscopy, selective extraction of BW or PEO, and X-ray photoelectron spectroscopy. The PLA/BW double sheath led to hydrophobicity of the PEO/PLA/BW mats. The tensile tests revealed that PEO/PLA/BW mats had substantially improved mechanical behavior as compared to PEO, PLA and PEO/BW mats. PEO/PLA/BW mats can be used as drug carriers as evidenced by the one-pot incorporation of the model drug 5-nitro-8-hydroxyquinoline (NQ) into the fibrous materials. Microbiological tests showed that PEO/PLA/BW/NQ had antimicrobial activity. Therefore, the new materials are promising for wound healing applications.
Collapse
|
64
|
Bahmani E, Dizaji BF, Talaei S, Koushkbaghi S, Yazdani H, Abadi PG, Akrami M, Shahrousvand M, Jazi FS, Irani M. Fabrication of poly(ϵ‐caprolactone)/paclitaxel (core)/chitosan/zein/multi‐walled carbon nanotubes/doxorubicin (shell) nanofibers against
MCF
‐7 breast cancer. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ehsan Bahmani
- Department of Chemical Engineering Payam Noor University Tehran Iran
| | | | - Sam Talaei
- School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Hamid Yazdani
- Department of Chemical Engineering Payam Noor University Tehran Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering College of Engineering, Chooka Branch, University of Tehran Rezvanshahr Iran
| | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
65
|
Park M, Kuk YS, Kwon OH, Acharya J, Ojha GP, Ko JK, Kong HS, Pant B. Fly Ash-Incorporated Polystyrene Nanofiber Membrane as a Fire-Retardant Material: Valorization of Discarded Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213811. [PMID: 36364587 PMCID: PMC9656177 DOI: 10.3390/nano12213811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/01/2023]
Abstract
Reusing or recycling waste into new useful materials is essential for environmental protection. Herein, we used discarded polystyrene (PS) and fly-ash (FA) particles and a fabricated fly-ash incorporated polystyrene fiber (FA/PS fiber) composite. The electrospinning process produced continuous PS fibers with a good distribution of FA particles. The prepared nanofibers were characterized by state-of-the-art techniques. The performances of the composite nanofibers were tested for fire-retardant applications. We observed that the incorporation of FA particles into the PS fibers led to an improvement in the performance of the composite as compared to the pristine PS fibers. This study showed an important strategy in using waste materials to produce functional nanofibers through an economical procedure. We believe that the strategy presented in this paper can be extended to other waste materials for obtaining nanofiber membranes for various environmental applications.
Collapse
Affiliation(s)
- Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Korea
- Department of Fire Protection and Disaster Prevention, Woosuk University, Wanju 55338, Korea
| | - Yun-Su Kuk
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), Jeonju 54853, Korea
| | - Oh Hoon Kwon
- Research and Development Division, Korea Institute of Convergence Textile, Iksan 54588, Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Korea
| | - Jae-Kyoung Ko
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Korea
| | - Ha-Sung Kong
- Department of Fire Protection and Disaster Prevention, Woosuk University, Wanju 55338, Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Korea
| |
Collapse
|
66
|
Pan L, Yang J, Xu L. Preparation and Characterization of Simvastatin-Loaded PCL/PEG Nanofiber Membranes for Drug Sustained Release. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217158. [PMID: 36363985 PMCID: PMC9656846 DOI: 10.3390/molecules27217158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.
Collapse
|
67
|
Tiwari AP, Lokai T, Albin B, Yang IH. A Review on the Technological Advances and Future Perspectives of Axon Guidance and Regeneration in Peripheral Nerve Repair. Bioengineering (Basel) 2022; 9:bioengineering9100562. [PMID: 36290530 PMCID: PMC9598559 DOI: 10.3390/bioengineering9100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.
