51
|
Rubin Pedrazzo A, Trotta F, Hoti G, Cesano F, Zanetti M. Sustainable mechanochemical synthesis of β-cyclodextrin polymers by twin screw extrusion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:251-263. [PMID: 34424473 PMCID: PMC8724137 DOI: 10.1007/s11356-021-15187-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Cyclodextrin nanosponges (CD-NS) are cross-linked cyclodextrin polymers characterized by a nanostructured three-dimensional network. CD-NSs in the last years found many different applications in the pharmaceutical field for the controlled release of drugs and for the absorption of undesired substances from physiological media, food, and wastewater. Most of CD-NS syntheses involve the solubilization of the chosen CD in closed batch, using a suitable organic polar aprotic liquid, which may affect potential environmental or biomedical applications. Since the research is now moving towards more sustainable approaches, new and greener syntheses of CD-NS are now being developed. Here, it is reported a new eco-friendly and efficient synthesis of nanosponges through mechanochemistry. Mechanochemistry involves the application of mechanical forces to drive and control chemical reactions by transferring energy to chemical bonds. The mechanochemical approach involves the use of a twin-screw extruder (TSE) as a chemical reactor: TSE are capable of fine temperature control and, furthermore, TS Extrusion is a continuous process and not a batch process. Among the many available CD-NS syntheses, we tested our solvent-free approach on a β-CD/citric acid (CA) system. Moreover, using TSE, the same polymer was obtained in a considerably shorter time. The so obtained NSs were used for the adsorption and removal of probe molecules, in comparison with NSs prepared by cross-linking β-CD with CA in batch.
Collapse
Affiliation(s)
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Federico Cesano
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Marco Zanetti
- ICxT Centre, University of Torino, Lungo Dora Siena 100, 10153, Torino, Italy
| |
Collapse
|
52
|
Pawar AR, Shete NA, Jadhav PV, Deshmukh VK, Mehetre JS. Enhancement of Aqueous Solubility, Dissolution Profile, and Oral Bioavailability of Pentoxifylline by Microsponges. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Microsponge, a novel drug delivery system, is designed to deliver a pharmaceutically active ingredient efficiently at the minimum dose. Microsponge plays an important role in enhancing drug stability, reducing side effects, and modifying drug release profiles. It is mostly used for transdermal delivery. Recent studies also explored their use for oral administration. This study aimed to explore the potential use of the microsponge technique in improving the aqueous solubility and dissolution profile of pentoxifylline (PTX). In this study, microsponges were prepared by a quasi-emulsion solvent diffusion method by varying concentrations of carriers. Nine different ratios of the PTX:Eudragit E-100 with varying amounts of dichloromethane were used. All formulated microsponges were evaluated for %production yield, compatibility of drug excipient, encapsulation efficiency, in vitro drug release, and in vivo bioavailability, as well as recorded by scanning electron microscopy (SEM) and differential scanning calorimetry(DSC). Our data suggested that the aqueous solubility of PTX microsponges was four times greater than that of pure drug. The in vitro drug release of selected microsponges (M8) was found to be 70%; furthermore, the in vivo study suggested that the selected formulation significantly enhanced drug concentration in the plasma (9,219 ng/mL in 12 hours) in comparison to pure drug PTX (2,476 ng/mL in 12 hours). SEM showed that the prepared microsponges were spherical with porous nature. Fourier-transform infrared spectroscopy and DSC studies confirmed an absence of incompatibility among drugs and selected excipients. The pH of the selected gel was found to be 6.8, which was compatible with those of skin and oral formulations also. All above data suggested a highly successful and beneficial use of the microsponge technique in enhancing aqueous solubility, dissolution profile, and oral bioavailability of PTX. Microsponge-based delivery of PTX may represent an alternative strategy to improve the bioavailability of the drug.
