51
|
Wu F, Tian GQ, Yang JW, Tan J. Simultaneously improving the toughness and flame retardancy of Poly(lactic acid) by incorporating a novel bifunctional macromolecular ionomer. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Wang K, Wu K, Qu Z, Wu Y, Jiao E, Zheng X, Shi J. Flame-Retardant and Alarm-Sensitive composite films by covalent modification of MWCNT with dopamine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
53
|
Xiao F, Fontaine G, Bourbigot S. A highly efficient intumescent polybutylene succinate: flame retardancy and mechanistic aspects. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
54
|
Lu W, Jin Z. Synthesis of phosphorus/nitrogen containing intumescent flame retardants from p-hydroxybenzaldehyde, vanillin and syringaldehyde for rigid polyurethane foams. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Zhu K, Jiang Z, Xu X, Zhang Y, Zhu M, Wang J, Ren A. Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization. RSC Adv 2021; 12:168-180. [PMID: 35424466 PMCID: PMC8978624 DOI: 10.1039/d1ra07410e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Extensive research has been conducted on polyester flame retardants and anti-droplet modifications in recent years. The conventional methods used to improve the effectiveness of the anti-droplet modifications usually involve improving the melt fluidity and the combustion char formation through reactive cross-linking. However, these methods, while reducing the droplets, may produce more smoke. This study proposes a combustion cross-linking method which avoids the droplet and flame retardancy synergistic modification problem. Based on the flame retardancy of polyester, anti-droplet properties were realized using a collaborative cross – linking structure formed by a phosphorus – containing flame – retardant group and acid silicon solvent to achieve a flame retardant and anti-droplets result. The results show that the phosphorus–silicon copolyester presents an enhancement effect for flame retardancy, confirmed by obvious reductions in the peak value of heat release rate (78.4%) and total heat release (44.2%). Meanwhile, the total smoke release and smoke product rate of phosphorus–silicon copolyester are decreased by 45.1% and 41.5%, respectively. And the phosphorus–silicon copolyester has a high LOI value of 34.8 ± 0.1% and UL-94 is V-0 rating with superior anti-dripping performance. Flame retardancy index (FRI) of the copolyesters containing phosphorus–silica are up to 4.3093 (good flame retardancy). Nonisothermal differential scanning calorimetry (DSC) was performed for qualitative analysis of network formation by the aid of Cure Index (CI) dimensionless criterion. It was observed that the acidic silica led to Excellent cure situation. The TG-DSC, XPS, and FTIR results validate the thermal cross-linking ability of the copolymer due to the synergistic cross-linking effect between the self-cross-linking characteristic of the catalysed acidic silica sol containing the phosphorus flame retardant. The SEM-EDX and Raman results further verify the effectiveness of the condensed-phase flame-retardant mechanism. Phosphorus–silicon copolyester has good spinnability, flame retardancy and anti-droplets properties. Which provides a simple method for preparing polyester by using this combustion synergistic crosslinking effect to achieve flame retardant and anti-dripping modification of copolymers. Scheme of proposed thermal cross-linking mechanism.![]()
Collapse
Affiliation(s)
- Keyu Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China .,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology Changsha 410073 PR China
| | - Xiaotong Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Yun Zhang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Jianghua Wang
- Jiangsu Guowanggaoke Fiber Co., Ltd Suzhou 215228 PR China
| | - Alex Ren
- Shanghai Rongteng Packing Service Co., Ltd Shanghai 201620 PR China
| |
Collapse
|
56
|
Dong F, Luo Z, Wang B. Preparation of Mn 2+ Doped Piperazine Phosphate as a Char-Forming Agent for Improving the Fire Safety of Polypropylene/Ammonium Polyphosphate Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7589. [PMID: 34947182 PMCID: PMC8707045 DOI: 10.3390/ma14247589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
A piperazine phosphate doped with Mn2+ (HP-Mn), as a new char-forming agent for intumescent flame retardant systems (IFR), was designed and synthesized using 1-hydroxy ethylidene-1,1-diphosphonic acid, piperazine, and manganese acetate tetrahydrate as raw materials. The effect of HP-Mn and ammonium polyphosphate (APP) on the fire safety and thermal stability of polypropylene (PP) was investigated. The results showed that the combined incorporation of 25 wt.% APP/HP-Mn at a ratio of 1:1 endowed the flame retardant PP (PP6) composite with the limiting oxygen index (LOI) of 30.7% and UL-94 V-0 rating. In comparison with the pure PP, the peak heat release rate (PHRR), the total heat release (THR), and the smoke production rate (PSPR) of the PP6 were reduced by 74%, 30%, and 70%, respectively. SEM and Raman analysis of the char residues demonstrated that the Mn2+ displayed a catalytic cross-linking charring ability to form a continuous and compact carbon layer with a high degree of graphitization, which can effectively improve the flame retardancy of PP/APP composites. A possible flame-retardant mechanism was proposed to reveal the synergistic effect between APP and HP-Mn.