Collapse
|
68
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
69
|
Li H, Xu M, Shi R, Zhang A, Zhang J. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules 2022; 27:5548. [PMID: 36080317 PMCID: PMC9458223 DOI: 10.3390/molecules27175548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many real applications, starting from basic synthesis principles of electrostatic spinning technology, the formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrystalline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are presented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
Collapse
Affiliation(s)
- Haojun Li
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Xu
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Shi
- Jishuitan Hospital, Beijing 100035, China
| | - Aiying Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
70
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
71
|
Zhu W, Zhao Y, Tang H, Lv F, Zhang Y, Guo S. Drug release behaviors of flexible SiO
2
‐polyvinyl pyrrolidone electrospun membranes responsive to multiple stimuli. J Appl Polym Sci 2022. [DOI: 10.1002/app.52972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenqian Zhu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| | - Yanping Zhao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| | - Hanxia Tang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| | - Fengzhu Lv
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| | - Sufang Guo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing China
| |
Collapse
|
72
|
Alotaibi BS, Shoukat M, Buabeid M, Khan AK, Murtaza G. Healing potential of neomycin-loaded electrospun nanofibers against burn wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
73
|
Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G. A Review: Current Status and Emerging Developments on Natural Polymer‐Based Electrospun Fibers. Macromol Rapid Commun 2022; 43:e2200456. [DOI: 10.1002/marc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Weisen Han
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Xuefeng Guo
- Changzhou Vocational Institute of Textile and Garment School of Textile 53 Gehu Middle Road Changzhou Jiangsu 213164 P.R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
74
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
75
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
76
|
Qin Z, Wang S, Wang L, Yao J, Zhu G, Guo B, Militky J, Venkataraman M, Zhang M. Nanofibrous membranes with antibacterial and thermoregulatory functions fabricated by coaxial electrospinning. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
77
|
Avci MO, Muzoglu N, Yilmaz AE, Yarman BS. Antibacterial, cytotoxicity and biodegradability studies of polycaprolactone nanofibers holding green synthesized Ag nanoparticles using atropa belladonna extract. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1157-1180. [PMID: 35192427 DOI: 10.1080/09205063.2022.2045665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Atropa belladonna is one of the herbs used to treat wounds and prevent inflammation. This study provides a scientific assessment for the wound healing potential of biodegradable nanofibers containing Ag nanoparticles encapsulated with atropa belladonna extract (eAgNPs). Ultraviolet-visible (UV-vis) spectroscopy was used to observe the localized surface plasmon resonance (LSPR) band of AgNPs synthesized from atropa belladonna extract prepared under different conditions. Polycaprolactone (PCL) nanofibers with eAgNPs were fabricated using the electrospinning technique. The distribution of AgNPs and eAgNPs and the size of nanofibers were characterized with scanning and transmission electron microscopy (SEM, TEM) before and after degradation at the end of 18 weeks. Fourier transform infrared (FTIR) spectroscopy showed the surface interactivity between AgNPs, atropa belladonna extract and PCL nanofibers and also approved the modification of PCL nanofibers with eAgNPs. X-ray diffraction analysis (XRD) defined the formation of the crystalline AgNPs and appreciated the orientation of the nanofibers. Results of tension tests revealed that modification of PCL nanofibers with pure AgNPs and eAgNPs significantly increased strength and tensile modulus. Due to the hydrophobic nature of PCL, modification with pure AgNPs and eAgNPs slightly reduced its hydrophobicity. Biodegradation tests of PCL nanofibers with eAgNPs exhibited a higher degradation rate than neat PCL nanofibers. In vitro MTT results revealed that eAgNPs doped PCL samples have better cell viability than AgNPs doped and neat PCL nanofibers. Owing to their antibacterial properties, biodegradation rates, low cytotoxicity, mechanical and surface morphologic properties of AgNPs modified PCL nanofibers containing atropa belladonna are considered to have a great potential for skin regeneration.