Collapse
Affiliation(s)
- Anil Raosaheb Pawar
- Department of Pharmaceutics, Mula Education Society's College of Pharmacy, Savitribai Phule Pune University, Sonai, Newasa, Ahmednagar, Maharashtra, India
| | - Nikhil Arun Shete
- Department of Pharmaceutics, Mula Education Society's College of Pharmacy, Savitribai Phule Pune University, Sonai, Newasa, Ahmednagar, Maharashtra, India
| | - Priyanka Vitthal Jadhav
- Department of Pharmaceutics, Mula Education Society's College of Pharmacy, Savitribai Phule Pune University, Sonai, Newasa, Ahmednagar, Maharashtra, India
| | - Vinayak Kashinath Deshmukh
- Department of Pharmaceutics, Mula Education Society's College of Pharmacy, Savitribai Phule Pune University, Sonai, Newasa, Ahmednagar, Maharashtra, India
| | - Jaswandi Sameer Mehetre
- Department of Pharmacy, School of Pharmacy, ITM (SLS) Baroda University, Vadodara, Gujarat, India
| |
Collapse
|
53
|
Skwierawska AM, Nowacka D, Nowicka P, Rosa S, Kozłowska-Tylingo K. Structural Adaptive, Self-Separating Material for Removing Ibuprofen from Waters and Sewage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7697. [PMID: 34947291 PMCID: PMC8709425 DOI: 10.3390/ma14247697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
β-Cyclodextrin nanosponge (β-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Paulina Nowicka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Sandra Rosa
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
54
|
Matencio A, Rubin Pedrazzo A, Difalco A, Navarro-Orcajada S, Khazeai Monfared Y, Conesa I, Rezayat A, López-Nicolás JM, Trotta F. Advances and Classification of Cyclodextrin-Based Polymers for Food-Related Issues. Polymers (Basel) 2021; 13:4226. [PMID: 34883729 PMCID: PMC8659987 DOI: 10.3390/polym13234226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclodextrins (CDs) are a good alternative to reduce or enhance different biomolecule characteristics and have demonstrated great results in food science. However, CDs present intrinsic limitations that can be solved by derivative synthesis. This review represents a survey of the state of the art of CD-based materials and their uses in food science. A deep review of the structure is carried out and different groups for ordination are suggested. After that, different applications such as cholesterol complexation or its use as sensors are reviewed. The derivatives show novel and promising activities for the industry. A critical perspective of the materials suggests that they might not present toxicity, although more studies are required. These points suggest that the research in this field will be increased in the following years.
Collapse
Affiliation(s)
- Adrián Matencio
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Alessandro Difalco
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Silvia Navarro-Orcajada
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Yousef Khazeai Monfared
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Irene Conesa
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Azam Rezayat
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 6813833946, Iran
| | - José Manuel López-Nicolás
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| |
Collapse
|
55
|
Martwong E, Chuetor S, Junthip J. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges. Polymers (Basel) 2021; 13:4110. [PMID: 34883612 PMCID: PMC8658895 DOI: 10.3390/polym13234110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The contamination of hydrosoluble pesticides in water could generate a serious problem for biotic and abiotic components. The removal of a hazardous agrochemical (paraquat) from water was achieved by adsorption processes using poly(vinyl alcohol)-cyclodextrin nanosponges, which were prepared with various formulations via the crosslinking between citric acid and β-cyclodextrin in the presence of poly(vinyl alcohol). The physicochemical properties of nanosponges were also characterized by different techniques, such as gravimetry, thermogravimetry, microscopy (SEM and Stereo), spectroscopy (UV-visible, NMR, ATR-FTIR, and Raman), acid-base titration, BET surface area analysis, X-ray diffraction, and ion exchange capacity. The C10D-P2 nanosponges displayed 60.2% yield, 3.14 mmol/g COOH groups, 0.335 mmol/g β-CD content, 96.4% swelling, 94.5% paraquat removal, 0.1766 m2 g-1 specific surface area, and 5.2 × 10-4 cm3 g-1 pore volume. The presence of particular peaks referring to specific functional groups on spectroscopic spectra confirmed the successful polycondensation on the reticulated nanosponges. The pseudo second-order model (with R2 = 0.9998) and Langmuir isotherm (with R2 = 0.9979) was suitable for kinetics and isotherm using 180 min of contact time and a pH of 6.5. The maximum adsorption capacity was calculated at 112.2 mg/g. Finally, the recyclability of these nanosponges was 90.3% of paraquat removal after five regeneration times.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
56
|
Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers (Basel) 2021; 13:polym13234073. [PMID: 34883577 PMCID: PMC8658939 DOI: 10.3390/polym13234073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin's complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M-1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M-1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study's findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Nizar Al-Shar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