Collapse
Affiliation(s)
| | | | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (F.D.); (Z.L.)
| |
Collapse
|
57
|
An Effective Expanded Graphite Coating on Polystyrene Bead for Improving Flame Retardancy. MATERIALS 2021; 14:ma14216729. [PMID: 34772254 PMCID: PMC8587118 DOI: 10.3390/ma14216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Although foamed plastic insulation is widely used in construction in the Korean market, it is vulnerable to fire. To improve the flame retardancy, the method of flame-retardant coating with the EG in water-soluble state on the surface of expanded polystyrene (EPS) beads has been widely used. However, polystyrene beads coated with a water-soluble flame retardant easily separate the coated flame retardant in manufacturing. In this study is devised a flame-retardant coating and two steps of coating process for adhering the flame-retardant coating film evenly to the surface of the polystyrene bead without exfoliation. It was analyzed whether a flame-retardant EPS (FR-EPS) with excellent flame retardancy could be manufactured using polystyrene beads coated in this way. Ten FR-EPS samples satisfied the HF-1 and V-0 levels in horizontal and vertical burning tests, respectively. The THR of eight FR-EPS samples for ten minutes did not exceed 8 MJ∙m−2 and the maximum HRR did not exceed 200 kW∙m−2 for more than ten consecutive seconds. FR-EPS passed the building material standard of semi-nonflammability in Korean regulations, in contrast to commercial EPS, which have not passed the semi-nonflammability standard. It was also analyzed how effective the designed coating is in this study, comparing it with composites that were planned to improve the flame resistance of polystyrene, as reported in the literature. Flame Retardancy Index (FRI) values of FR-EPS proved the “excellent” level and had higher values compared with other polystyrene composites. These results demonstrated that the coated EPS containing a water-soluble flame retardant manufactured from EG and two steps of application with the coating solution achieved fire safety standard regulations.
Collapse
|
58
|
Xu Y, Qiu Y, Yan C, Liu L, Xu M, Xu B, Li B. A novel and multifunctional flame retardant nucleating agent towards superior fire safety and crystallization properties for biodegradable poly (lactic acid). ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
59
|
Yan J, Xu P, Zhang P, Fan H. Surface-modified ammonium polyphosphate for flame-retardant and reinforced polyurethane composites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
60
|
|
61
|
|
62
|
Sun J, Qian L, Li J. Toughening and strengthening epoxy resin with flame retardant molecular structure based on tyrosine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
63
|
Plasticized Poly(vinyl chloride) Modified with Developed Fire Retardant System Based on Nanoclay and L-histidinium Dihydrogen Phosphate-Phosphoric Acid. Polymers (Basel) 2021; 13:polym13172909. [PMID: 34502949 PMCID: PMC8433658 DOI: 10.3390/polym13172909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
The current work assessed the burning behavior of plasticized poly(vinyl chloride) (PVC-P) modified with a two-component composition, consisting of L-histidinium dihydrogen phosphate-phosphoric acid (LHP) and nanoclay (n). The thermal and thermodynamical properties of the PVC-P containing from 10 to 30 wt% of the fire retardant system (FRS) were determined by thermogravimetric analysis (TG) as well as by dynamic mechanical thermal analysis (DMTA). In contrast, fire behavior and smoke emission were studied with a cone calorimeter (CC) and smoke density chamber. The research was complemented by a microstructure analysis, using a scanning electron microscope, of the materials before and after burning CC tests. The effects were compared to those achieved for PVC-P, PVC-P with a commercially available fire retardant, the substrate used for the produced LHP, and the mixture of LHP and zinc borate, both of which contained the same share of nanoclay. Based on a notable improvement, especially in smoke suppression suggests that the n/LHP system may be a candidate fire retardant for decreasing the flammability of PVC-P.