Collapse
Affiliation(s)
- Muhammed Onur Avci
- Department of Biomedical Engineering, Istanbul University-Cerrahpasa (IUC), Istanbul, Turkey
| | - Nedim Muzoglu
- Department of Biomedical Engineering, Istanbul University-Cerrahpasa (IUC), Istanbul, Turkey
| | - Aysel Ersoy Yilmaz
- Department of Electric and Electronic Engineering, Istanbul University-Cerrahpasa (IUC), Istanbul, Turkey
| | - Binboga Siddik Yarman
- Department of Electric and Electronic Engineering, Istanbul University-Cerrahpasa (IUC), Istanbul, Turkey
| |
Collapse
|
78
|
Robert B, Nallathambi G. Tailoring mechanically robust nanofibrous membrane for PM 2.5-0.3 filtration and evaluating their behavior using response surface Box–Behnken design. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Berly Robert
- Department of Textile Technology, Anna University, Chennai, India
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, India
| |
Collapse
|
79
|
Xu T, Gu J, Meng J, Du L, Kumar A, Xu H. Melt electrowriting reinforced composite membrane for controlled drug release. J Mech Behav Biomed Mater 2022; 132:105277. [PMID: 35617819 DOI: 10.1016/j.jmbbm.2022.105277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022]
Abstract
An in-house built hybrid manufacturing device, combining the pros of melt electrowriting (MEW) and melt electrospinning (MES), is firstly proposed to produce a reinforced nonwoven fabric applied in drug delivery systems. MEW is used to print regular PCL lattice, followed by the deposition of a PCL nonwoven fabric loaded with drugs, forming a MEW/MES composite scaffold. Tensile test results suggest that after combining with MEW lattice, the strength of the composite scaffold can have a two-fold improvement and the elongation to break can increase up to 900%. Solvent vapor annealing is applied to adjust drug release rate through controlling the crystallinity of PCL. Although the increased crystallinity restrained drug release, a shish-kebab-shaped fiber structure formed by the annealing facilitates drug release. This MEW-based hybrid printing method can greatly enhance the freedom of making complex scaffold and extend to other nanotechnologies to fabricate reinforced scaffold as well.
Collapse
Affiliation(s)
- Ting Xu
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jincheng Gu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto, 606-8585, Japan
| | - Jie Meng
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto, 606-8585, Japan
| | - Lei Du
- School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Alesh Kumar
- Department of Physics, National Institute of Technology, Kurukshetra, 136119, India
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto, 606-8585, Japan.
| |
Collapse
|
80
|
Tang Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers (Basel) 2022; 14:2004. [PMID: 35631886 PMCID: PMC9144434 DOI: 10.3390/polym14102004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Water purification and water desalination via membrane technology are generally deemed as reliable supplementaries for abundant potable water. Electrospun nanofiber-based membranes (ENMs), benefitting from characteristics such as a higher specific surface area, higher porosity, lower thickness, and possession of attracted broad attention, has allowed it to evolve into a promising candidate rapidly. Here, great attention is placed on the current status of ENMs with two categories according to the roles of electrospun nanofiber layers: (i) nanofiber layer serving as a selective layer, (ii) nanofiber layer serving as supporting substrate. For the nanofiber layer's role as a selective layer, this work presents the structures and properties of conventional ENMs and mixed matrix ENMs. Fabricating parameters and adjusting approaches such as polymer and cosolvent, inorganic and organic incorporation and surface modification are demonstrated in detail. It is crucial to have a matched selective layer for nanofiber layers acting as a supporting layer. The various selective layers fabricated on the nanofiber layer are put forward in this paper. The fabrication approaches include inorganic deposition, polymer coating, and interfacial polymerization. Lastly, future perspectives and the main challenges in the field concerning the use of ENMs for water treatment are discussed. It is expected that the progress of ENMs will promote the prosperity and utilization of various industries such as water treatment, environmental protection, healthcare, and energy storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.T.); (Z.C.); (X.S.); (C.C.); (X.Y.); (M.L.)
| |
Collapse
|
81
|
Electrospun nanofibrous membrane for biomedical application. SN APPLIED SCIENCES 2022; 4:172. [PMID: 35582285 PMCID: PMC9099337 DOI: 10.1007/s42452-022-05056-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrospinning is a simple, cost-effective, flexible, and feasible continuous micro-nano polymer fiber preparation technology that has attracted extensive scientific and industrial interest over the past few decades, owing to its versatility and ability to manufacture highly tunable nanofiber networks. Nanofiber membrane materials prepared using electrospinning have excellent properties suitable for biomedical applications, such as a high specific surface area, strong plasticity, and the ability to manipulate their nanofiber components to obtain the desired properties and functions. With the increasing popularity of nanomaterials in this century, electrospun nanofiber membranes are gradually becoming widely used in various medical fields. Here, the research progress of electrospun nanofiber membrane materials is reviewed, including the basic electrospinning process and the development of the materials as well as their biomedical applications. The main purpose of this review is to discuss the latest research progress on electrospun nanofiber membrane materials and the various new electrospinning technologies that have emerged in recent years for various applications in the medical field. The application of electrospun nanofiber membrane materials in recent years in tissue engineering, wound dressing, cancer diagnosis and treatment, medical protective equipment, and other fields is the main topic of discussion in this review. Finally, the development of electrospun nanofiber membrane materials in the biomedical field is systematically summarized and prospects are discussed. In general, electrospinning has profound prospects in biomedical applications, as it is a practical and flexible technology used for the fabrication of microfibers and nanofibers. This review summarizes recent research on the application of electrospun nanofiber membranes as tissue engineering materials for the cardiovascular system, motor system, nervous system, and other clinical aspects. Research on the application of electrospun nanofiber membrane materials as protective products is discussed in the context of the current epidemic situation. Examples and analyses of recent popular applications in tissue engineering, wound dressing, protective products, and cancer sensors are presented.