57
|
Bayat F, Homami SS, Monzavi A, Talei Bavil Olyai MR. A combined molecular docking and molecular dynamics simulation approach to probing the host–guest interactions of Ataluren with natural and modified cyclodextrins. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1991921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Farhad Bayat
- Deptartment of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Saied Homami
- Deptartment of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Monzavi
- Deptartment of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
58
|
Lucia Appleton S, Navarro-Orcajada S, Martínez-Navarro FJ, Caldera F, López-Nicolás JM, Trotta F, Matencio A. Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules 2021; 11:biom11091384. [PMID: 34572597 PMCID: PMC8472668 DOI: 10.3390/biom11091384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a biological response of the immune system to harmful stimuli. Importantly, inflammation is also a hallmark of several human diseases such as cancer or diabetes. Novel drugs to treat this response are constantly researched, but the formulation is usually forgotten. Cyclodextrins (CDs) are a well-known excipient for complexing and drug delivery. Anti-inflammatory drugs and bioactive compounds with similar activities have been favored from these CD processes. CDs also illustrate anti-inflammatory activity per se. This review tried to describe the capacities of CDs in this field, and is divided into two parts: Firstly, a short description of the inflammation disease (causes, symptoms, treatment) is explained; secondly, the effects of different CDs alone or forming inclusion complexes with drugs or bioactive compounds are discussed.
Collapse
Affiliation(s)
- Silvia Lucia Appleton
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (J.M.L.-N.)
| | - Francisco Juan Martínez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (F.J.M.-N.); or (A.M.)
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (J.M.L.-N.)
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
- Correspondence: (F.J.M.-N.); or (A.M.)
| |
Collapse
|
59
|
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64:102589. [PMID: 34035845 PMCID: PMC8135197 DOI: 10.1016/j.jddst.2021.102589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.
Collapse
Affiliation(s)
- László Jicsinszky
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Katia Martina
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Giancarlo Cravotto
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| |
Collapse
|
60
|
Salehi O, Sami M, Rezaei A. Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of Olmesartan Medoxomil-Loaded Nanosponges for Hypertension and Lung Cancer Treatments. Polymers (Basel) 2021; 13:2272. [PMID: 34301030 PMCID: PMC8309359 DOI: 10.3390/polym13142272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Olmesartan medoxomil (OLM) is one of the prominent antihypertensive drug that suffers from low aqueous solubility and dissolution rate leading to its low bioavailability. To improve the oral bioavailability of OLM, a delivery system based on ethylcellulose (EC, a biobased polymer) nanosponges (NSs) was developed and evaluated for cytotoxicity against the A549 lung cell lines and antihypertensive potential in a rat model. Four OLM-loaded NSs (ONS1-ONS4) were prepared and fully evaluated in terms of physicochemical properties. Among these formulations, ONS4 was regarded as the optimized formulation with particle size (487 nm), PDI (0.386), zeta potential (ζP = -18.1 mV), entrapment efficiency (EE = 91.2%) and drug loading (DL = 0.88%). In addition, a nanosized porous morphology was detected for this optimized system with NS surface area of about 63.512 m2/g, pore volume and pore radius Dv(r) of 0.149 cc/g and 15.274 Å, respectively, measured by nitrogen adsorption/desorption analysis. The observed morphology plus sustained release rate of OLM caused that the optimized formulation showed higher cytotoxicity against A549 lung cell lines in comparison to the pure OLM. Finally, this system (ONS4) reduced the systolic blood pressure (SBP) significantly (p < 0.01) as compared to control and pure OLM drug in spontaneously hypertensive rats. Overall, this study provides a scientific basis for future studies on the encapsulation efficiency of NSs as promising drug carriers for overcoming pharmacokinetic limitations.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - M. Ali Aboudzadeh
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, 64000 Pau, France
| |
Collapse
|
62
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
63
|
Salazar S, Yutronic N, Kogan MJ, Jara P. Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. Int J Mol Sci 2021; 22:6446. [PMID: 34208594 PMCID: PMC8234497 DOI: 10.3390/ijms22126446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