Collapse
|
64
|
Jin Q, Tian GQ, He R, Gu HL, Wu F, Zhu J. Simultaneously enhancing the crystallization rate and fire retardancy of poly(lactic acid) by using a novel bifunctional additive trimethylamine phenylphosphonate. RSC Adv 2021; 11:27346-27355. [PMID: 35480655 PMCID: PMC9037895 DOI: 10.1039/d1ra02862f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/01/2021] [Indexed: 11/21/2022] Open
Abstract
Simultaneously regulating the crystallizing and combustion behaviors of poly(lactic acid) (PLA) will be conducive to its further development in the fields of electronic appliances, automotive and rail transit materials. To achieve this goal, a novel bifunctional additive triethylamine phenylphosphonate (TEAP) was synthesized through acid-base neutralization reaction between trimethylamine and phenylphosphonic acid. When TEAP was added into PLA, the crystallization behaviors of PLA/TEAP assessed by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) suggested that TEAP acted as a nucleating agent and plasticizer for PLA, which effectively increased the crystallization rate of PLA. However, PLA with 3 wt% TEAP showed a slower crystallization rate than that of PLA with 1 wt% TEAP due to the filler aggregation of TEAP. Thus, the crystallization rate increased first and then slightly decreased with increasing content of TEAP. Compared with the variation of the crystallization rate, the long period (L) and amorphous layer thickness (L a) resulting from SAXS showed opposite trends, while the average crystal thickness (L c) changed slightly; the reason may relate to the variation of the number of lamellae with increasing the content of TEAP. Meanwhile, the results of WAXD and Raman spectra showed the crystal structure of PLA was not affected by the addition of TEAP. The combustion behaviors of PLA and PLA/TEAP were evaluated by the limiting oxygen index (LOI), UL-94 test, cone calorimetry test (CCT) and thermal gravimetric analyses coupled to Fourier transform infrared spectroscopy (TGA-FTIR). According to the results, TEAP mainly promotes the removal of melt dripping, hence brings away heat and delays the combustion. Besides, the production of phosphorus-containing free radicals can quench hydrogen or oxygen free radicals in the fire. Thus, the fire safety of PLA is significantly improved by adding a very low content of TEAP (1-3 wt%). Only 1 wt% loading of TEAP can increase the LOI value of PLA from 19.5 vol% to 28.6 vol%, pass the UL-94 V-0 rating and have a low peak heat release rate of 404 kW m-2.
Collapse
Affiliation(s)
- Qin Jin
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences Chongqing 402160 P. R. China +86-023-15123252084, +86-023-49512058 +86-023-15123252084, +86-023-49512058
| | - Guo-Qiang Tian
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Rong He
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences Chongqing 402160 P. R. China +86-023-15123252084, +86-023-49512058 +86-023-15123252084, +86-023-49512058
| | - Hai-Long Gu
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences Chongqing 402160 P. R. China +86-023-15123252084, +86-023-49512058 +86-023-15123252084, +86-023-49512058
| | - Fang Wu
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences Chongqing 402160 P. R. China +86-023-15123252084, +86-023-49512058 +86-023-15123252084, +86-023-49512058
| | - Jiang Zhu
- College of Materials Science and Engineering, Chongqing University of Arts and Sciences Chongqing 402160 P. R. China +86-023-15123252084, +86-023-49512058 +86-023-15123252084, +86-023-49512058
| |
Collapse
|
65
|
Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
66
|
The influences of graphene and carbon nanotubes on properties of waterborne intumescent fire resistive coating. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Towards Selection Charts for Epoxy Resin, Unsaturated Polyester Resin and Their Fibre-Fabric Composites with Flame Retardants. MATERIALS 2021; 14:ma14051181. [PMID: 33802309 PMCID: PMC7959149 DOI: 10.3390/ma14051181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
Epoxy and unsaturated polyester resins are the most used thermosetting polymers. They are commonly used in electronics, construction, marine, automotive and aircraft industries. Moreover, reinforcing both epoxy and unsaturated polyester resins with carbon or glass fibre in a fabric form has enabled them to be used in high-performance applications. However, their organic nature as any other polymeric materials made them highly flammable materials. Enhancing the flame retardancy performance of thermosetting polymers and their composites can be improved by the addition of flame-retardant materials, but this comes at the expense of their mechanical properties. In this regard, a comprehensive review on the recent research articles that studied the flame retardancy of epoxy resin, unsaturated polyester resin and their composites were covered. Flame retardancy performance of different flame retardant/polymer systems was evaluated in terms of Flame Retardancy index (FRI) that was calculated based on the data extracted from the cone calorimeter test. Furthermore, flame retardant selection charts that relate between the flame retardancy level with mechanical properties in the aspects of tensile and flexural strength were presented. This review paper is also dedicated to providing the reader with a brief overview on the combustion mechanism of polymeric materials, their flammability behaviour and the commonly used flammability testing techniques and the mechanism of action of flame retardants.