Collapse
|
82
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
83
|
Wang Z, Zhao Y, Shen M, Tomás H, Zhou B, Shi X. Antitumor Efficacy of Doxorubicin-Loaded Electrospun Attapulgite–Poly(lactic-co-glycolic acid) Composite Nanofibers. J Funct Biomater 2022; 13:jfb13020055. [PMID: 35645263 PMCID: PMC9149849 DOI: 10.3390/jfb13020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, cancer chemotherapeutic drugs still have the defects of high toxicity and low bioavailability, so it is critical to design novel drug release systems for cancer chemotherapy. Here, we report a method to fabricate electrospun drug-loaded organic/inorganic hybrid nanofibrous system for antitumor therapy applications. In this work, rod-like attapulgite (ATT) was utilized to load a model anticancer drug doxorubicin (DOX), and mixed with poly(lactic-co-glycolic acid) (PLGA) to form electrospun hybrid nanofibers. The ATT/DOX/PLGA composite nanofibers were characterized through various techniques. It is feasible to load DOX onto ATT surfaces, and the ATT/DOX/PLGA nanofibers show a smooth and uniform morphology with improved mechanical durability. Under neutral and acidic pH conditions, the loaded DOX was released from ATT/DOX/PLGA nanofibers in a sustained manner. In addition, the released DOX from the nanofibers could significantly inhibit the growth of tumor cells. Owing to the significantly reduced burst release profile and increased mechanical durability of the ATT/DOX/PLGA nanofibers, the designed organic–inorganic hybrid nanofibers may hold great promise as a nanoplatform to encapsulate different drugs for enhanced local tumor therapy applications.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China;
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Yili Zhao
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Mingwu Shen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Helena Tomás
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal;
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China;
- Correspondence: (B.Z.); (X.S.)
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal;
- Correspondence: (B.Z.); (X.S.)
| |
Collapse
|
84
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
85
|
Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubicin. BIOMATERIALS ADVANCES 2022; 136:212769. [PMID: 35929309 DOI: 10.1016/j.bioadv.2022.212769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
In this work, redox-sensitive polyurethane urea (PUU) based electrospun membranes have been exploited to chemically tether a pH-sensitive doxorubicin derivative achieved by linking a lipoyl hydrazide to the drug via a hydrazone linkage. First, the lipoyl-hydrazone-doxorubicin derivative labelled as LA-Hy-Doxo has been synthesized and characterized. Then, the molecule has been tethered, via a thiol-disulfide exchange reaction, to the redox-sensitive PUU (PolyCEGS) electrospun membrane. The redox-sensitive PolyCEGS PUU has been produced by using PCL-PEG-PCL polyol and glutathione-tetramethyl ester (GSSG-OMe)4 as a chain extender. The LA-Hy-Doxo tethered electrospun membrane has showed a dually controlled release triggered by acidic and reducing conditions, producing a significant cytotoxic effect in human breast cancer cell lines (MCF-7) which has validated the system for the post-surgical treatment of solid tumors to contrast recurrence.