This article describes the synthesis and characterization of β-cyclodextrin-based nano-sponges (NS) inclusion compounds (IC) with the anti-tumor drugs melphalan (MPH) and cytoxan (CYT), and the addition of gold nanoparticles (AuNPs) onto both systems, for the potential release of the drugs by means of laser irradiation. The NS-MPH and NS-CYT inclusion compounds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), UV-Vis, and proton nuclear magnetic resonance (1H-NMR). Thus, the inclusion of MPH and CYT inside the cavities of NSs was confirmed. The association of AuNPs with the ICs was confirmed by SEM, EDS, TEM, and UV-Vis. Drug release studies using NSs synthesized with different molar ratios of β-cyclodextrin and diphenylcarbonate (1:4 and 1:8) demonstrated that the ability of NSs to entrap and release the drug molecules depends on the crosslinking between the cyclodextrin monomers. Finally, irradiation assays using a continuous laser of 532 nm showed that photothermal drug release of both MPH and CYT from the cavities of NSs via plasmonic heating of AuNPs is possible.
Collapse
Affiliation(s)
- Sebastián Salazar
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Departamento de Química, Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Nicolás Yutronic
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Marcelo J. Kogan
- Departamento de Química, Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| |
Collapse
|
64
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
65
|
Matencio A, Caldera F, Rubin Pedrazzo A, Khazaei Monfared Y, K Dhakar N, Trotta F. A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chem 2021; 356:129639. [PMID: 33819789 DOI: 10.1016/j.foodchem.2021.129639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In this work, the interaction between Kynurenic acid (KYNA) and several natural and modified cyclodextrins (CDs) is carried out. Among all the CD tested, HPβ-CD showed the strongest complexation constant (KF), with a value of 270.94 ± 29.80 M-1. Between natural (α- and β-) CDs, the complex of KYNA with β-CD was the most efficient. The inclusion complex of KYNA with CDs showed a strong influence of pH and temperature. The KF value decreased at high pH values, when the pKa was passed. Moreover, an increase of the temperature caused a decrease in the KF values. The thermodynamic parameters of the complexation (ΔH°, ΔS° and ΔG°) were studied with negative entropy, enthalpy and spontaneity of the process at 25 °C. Moreover, the inclusion complex was also characterized using FTIR and TGA. Finally, molecular docking calculations provided different interactions and their influence in the complexation constant.
Collapse
Affiliation(s)
- Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | | | | | - Nilesh K Dhakar
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
66
|
Liu Y, Lin T, Cheng C, Wang Q, Lin S, Liu C, Han X. Research Progress on Synthesis and Application of Cyclodextrin Polymers. Molecules 2021; 26:1090. [PMID: 33669556 PMCID: PMC7922926 DOI: 10.3390/molecules26041090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclodextrins (CDs) are a series of cyclic oligosaccharides formed by amylose under the action of CD glucosyltransferase that is produced by Bacillus. After being modified by polymerization, substitution and grafting, high molecular weight cyclodextrin polymers (pCDs) containing multiple CD units can be obtained. pCDs retain the internal hydrophobic-external hydrophilic cavity structure characteristic of CDs, while also possessing the stability of polymer. They are a class of functional polymer materials with strong development potential and have been applied in many fields. This review introduces the research progress of pCDs, including the synthesis of pCDs and their applications in analytical separation science, materials science, and biomedicine.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| | | | | | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| |
Collapse
|
67
|
Palminteri M, Dhakar NK, Ferraresi A, Caldera F, Vidoni C, Trotta F, Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics 2021; 5:197-212. [PMID: 33564618 PMCID: PMC7868003 DOI: 10.7150/ntno.53888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Smart drug delivery systems are required for the site-specific drug targeting to enhance the therapeutic efficiency of a drug. Resveratrol (RV) is a polyphenolic compound with anti-cancer activity. However, its poor aqueous solubility and non-selectivity are the major challenges for its employment in cancer therapy. In this work, we present the synthesis of RV-loaded glutathione responsive cyclodextrin nanosponges (RV-GSH-NSs) to improve the therapeutic efficiency and selective delivery of RV. The drug loading and encapsulation efficiency were 16.12% and 80.64%, respectively. The in vitro release profile confirmed that RV release was enhanced in response to external glutathione (GSH). Nude NSs were not toxic per se to human fibroblasts when administered for up to 72 h at the highest dose. Cell internalization studies confirmed that RV-GSH-NSs were preferentially up-taken by tumor cells compared to non-tumorigenic cells. Accordingly, RV showed selective toxicity to cancer cells compared to normal cells. GSH depletion by buthionine sulfoximine, a potent inhibitor of its synthesis, reflected in a significant decrease of the NSs accumulation, and consequently resulted in a drastic reduction of RV-mediated toxic effects in cancer cells. These findings demonstrate that GSH- responsive NSs represent an effective delivery system for targeting cancer cells by harnessing the differential tumor characteristics in terms of redox status in parallel with the limitation of side effects toward normal cells.