Collapse
|
68
|
Xu K, Tian X, Cao Y, He Y, Xia Y, Quan F. Suppression of Smoldering of Calcium Alginate Flame-Retardant Paper by Flame-Retardant Polyamide-66. Polymers (Basel) 2021; 13:polym13030430. [PMID: 33572902 PMCID: PMC7866267 DOI: 10.3390/polym13030430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium alginate (Ca-Alg) fibers are renewable fibers obtained from the ocean with essential flame retardancy, which have recently been applied as components of flame-retardant paper. However, the application of Ca-Alg fibers is limited because of their tendency to smolder. Therefore, composites papers were fabricated by blending using flame-retardant polyamide-66 (FR-PA), with a 5 wt% content of phosphorous flame retardant, which will form molten carbon during combustion. When the FR-PA content is 30% of the composite paper, FR-PA forms a compact carbon layer on the surface of the Ca-Alg fibers during combustion, which isolates the mass/heat transfer and effectively suppresses the smoldering of Ca-Alg. This consists of a condensed flame retardant mechanism. Furthermore, the combustion and thermal degradation behavior of paper were analyzed by cone calorimetry (CONE), TG and TG-IR. Ca-Alg in the composite paper decomposed and released CO2 before ignition, which delayed the ignition time. Simultaneously, the FR-PA contained in the composite paper effectively inhibited the combustion of volatile combustibles in the gas phase. Overall, FR-PA and Ca-Alg improve the thermal stability of the composite paper in different temperature regions under air atmosphere. Ca-Alg reduces the formation of aromatic products and NH3 in the composite paper under N2 atmosphere. Ca-Alg-based paper with excellent flame retardancy was successfully prepared.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China; (K.X.); (X.T.); (Y.X.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (Y.H.)
| | - Xing Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China; (K.X.); (X.T.); (Y.X.)
| | - Ying Cao
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (Y.H.)
| | - Yaqi He
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (Y.H.)
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China; (K.X.); (X.T.); (Y.X.)
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China; (K.X.); (X.T.); (Y.X.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.C.); (Y.H.)
- Correspondence:
| |
Collapse
|
69
|
Wang K, Liu H, Wang C, Huang W, Tian Q, Fu Q, Yan W. Flame-Retardant Performance of Epoxy Resin Composites with SiO 2 Nanoparticles and Phenethyl-Bridged DOPO Derivative. ACS OMEGA 2021; 6:666-674. [PMID: 33458519 PMCID: PMC7807740 DOI: 10.1021/acsomega.0c05208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Flame retardancy of epoxy resin (EP) plays a vital role in its applications. When inorganic nanomaterials form inorganic/organic nanocomposites, they exhibit special flame-retardant effects. In this study, EP nanocomposites were prepared by the incorporation of SiO2 nanoparticles and phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative (DiDOPO), and the synergistic effects of SiO2 nanoparticles and DiDOPO on the flame-retardant performance of EP were discussed. Results indicated that the introduction of only 15 wt % SiO2 and 5 wt % DiDOPO in EP leads to the increase in the limiting oxygen index from 21.8 to 30.2%, and the nanocomposites achieve the UL-94 V-0 rating. Thermogravimetric analysis revealed that char yield increases with the increase in the SiO2 content of the nanocomposites and that an increased amount of thermally stable carbonaceous char is formed. SiO2 nanoparticles can improve the thermal stability and mechanical performance of EP; hence, the nanoparticles can serve as an efficient adjuvant for the DiDOPO/EP flame-retardant system.
Collapse
Affiliation(s)
- Kui Wang
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Hang Liu
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Chong Wang
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Weijiang Huang
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Qin Tian
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Qiuping Fu
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| | - Wei Yan
- School of Chemistry
and Materials
Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
70
|
|
71
|
|
72
|
Marset D, Dolza C, Fages E, Gonga E, Gutiérrez O, Gomez-Caturla J, Ivorra-Martinez J, Sanchez-Nacher L, Quiles-Carrillo L. The Effect of Halloysite Nanotubes on the Fire Retardancy Properties of Partially Biobased Polyamide 610. Polymers (Basel) 2020; 12:E3050. [PMID: 33352673 PMCID: PMC7765851 DOI: 10.3390/polym12123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
The main objective of the work reported here was the analysis and evaluation of halloysite nanotubes (HNTs) as natural flame retardancy filler in partially biobased polyamide 610 (PA610), with 63% of carbon from natural sources. HNTs are naturally occurring clays with a nanotube-like shape. PA610 compounds containing 10%, 20%, and 30% HNT were obtained in a twin-screw co-rotating extruder. The resulting blends were injection molded to create standard samples for fire testing. The incorporation of the HNTs in the PA610 matrix leads to a reduction both in the optical density and a significant reduction in the number of toxic gases emitted during combustion. This improvement in fire properties is relevant in applications where fire safety is required. With regard to calorimetric cone results, the incorporation of 30% HNTs achieved a significant reduction in terms of the peak values obtained of the heat released rate (HRR), changing from 743 kW/m2 to about 580 kW/m2 and directly modifying the shape of the characteristic curve. This improvement in the heat released has produced a delay in the mass transfer of the volatile decomposition products, which are entrapped inside the HNTs' lumen, making it difficult for the sample to burn. However, in relation to the ignition time of the samples (TTI), the incorporation of HNTs reduces the ignition start time about 20 s. The results indicate that it is possible to obtain polymer formulations with a high renewable content such as PA610, and a natural occurring inorganic filler in the form of a nanotube, i.e., HNTs, with good flame retardancy properties in terms of toxicity, optical density and UL94 test.