Collapse
|
86
|
Palit S, Kreplak L, Frampton JP. Formation of Core-Sheath Polymer Fibers by Free Surface Spinning of Aqueous Two-Phase Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4617-4624. [PMID: 35390253 DOI: 10.1021/acs.langmuir.1c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-sheath fibers have numerous applications ranging from composite materials for advanced manufacturing to materials for drug delivery and regenerative medicine. Here, a simple and tunable approach for the generation of core-sheath fibers from immiscible solutions of dextran and polyethylene oxide is described. This approach exploits the entanglement of polymer molecules within the dextran and polyethylene oxide phases for free surface spinning into dry fibers. The mechanism by which these core-sheath fibers are produced after contact with a solid substrate (such as a microneedle) involves complex flows of the phase-separating polymer solutions, giving rise to a liquid-liquid core-sheath flow that is drawn into a liquid bridge. This liquid bridge then elongates into a core-sheath fiber through extensional flow as the contacting substrate is withdrawn. The core-sheath structure of the fibers produced by this approach is confirmed by attenuated total reflection Fourier-transform infrared spectroscopy and confocal microscopy. Tuning of the core diameter is also demonstrated by varying the weight percentage of dextran added to the reservoir from which the fibers are formed.
Collapse
Affiliation(s)
- Swomitra Palit
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
87
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
88
|
Al‐Qahtani SD, Snari RM, Alkhamis K, Alhasani M, Ibarhiam SF, Habeebullah TM, El‐Metwaly NM. Authentication of documents using polypropylene immobilized with rare‐earth doped aluminate nanoparticles. Microsc Res Tech 2022; 85:2607-2617. [DOI: 10.1002/jemt.24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Salhah D. Al‐Qahtani
- Department of Chemistry, College of Science Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Razan M. Snari
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Saham F. Ibarhiam
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research Custodian of Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al Qura University Makkah Saudi Arabia
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
89
|
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1077. [PMID: 35407195 PMCID: PMC9000692 DOI: 10.3390/nano12071077] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials for air filtration have been studied by researchers for decades. Owing to the advantages of high porosity, small pore size, and good connectivity, nanofiber membranes prepared by electrospinning technology have been considered as an outstanding air-filter candidate. To satisfy the requirements of material functionalization, electrospinning can provide a simple and efficient one-step process to fabricate the complex structures of functional nanofibers such as core-sheath structures, Janus structures, and other multilayered structures. Additionally, as a nanoparticle carrier, electrospun nanofibers can easily achieve antibacterial properties, flame-retardant properties, and the adsorption properties of volatile gases, etc. These simple and effective approaches have benefited from the significate development of electrospun nanofibers for air-filtration applications. In this review, the research progress on electrospun nanofibers as air filters in recent years is summarized. The fabrication methods, filtration performances, advantages, and disadvantages of single-polymer nanofibers, multipolymer composite nanofibers, and nanoparticle-doped hybrid nanofibers are investigated. Finally, the basic principles of air filtration are concluded upon and prospects for the application of complex-structured nanofibers in the field of air filtration are proposed.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| |
Collapse
|
90
|
Kan Y, Bondareva JV, Statnik ES, Cvjetinovic J, Lipovskikh S, Abdurashitov AS, Kirsanova MA, Sukhorukhov GB, Evlashin SA, Salimon AI, Korsunsky AM. Effect of Graphene Oxide and Nanosilica Modifications on Electrospun Core-Shell PVA–PEG–SiO2@PVA–GO Fiber Mats. NANOMATERIALS 2022; 12:nano12060998. [PMID: 35335811 PMCID: PMC8950511 DOI: 10.3390/nano12060998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA–PEG–SiO2@PVA–GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.
Collapse
Affiliation(s)
- Yuliya Kan
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
- Correspondence:
| | - Julia V. Bondareva
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Eugene S. Statnik
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia;
| | - Svetlana Lipovskikh
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Maria A. Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Gleb B. Sukhorukhov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Stanislav A. Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Alexey I. Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Alexander M. Korsunsky
- Multi-Beam Laboratory for Engineering Microscopy (MBLEM), Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| |
Collapse
|
91
|
Li J, Liu Y, Abdelhakim HE. Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules 2022; 27:1803. [PMID: 35335167 PMCID: PMC8952381 DOI: 10.3390/molecules27061803] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most serious health problems and the second leading cause of death worldwide, and with an ageing and growing population, problems related to cancer will continue. In the battle against cancer, many therapies and anticancer drugs have been developed. Chemotherapy and relevant drugs are widely used in clinical practice; however, their applications are always accompanied by severe side effects. In recent years, the drug delivery system has been improved by nanotechnology to reduce the adverse effects of the delivered drugs. Among the different candidates, core-sheath nanofibres prepared by coaxial electrospinning are outstanding due to their unique properties, including their large surface area, high encapsulation efficiency, good mechanical property, multidrug loading capacity, and ability to govern drug release kinetics. Therefore, encapsulating drugs in coaxial electrospun nanofibres is a desirable method for controlled and sustained drug release. This review summarises the drug delivery applications of coaxial electrospun nanofibres with different structures and drugs for various cancer treatments.