Collapse
Affiliation(s)
- Marco Palminteri
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Nilesh Kumar Dhakar
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
68
|
Hoti G, Caldera F, Cecone C, Rubin Pedrazzo A, Anceschi A, Appleton SL, Khazaei Monfared Y, Trotta F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:478. [PMID: 33498322 PMCID: PMC7864023 DOI: 10.3390/ma14030478] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022]
Abstract
The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory-Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Claudio Cecone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Anastasia Anceschi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
- CNR-STIIMA, Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, C.so Pella 16, 13900 Biella, Italy
| | - Silvia Lucia Appleton
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| |
Collapse
|
69
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
70
|
Biomedical Application of Cyclodextrin Polymers Cross-Linked via Dianhydrides of Carboxylic Acids. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclodextrin-based nanosponges (CD-NS) are a novel class of polymers cross-linked with a three-dimensional network and can be obtained from cyclodextrins (CD) and pyromellitic dianhydride. Their properties, such as their ability to form an inclusion complex with drugs, can be used in biomedical science, as nanosponges influence stability, toxicity, selectivity, and controlled release. Most pharmaceutical research use CD-NS for the delivery of drugs in cancer treatment. Application of molecular targeting techniques result in increased selectivity of CD-NS; for example, the addition of disulfide bridges to the polymer structure makes the nanosponge sensitive to the presence of glutathione, as it can reduce such disulfide bonds to thiol moieties. Other delivery applications include dermal transport of pain killers or photosensitizers and delivery of oxygen to heart cells. This gives rise to the opportunity to transition to medical scaffolds, but more, in modern times, to create an ultrasensitive biosensor, which employs the techniques of surface-modified nanoparticles and molecularly imprinted polymers (MIP). The following review focuses on the biomedical research of cyclodextrin polymers cross-linked via dianhydrides of carboxylic acids.