Collapse
Affiliation(s)
- David Marset
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (D.M.); (C.D.); (E.F.); (E.G.); (O.G.)
| | - Celia Dolza
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (D.M.); (C.D.); (E.F.); (E.G.); (O.G.)
| | - Eduardo Fages
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (D.M.); (C.D.); (E.F.); (E.G.); (O.G.)
| | - Eloi Gonga
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (D.M.); (C.D.); (E.F.); (E.G.); (O.G.)
| | - Oscar Gutiérrez
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (D.M.); (C.D.); (E.F.); (E.G.); (O.G.)
| | - Jaume Gomez-Caturla
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.G.-C.); (L.S.-N.)
| | - Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.G.-C.); (L.S.-N.)
| | - Lourdes Sanchez-Nacher
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.G.-C.); (L.S.-N.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.G.-C.); (L.S.-N.)
| |
Collapse
|
73
|
Improving Fire Performances of PEAL: More Second-Life Options for Recycled Tetra Pak ®. Polymers (Basel) 2020; 12:polym12102357. [PMID: 33066587 PMCID: PMC7602193 DOI: 10.3390/polym12102357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to evaluate and improve the flammability and combustion behavior of the polyethylene-based material obtained from the recycling of Tetra Pak® (PEAL) to widen its use to applications where these properties are required. Firstly, its thermal stability was investigated with thermogravimetric analysis, resulting in an enhancement in the main degradation step temperature (from 385 °C to 421 °C) due to the presence of the aluminum-flakes. Then, to improve the poor flammability (HB in UL-94 test) and combustion behavior (Fire Performance Index of 0.07) of the raw material, two flame retardant approaches were tested: an intumescent system made of ammonium polyphosphate and pentaerythritol, and magnesium hydroxide. In addition, the effectiveness of polyethylene as a charring agent was evaluated. Characterization was made with UL-94, cone calorimeter, and morphologic analysis. For all the materials tested, the temperature of the main weight loss step increased and the flammability rating improved (V2 for intumescent and V0 for magnesium hydroxide reached). Moreover, fire hazard decreased (Fire Performance Index of 0.15 and 0.55; Flame Retardancy Index of 2.6 and 10.0). Referring to the morphology, full compatibility was found in the PEAL-magnesium hydroxide compound, while PEAL-intumescent appeared as a heterogeneous system.
Collapse
|
74
|
Netkueakul W, Fischer B, Walder C, Nüesch F, Rees M, Jovic M, Gaan S, Jacob P, Wang J. Effects of Combining Graphene Nanoplatelet and Phosphorous Flame Retardant as Additives on Mechanical Properties and Flame Retardancy of Epoxy Nanocomposite. Polymers (Basel) 2020; 12:polym12102349. [PMID: 33066401 PMCID: PMC7602215 DOI: 10.3390/polym12102349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
The effects of combining 0.1–5 wt % graphene nanoplatelet (GNP) and 3–30 wt % phosphorous flame retardant, 9,10- dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as fillers in epoxy polymer on the mechanical, flame retardancy, and electrical properties of the epoxy nanocomposites was investigated. GNP was homogeneously dispersed into the epoxy matrix using a solvent-free three-roll milling process, while DOPO was incorporated into the epoxy resin by mechanical stirring at elevated temperature. The incorporation of DOPO reduced the crosslinking density of the epoxy resin. When using polyetheramine as a hardener, the structural rigidity effect of DOPO overshadowed the crosslinking effect and governed the flexural moduli of epoxy/DOPO resins. The flexural moduli of the nanocomposites were improved by adding GNP up to 5 wt % and DOPO up to 30 wt %, whereas the flexural strengths deteriorated when the GNP and DOPO loading were higher than 1 wt % and 10 wt %, respectively. Limited by the adverse effects on mechanical property, the loading combinations of GNP and DOPO within the range of 0–1 wt % and 0–10 wt %, respectively, in epoxy resin were further studied. Flame retardancy index (FRI), which depended on three parameters obtained from cone calorimetry, was considered to evaluate the flame retardancy of the epoxy composites. DOPO showed better performance than GNP as the flame retardant additive, while combining DOPO and GNP could further improve FRI to some extent. With the combination of 0.5 wt % GNP and 10 wt % DOPO, improvement in both mechanical properties and flame retardant efficiency of the nanocomposite was observed. Such a combination did not affect the electrical conductivity of the nanocomposites since the percolation threshold was at 1.6 wt % GNP. Our results enhance the understanding of the structure–property relationship of additive-filled epoxy resin composites and serve as a property constraining guidance for the composite manufacturing.