Collapse
Affiliation(s)
| | | | - Hend E. Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (Y.L.)
| |
Collapse
|
92
|
Costa SM, Fangueiro R, Ferreira DP. Drug Delivery Systems for Photodynamic Therapy: The Potentiality and Versatility of Electrospun Nanofibers. Macromol Biosci 2022; 22:e2100512. [PMID: 35247227 DOI: 10.1002/mabi.202100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Recently, photodynamic therapy (PDT) has become a promising approach for the treatment of a broad range of diseases, including oncological and infectious diseases. This minimally invasive and localized therapy is based on the production of reactive oxygen species (ROS) able to destroy cancer cells and inactivate pathogens by combining the use of photosensitizers (PSs), light and molecular oxygen. To overcome the drawbacks of drug systemic administration, drug delivery systems (DDS) can be used to carrier the PSs, allowing higher therapeutic efficacy and minimal toxicological effects. Polymeric nanofibers produced by electrospinning emerged as powerful platforms for drug delivery applications. Electrospun nanofibers exhibit outstanding characteristics, such as large surface area to volume ratio associated with high drug loading, high porosity, flexibility, ability to incorporate and release a wide variety of therapeutic agents, biocompatibility and biodegradability. Due to the versatility of this technique, fibers with different morphologies and functionalities, including drug release profile can be produced. The possibility of scalability makes electrospinning even more attractive for the development of DDS. This review aims to explore and show an up to date of the huge potential of electrospun nanofibers as DDS for different PDT applications and discuss the opportunities and challenges in this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sofia M Costa
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal.,Department of Mechanical Engineering, University of Minho, Guimarães, 4800-058, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| |
Collapse
|
93
|
Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
94
|
Vasconcelos F, Lima AC, Bonani W, Silva CS, Reis RL, Motta A, Migliaresi C, Martins A, Neves NM. Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. BIOMATERIALS ADVANCES 2022; 134:112585. [PMID: 35525755 DOI: 10.1016/j.msec.2021.112585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory arthritic diseases are characterized by a persistent inflammation of the synovial tissues where tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) pro-inflammatory cytokines are over-expressed, leading to progressive musculoskeletal disability. Methotrexate (MTX), a disease-modifying-anti-rheumatic drug (DMARD) commonly applied in their treatment, can be used in combination with biological-DMARDs as anti-TNFα antibody to improve the treatments efficacy. However, their systemic administration comes with severe side-effects and limited therapeutic efficacy due to their off-target distribution and short half-life. To overcome such limitations, encapsulation of clinically relevant concentrations of MTX and anti-TNFα antibody into polycaprolactone (PCL) or poly(vinyl-alcohol) (PVA) microfluidic-assisted or coaxial electrospun fibrous meshes is proposed as local controlled dual drug release systems. Release studies show that microfluidic-assisted electrospinning meshes encapsulating both drugs achieved higher concentrations than coaxials. Biological assays using human articular chondrocytes (hACs) and monocytic cells (THP-1 cell line) demonstrate that fibrous meshes encapsulating the drugs are non-toxic. The systems' efficacy is proved by a significant decrease of TNFα and IL-6 concentrations in conditioned medium of lipopolysaccharide (LPS)-stimulated THP-1 cells, especially in the presence of microfluidic-assisted electrospun meshes, when compared with THP-1 conditioned medium (59.5% and 83.9% less, respectively). Therefore, microfluidic-assisted electrospinning fibrous meshes with encapsulating drugs represent an alternative to coaxial, as a local therapy for inflammatory arthritis diseases.