Collapse
|
71
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
72
|
Moin A, Roohi NKF, Rizvi SMD, Ashraf SA, Siddiqui AJ, Patel M, Ahmed SM, Gowda DV, Adnan M. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv 2020; 10:34869-34884. [PMID: 35514416 PMCID: PMC9056836 DOI: 10.1039/d0ra06611g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Three drugs namely caffeine, paracetamol, and aceclofenac are commonly used for treating various acute and chronic pain related ailments. These 3 drugs have varied solubility profiles, and formulating them into a single tablet did not have the desired dissolution profile for drug absorption. The objective of the present research was to tailor the drug release profile by altering drug solubility. This was achieved by loading the drug into nanosponges. Here, three-dimensional colloidal nanosponges were prepared using β-cyclodextrin with dimethyl carbonate as a cross-linker using the hot-melt compression method. The prepared nanosponges were characterized by FTIR, 1H NMR spectroscopy, DSC, XRPD studies and SEM. The FTIR and DSC results obtained indicated polymer-drug compatibility. The 1H NMR spectroscopy results obtained indicated the drug entrapment within nanosponges with the formation of the inclusion complex. XRPD studies showed that the loaded drug had changed crystalline properties altering drug solubility. SEM photographs revealed the porous and spongy texture on the surface of the nanosponge. Box–Behnken experimental design was adopted for the optimization of nanosponge synthesis. Among the synthesized nanosponges containing paracetamol, aceclofenac and caffeine, batch F3–P31, F3–A31 and F3–C31 were considered optimized. Their particle size was 185, 181 and 199 nm with an entrapment efficiency of 81.53, 84.96, and 89.28% respectively. These optimized nanosponges were directly compressed into tablets and were studied for both pre and post-compression properties including in vitro drug release. The prepared tablet showed desired drug dissolution properties compared to the pure drug. The above outcomes indicated the applicability of nanosponges in modulating the drug release with varied solubility for combination therapy. Polymeric nanosponges as potential carriers for successful combination therapy of poorly soluble drugs (paracetamol, aceclofenac, caffeine).![]()
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail PO Box 2440 Hail Saudi Arabia
| | - N K Famna Roohi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research S S Nagar Mysuru 570015 Karnataka India
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University Surat Gujarat India
| | - S M Ahmed
- Juggat Pharma Anchepalya, Kumbalgodu Post, Mysore Road Bengaluru 560074 Karnataka India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research S S Nagar Mysuru 570015 Karnataka India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail PO Box 2440 Hail Saudi Arabia
| |
Collapse
|
73
|
Blanco I, Pantani R, Pizzi A, Sorrentino A. State-of-the-Art Polymer Science and Technology in Italy. Polymers (Basel) 2020; 12:polym12081721. [PMID: 32751901 PMCID: PMC7464020 DOI: 10.3390/polym12081721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ignazio Blanco
- Department of Civil Engineering and Architecture and INSTM UdR, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
- Correspondence: (I.B.); (R.P.); (A.P.); (A.S.)
| | - Roberto Pantani
- Industrial Engineering Department, University of Salerno, I-84084 Fisciano (Salerno), Italy
- Correspondence: (I.B.); (R.P.); (A.P.); (A.S.)
| | - Antonio Pizzi
- LERMAB, Laboratoire d’Etude et de Recherche sur le MAteriau Bois, Université de Lorraine, 27 rue Philippe Seguin, CS60036, 88021 Epinal, France
- Correspondence: (I.B.); (R.P.); (A.P.); (A.S.)
| | - Andrea Sorrentino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Previati 1/C, 23900 Lecco, Italy
- Correspondence: (I.B.); (R.P.); (A.P.); (A.S.)
| |
Collapse
|
74
|
Rubin Pedrazzo A, Caldera F, Zanetti M, Appleton SL, Dhakar NK, Trotta F. Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein J Org Chem 2020; 16:1554-1563. [PMID: 32704321 PMCID: PMC7356557 DOI: 10.3762/bjoc.16.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cyclodextrin nanosponges (CD-NS) are nanostructured crosslinked polymers made up of cyclodextrins. The reactive hydroxy groups of CDs allow them to act as multifunctional monomers capable of crosslinking to bi- or multifunctional chemicals. The most common NS synthetic pathway consists in dissolving the chosen CD and an appropriate crosslinker in organic polar aprotic liquids (e.g., N,N-dimethylformamide or dimethyl sulfoxide), which affect the final result, especially for potential biomedical applications. This article describes a new, green synthetic pathway through mechanochemistry, in particular via ball milling and using 1,1-carbonyldiimidazole as the crosslinker. The polymer obtained exhibited the same characteristics as a CD-based carbonate NS synthesized in a solvent. Moreover, after the synthesis, the polymer was easily functionalized through the reaction of the nucleophilic carboxylic group with three different organic dyes (fluorescein, methyl red, and rhodamine B) and the still reactive imidazoyl carbonyl group of the NS.
Collapse
Affiliation(s)
- Alberto Rubin Pedrazzo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| | - Marco Zanetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| | - Silvia Lucia Appleton
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| | - Nilesh Kumar Dhakar
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| | - Francesco Trotta
- Dipartimento di Chimica, Università degli Studi di Torino, Via Giuria 7, Torino 10125, Italy
| |
Collapse
|