Collapse
Affiliation(s)
- Woranan Netkueakul
- Institute of Environmental Engineering, ETH Zurich (Swiss Federal Institute of Technology Zurich), 8093 Zurich, Switzerland;
- Laboratory for Advanced Analytical Technologies, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Beatrice Fischer
- Laboratory for Functional Polymers, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (B.F.); (C.W.); (F.N.)
| | - Christian Walder
- Laboratory for Functional Polymers, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (B.F.); (C.W.); (F.N.)
| | - Frank Nüesch
- Laboratory for Functional Polymers, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; (B.F.); (C.W.); (F.N.)
| | - Marcel Rees
- Laboratory for Mechanical Systems Engineering, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| | - Milijana Jovic
- Additives and Chemistry Group, Advanced Fibers, Empa—Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland; (M.J.); (S.G.)
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Empa—Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland; (M.J.); (S.G.)
| | - Peter Jacob
- Electronics and Reliability Center, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich (Swiss Federal Institute of Technology Zurich), 8093 Zurich, Switzerland;
- Laboratory for Advanced Analytical Technologies, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Correspondence:
| |
Collapse
|
75
|
Qu L, Sui Y, Zhang C, Li P, Dai X, Xu B. Compatible cyclophosphazene-functionalized graphene hybrids to improve flame retardancy for epoxy nanocomposites. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
76
|
A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness. Polymers (Basel) 2020; 12:polym12091942. [PMID: 32872093 PMCID: PMC7564064 DOI: 10.3390/polym12091942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
The addition of plasticizers makes plastics flammable, and thus, poses a potential risk to the environment. In previous researches, plasticizers with flame retardancy had been synthesized, but their eco-friendliness had not been tested or described. Thus, in this paper, eco-friendliness plasticizers with flame retardancy were designed based on phthalic acid esters (PAEs), which are known as common plasticizers and major plastic additives. For a comprehensive analysis, such as flammability, biotoxicity, and enrichment effects, 17 PAEs’ comprehensive evaluation values were calculated based on the ideal point method. Further, a multi-effect three-dimensional quantitative structure-activity relationship (3D-QSAR) model of PAEs’ flammability, biotoxicity and enrichment effects was constructed. Thus, 18 dimethyl phthalate (DMP) derivatives and 20 diallyl phthalate (DAP) derivatives were designed based on three-dimensional contour maps. Through evaluation of eco-friendliness and flammability, six eco-friendly PAE derivatives with flame retardancy were screened out. Based on contour maps analysis, it was confirmed that the introduction of large groups and hydrophobic groups was beneficial to the simultaneous improvement of PAEs’ comprehensive effects, and multiple effects. In addition, the group properties were correlated significantly with improved degrees of the comprehensive effects of corresponding PAE derivatives, confirming the feasibility of the comprehensive evaluation method and modified scheme.
Collapse
|
77
|
Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the flammability of ecologically friendly, 100% natural larch and poplar bark-based panels bonded with clay. The clay acted as a fire retardant, and it improved the fire resistance of the boards by 12–15% for the surface and 27–39% for the edge of the testing specimens. The thermal conductivity was also analyzed. Although the panels had a density ranging from 600 to 900 kg/m3, thermal conductivity for the panel with a density of 600 kg/m3 was excellent, and it was comparable to lightweight insulation panels with much lower densities. Besides that, the advantage of the bark clay boards, as an insulation material, is mostly in an accumulative capacity similar to wood cement boards, and it can significantly improve the climatic stability of indoor spaces that have low ventilation rates. Bark boards with clay, similar to wood cement composites (wood wool cement composites and wood particle cement composites), have low mechanical properties and elasticity. Therefore, there their use is limited to non-structural paneling applications. These ecologically friendly, 100% natural and recyclable composites can be mostly used with respect to their thermal insulation, acoustics and fire resistance properties.
Collapse
|
78
|
Wang N, Liu H, Zhang J, Zhang M, Fang Q, Wang D. Synergistic effect of graphene oxide and boron-nitrogen structure on flame retardancy of natural rubber/IFR composites. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
79
|
Seidi F, Movahedifar E, Naderi G, Akbari V, Ducos F, Shamsi R, Vahabi H, Saeb MR. Flame Retardant Polypropylenes: A Review. Polymers (Basel) 2020; 12:polym12081701. [PMID: 32751298 PMCID: PMC7464193 DOI: 10.3390/polym12081701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China;
| | - Elnaz Movahedifar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965/115, Iran; (E.M.); (G.N.)
| | - Ghasem Naderi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965/115, Iran; (E.M.); (G.N.)