Collapse
Affiliation(s)
- Filipa Vasconcelos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Catarina S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
95
|
Robert B, Nallathambi G. Highly oriented poly (
m‐phenylene
isophthalamide)/polyacrylonitrile based coaxial nanofibers integrated with electrospun
polyacrylonitrile‐silver
nanoparticle: Application in air filtration of particulate and microbial contaminants. J Appl Polym Sci 2022. [DOI: 10.1002/app.52294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Berly Robert
- Department of Textile Technology Anna University Chennai India
| | | |
Collapse
|
96
|
Huang H, Song Y, Zhang Y, Li Y, Li J, Lu X, Wang C. Electrospun Nanofibers: Current Progress and Applications in Food Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1391-1409. [PMID: 35089013 DOI: 10.1021/acs.jafc.1c05352] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrospinning has the advantages of simple manufacturing equipment, a low spinning cost, wide range of spinnable materials, and a controllable mild process, which can continuously fabricate submicron or nanoscale ultrafine polymer fibers without high temperature or high pressure. The obtained nanofibrous films may have a large specific surface area, unique pore structure, and easy-to-modify surface characteristics. This review briefly introduces the types and fiber structures of electrospinning and summarizes the applications of electrospinning for food production (e.g., delivery systems for functional food, filtration of beverages), food packaging (e.g., intelligent packaging, antibacterial packaging, antioxidant packaging), and food analysis (e.g., pathogen detection, antibiotic detection, pesticide residue detection, food compositions analysis), focusing on the advantages of electrospinning applications in food systems. Furthermore, the limitations and future research directions of the technique are discussed.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yudong Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongxin Li
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiali Li
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
97
|
Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane. Int J Mol Sci 2022; 23:ijms23031895. [PMID: 35163814 PMCID: PMC8836966 DOI: 10.3390/ijms23031895] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/20/2022] Open
Abstract
Combining multiple drugs or biologically active substances for wound healing could not only resist the formation of multidrug resistant pathogens, but also achieve better therapeutic effects. Herein, the hydrophobic fluoroquinolone antibiotic ciprofloxacin (CIP) and the hydrophilic broad-spectrum antibiotic tetracycline hydrochloride (TH) were introduced into the coaxial polycaprolactone/gelatin (PCL/GEL) nanofiber mat with CIP loaded into the PCL (core layer) and TH loaded into the GEL (shell layer), developing antibacterial wound dressing with the co-delivering of the two antibiotics (PCL-CIP/GEL-TH). The nanostructure, physical properties, drug release, antibacterial property, and in vitro cytotoxicity were investigated accordingly. The results revealed that the CIP shows a long-lasting release of five days, reaching the releasing rate of 80.71%, while the cumulative drug release of TH reached 83.51% with a rapid release behavior of 12 h. The in vitro antibacterial activity demonstrated that the coaxial nanofiber mesh possesses strong antibacterial activity against E. coli and S. aureus. In addition, the coaxial mats showed superior biocompatibility toward human skin fibroblast cells (hSFCs). This study indicates that the developed PCL-CIP/GEL-TH nanofiber membranes hold enormous potential as wound dressing materials.
Collapse
|
98
|
Kasi G, Gnanasekar S, Zhang K, Kang ET, Xu LQ. Polyurethane‐based
composites with promising antibacterial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Sathishkumar Gnanasekar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Department of Chemical and Biomolecular Engineering National University of Singapore Kent Ridge Singapore
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| |
Collapse
|
99
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
100
|
Thapa RK, Grønlien KG, Tønnesen HH. Protein-Based Systems for Topical Antibacterial Therapy. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:685686. [PMID: 35047932 PMCID: PMC8757810 DOI: 10.3389/fmedt.2021.685686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, proteins are gaining attention as potential materials for antibacterial therapy. Proteins possess beneficial properties such as biocompatibility, biodegradability, low immunogenic response, ability to control drug release, and can act as protein-mimics in wound healing. Different plant- and animal-derived proteins can be developed into formulations (films, hydrogels, scaffolds, mats) for topical antibacterial therapy. The application areas for topical antibacterial therapy can be wide including bacterial infections in the skin (e.g., acne, wounds), eyelids, mouth, lips, etc. One of the major challenges of the healthcare system is chronic wound infections. Conventional treatment strategies for topical antibacterial therapy of infected wounds are inadequate, and the development of newer and optimized formulations is warranted. Therefore, this review focuses on recent advances in protein-based systems for topical antibacterial therapy in infected wounds. The opportunities and challenges of such protein-based systems along with their future prospects are discussed.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|