| | - Vahideh Akbari
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France;
| | - Franck Ducos
- Université de Lorraine, IUT de Moselle Est, IUTSGM, 57600 Forbach, France;
| | - Ramin Shamsi
- Research and Development Center, Marun Petrochemical Company, Mahshahr 63531 69311, Iran;
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France;
- Correspondence: (H.V.); or (M.R.S.); Tel.: +33-(0)38-793-9186 (H.V.); +98-912-826-4307 (M.R.S.); Fax: +33-(0)38-793-9101 (H.V.)
| | - Mohammad Reza Saeb
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France;
- Correspondence: (H.V.); or (M.R.S.); Tel.: +33-(0)38-793-9186 (H.V.); +98-912-826-4307 (M.R.S.); Fax: +33-(0)38-793-9101 (H.V.)
| |
Collapse
|
80
|
Li C, Ma C, Li J. Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Caixia Li
- Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Chao Ma
- Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Juan Li
- Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
81
|
Layer-by-layer assembled diatomite based on chitosan and ammonium polyphosphate to increase the fire safety of unsaturated polyester resins. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
82
|
Wang J, Xue L, Zhao B, Lin G, Jin X, Liu D, Zhu H, Yang J, Shang K. Flame Retardancy, Fire Behavior, and Flame Retardant Mechanism of Intumescent Flame Retardant EPDM Containing Ammonium Polyphosphate/Pentaerythrotol and Expandable Graphite. MATERIALS 2019; 12:ma12244035. [PMID: 31817279 PMCID: PMC6947204 DOI: 10.3390/ma12244035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The intumescent flame retardant ethylene–propylene–diene rubber (EPDM) was prepared using intumescent flame retardant (IFR), including ammonium polyphosphate (APP) /pentaerythrotol (PER) and expandable graphite (EG), as the flame retardant agent. The effects of IFR and EG on the flame retardancy, fire behavior, and thermal stability of the EPDM were investigated. The results show that IFR and EG have excellent synergistic flame retardant effects. When the mass ratio of IFR to EG is 3:1 and the total addition content is 40 phr, the limiting oxygen index (LOI) value of the EPDM material (EPDM/IFR/EG) can reach 30.4%, and it can pass a V-0 rating in the vertical combustion (UL-94) test. Meanwhile, during the cone calorimetry test, the heat release rate and total heat release of EPDM/IFR/EG are 69.0% and 33.3% lower than that of the pure EPDM, respectively, and the smoke release of the material also decreases significantly, suggesting that the sample shows good fire safety. In addition, the flame retardant mechanism of IFR and EG is systematically investigated by thermogravimetric analysis/infrared spectrometry (TG-IR), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), and the results indicate that IFR and EG have only physical interaction. Moreover, the reason why IFR exhibits a poor flame retardant effect in EPDM materials is explained.
Collapse
Affiliation(s)
- Junsheng Wang
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
| | - Lei Xue
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.X.); (H.Z.)
| | - Bi Zhao
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
| | - Guide Lin
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
| | - Xing Jin
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
| | - Dan Liu
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
| | - Haibo Zhu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.X.); (H.Z.)
| | - Jinjun Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.X.); (H.Z.)
- Correspondence: (J.Y.); (K.S.); Tel.: +86-022-23861237 (K.S.)
| | - Ke Shang
- Tianjin Fire Research Institute of Ministry of Emergency Management, 110 Weijin Nan Road, Nankai District, Tianjin 300381, China; (J.W.); (B.Z.); (G.L.); (X.J.); (D.L.)
- Correspondence: (J.Y.); (K.S.); Tel.: +86-022-23861237 (K.S.)
| |
Collapse
|
83
|
Beduini A, Carosio F, Ferruti P, Ranucci E, Alongi J. Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polymers (Basel) 2019; 11:E1904. [PMID: 31752336 PMCID: PMC6918177 DOI: 10.3390/polym11111904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 11/16/2022] Open
Abstract
The polyamidoamine derived from N,N'-methylenebisacrylamide (M) and glycine (G), M-G, has been shown to be an effective flame-retardant (FR) for cotton in horizontal flame spread tests (HFST), extinguishing the flame at 5% add-on. Its activity was attributed to its intrinsic intumescence. In vertical flame spread tests (VFST), M-G failed to extinguish the flame even at 30% add-on. Conversely, in VFST, the polyamidoamine derived from M and cystine (C), M-C, inhibited cotton combustion at 16% add-on, but in HFST failed to extinguish the flame below 12% add-on. Its activity was ascribed to the release of sulfur-containing volatiles acting as radical scavengers. In this work, the FR effectiveness of M-Gm-Cn copolymers with different G/C ratio was compared with that of the M-G and M-C homopolymers and of M-G/M-C blends of the same compositions. In HFST, both copolymers and blends extinguished the flame. In particular, M-G50-C50 and (M-G/M-C)50/50 extinguished the flame, even at 7% add-on. In VFST, the copolymers with ≥50% M-C units, similar to M-C, inhibited cotton combustion at 16% add-on. At the same add-on, the M-G/M-C blends failed to extinguish the flame. It may be concluded that, in contrast to blends, copolymers combined the merits of both homopolymers in all tests.
Collapse
Affiliation(s)
- Alessandro Beduini
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria campus, viale T. Michel, 15121 Alessandria, Italy;
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| |
Collapse
|
84
|
Movahedifar E, Vahabi H, Saeb MR, Thomas S. Flame Retardant Epoxy Composites on the Road of Innovation: An Analysis with Flame Retardancy Index for Future Development. Molecules 2019; 24:E3964. [PMID: 31683861 PMCID: PMC6866146 DOI: 10.3390/molecules24213964] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Nowadays, epoxy composites are elements of engineering materials and systems. Although they are known as versatile materials, epoxy resins suffer from high flammability. In this sense, flame retardancy analysis has been recognized as an undeniable requirement for developing future generations of epoxy-based systems. A considerable proportion of the literature on epoxy composites has been devoted to the use of phosphorus-based additives. Nevertheless, innovative flame retardants have coincidentally been under investigation to meet market requirements. This review paper attempts to give an overview of the research on flame retardant epoxy composites by classification of literature in terms of phosphorus (P), non-phosphorus (NP), and combinations of P/NP additives. A comprehensive set of data on cone calorimetry measurements applied on P-, NP-, and P/NP-incorporated epoxy systems was collected and treated. The performance of epoxy composites was qualitatively discussed as Poor, Good, and Excellent cases identified and distinguished by the use of the universal Flame Retardancy Index (FRI). Moreover, evaluations were rechecked by considering the UL-94 test data in four groups as V0, V1, V2, and nonrated (NR). The dimensionless FRI allowed for comparison between flame retardancy performances of epoxy composites. The results of this survey can pave the way for future innovations in developing flame-retardant additives for epoxy.
Collapse
Affiliation(s)
- Elnaz Movahedifar
- Department of Polymer Engineering, Amirkabir University of Technology-Mahshahr Campus, Mahshahr 424, Iran.
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France.
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélec, Université Paris-Saclay, 57070 Metz, France.
| | - Mohammad Reza Saeb
- Departments of Resin and Additives, Institute for Color Science and Technology, Tehran P.O. Box 16765-654, Iran.
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam, Kerala 686560, India.
| |
Collapse
|
85
|
Vahabi H, Laoutid F, Movahedifar E, Khalili R, Rahmati N, Vagner C, Cochez M, Brison L, Ducos F, Ganjali MR, Saeb MR. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by
Flame Retardancy Index. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4638] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Henri Vahabi
- CentraleSupélec, LMOPSUniversité de Lorraine Metz France
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélecUniversité Paris‐Saclay Metz France
| | - Fouad Laoutid
- Laboratory of Polymeric and Composite MaterialsMateria Nova Research Center Mons Belgium
| | - Elnaz Movahedifar
- Department of Polymer EngineeringAmirkabir University of Technology–Mahshahr Campus Mahshahr Iran
| | - Reza Khalili
- CentraleSupélec, LMOPSUniversité de Lorraine Metz France
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélecUniversité Paris‐Saclay Metz France
| | - Negar Rahmati
- Department of Resin and AdditivesInstitute for Color Science and Technology Tehran Iran
- Advanced Materials GroupIranian Color Society (ICS) Tehran Iran
| | - Christelle Vagner
- CentraleSupélec, LMOPSUniversité de Lorraine Metz France
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélecUniversité Paris‐Saclay Metz France
- Aix Marseille Univ, CNRS, MADIREL Marseille France
| | - Marianne Cochez
- CentraleSupélec, LMOPSUniversité de Lorraine Metz France
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélecUniversité Paris‐Saclay Metz France
| | - Loic Brison
- Laboratory of Polymeric and Composite MaterialsMateria Nova Research Center Mons Belgium
| | - Franck Ducos
- Department SGMUniversité de Lorraine, IUT de Moselle Est Forbach France
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of Tehran Tehran Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Saeb
- CentraleSupélec, LMOPSUniversité de Lorraine Metz France
- Laboratoire Matériaux Optiques, Photoniques et Systèmes, CentraleSupélecUniversité Paris‐Saclay Metz France
- Department of Resin and AdditivesInstitute for Color Science and Technology Tehran Iran
- Advanced Materials GroupIranian Color Society (ICS) Tehran Iran
- Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of Tehran Tehran Iran
| |
Collapse
|