51
|
Riecke J, Johns KM, Cai C, Vahidy FS, Parsha K, Furr-Stimming E, Schiess M, Savitz SI. A Meta-Analysis of Mesenchymal Stem Cells in Animal Models of Parkinson's Disease. Stem Cells Dev 2015; 24:2082-90. [PMID: 26134374 DOI: 10.1089/scd.2015.0127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple studies have been performed to evaluate the effects of mesenchymal stem cells (MSCs) in animal models of Parkinson's disease (PD). We performed a meta-analysis to estimate the treatment effect of unmodified MSCs on behavioral outcomes in preclinical studies of PD. We performed a systematic literature search to identify studies that used behavioral testing to evaluate the treatment effect of unmodified MSCs in PD models. Meta-analysis was used to determine pooled effect size for rotational behavior and limb function, and meta-regression was performed to explore sources of heterogeneity. Twenty-five studies, including three delivery routes, a wide range of doses, and multiple PD models, were examined. Significant improvement was seen in the pooled standardized mean difference (SMD) for both rotational behavior [SMD: 1.24, 95% confidence interval (95% CI): 0.84, 1.64] and limb function (SMD: 0.84, 95% CI: 0.01, 1.66). Using meta-regression, intravenous administration and higher dose had a larger effect on limb function. Treatment with MSCs improves behavioral outcomes in PD models. Our analyses suggest that MSCs could be considered for early-stage clinical trials in the treatment of PD.
Collapse
Affiliation(s)
- Jenny Riecke
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Katherine M Johns
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Chunyan Cai
- 2 Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas-Houston Medical School , Houston, Texas
| | | | - Kaushik Parsha
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Erin Furr-Stimming
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Mya Schiess
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Sean I Savitz
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| |
Collapse
|
52
|
Park BN, Kim JH, Lee K, Park SH, An YS. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson's disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol 2014; 25:1487-96. [PMID: 25504429 DOI: 10.1007/s00330-014-3549-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/09/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) in a model of Parkinson's disease (PD) using serial F-18 fluoropropylcarbomethoxyiodophenylnortropane (FP-CIT) PET. METHODS Hemiparkinsonian rats were treated with intravenously injected BMSCs, and animals without stem cell therapy were used as the controls. Serial FP-CIT PET was performed after therapy. The ratio of FP-CIT uptake in the lesion side to uptake in the normal side was measured. The changes in FP-CIT uptake were also analyzed using SPM. Behavioural and histological changes were observed using the rotational test and tyrosine hydroxylase (TH)-reactive cells. RESULTS FP-CIT uptake ratio was significantly different in the BMSCs treated group (n = 28) at each time point. In contrast, there was no difference in the ratio in control rats (n = 25) at any time point. SPM analysis also revealed that dopamine transporter binding activity was enhanced in the right basal ganglia area in only the BMSC therapy group. In addition, rats that received BMSC therapy also exhibited significantly improved rotational behaviour and preservation of TH-positive neurons compared to controls. CONCLUSIONS The therapeutic effect of intravenously injected BMSCs in a rat model of PD was confirmed by dopamine transporter PET imaging, rotational functional studies, and histopathological evaluation. KEY POINTS • Mesenchymal stem cells were intravenously injected to treat the PD rats • Dopamine transporter binding activity was improved after stem cell therapy • Stem cell therapy induced functional recovery and preservation of dopaminergic neurons • The effect of stem cells was confirmed by FP-CIT PET.
Collapse
Affiliation(s)
- Bok-Nam Park
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Ajou University, Woncheon-dong, Yeongtong-gu, Gyeonggi-do, Suwon, Korea, 443-749
| | | | | | | | | |
Collapse
|
53
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
54
|
Qin X, Han W, Yu Z. Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease. Neural Regen Res 2014; 7:2673-80. [PMID: 25337113 PMCID: PMC4200735 DOI: 10.3969/j.issn.1673-5374.2012.34.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/27/2012] [Indexed: 01/31/2023] Open
Abstract
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.
Collapse
Affiliation(s)
- Xiaoling Qin
- Department of Neurology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Wang Han
- Department of Emergency, Dongying People's Hospital, Dongying 257091, Shandong Province, China
| | - Zhigang Yu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
55
|
Anisimov SV, Paul G. Transplantation of mesenchymal stem cells: a future therapy for Parkinson’s disease? FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Parkinson’s disease (PD) is a common, progressive neurodegenerative disorder associated with a loss of dopaminergic cells in the substantia nigra pars compacta and a lack of dopamine in the striatum. To halt or reverse this disease, neurorestorative approaches or neuroprotective treatments are urgently needed. Recently, the first clinical trials transplanting mesenchymal stem cells (MSCs) have been performed in PD. MSCs are adult stem cells abundant in several tissues, such as the umbilical cord, the bone marrow, the adipose tissue and other tissues. These cells are multipotent, and able to synthesize and secrete a wide spectrum of biologically active factors. MSCs of various origins have been explored as possible substrates for cell therapy in PD animal models. In this review, we summarize MSC-based experimental transplantation studies in PD, and discuss biological mechanisms that may explain the effects of MSC seen in PD models. Furthermore, we critically evaluate the recent clinical transplantation trials using MSCs in patients with PD.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Research Unit of Cellular & Genetic Engineering, Federal V.A. Almazov Medical Research Center, Saint-Petersburg, Russia
- Department of Intracellular Signaling & Transport, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Gesine Paul
- Division of Neurology, Department of Clinical Sciences, Translational Neurology Group, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
56
|
Tripathy D, Verma P, Nthenge-Ngumbau DN, Banerjee M, Mohanakumar KP. Regenerative therapy in experimental parkinsonism: mixed population of differentiated mouse embryonic stem cells, rather than magnetically sorted and enriched dopaminergic cells provide neuroprotection. CNS Neurosci Ther 2014; 20:717-27. [PMID: 24954161 DOI: 10.1111/cns.12295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 01/17/2023] Open
Abstract
AIM The objective of the study was to develop regenerative therapy by transplanting varied populations of dopaminergic neurons, differentiated from mouse embryonic stem cells (mES) in the striatum for correcting experimental parkinsonism in rats. METHODS mES differentiated by default for 7 days in serum-free media (7D), or by enhanced differentiation of 7D in retinoic acid (7R), or dopaminergic neurons enriched by manual magnetic sorting from 7D (SSEA-) were characterized and transplanted in the ipsilateral striatum of 6-hydroxydopamine-induced hemiparkinsonian rats. Neurochemical, neuronal, glial and neurobehavioral recoveries were examined. RESULTS 7R and SSEA- contained significantly reduced NANOG and high MAP2 mRNA and protein levels as revealed, respectively, by reverse transcriptase-PCR and immunocytochemistry, compared with 7D. Striatal engraftment of 7D resulted in a significantly better behavioral and neurochemical recovery, as compared to the animals that received either 7R or SSEA-. The 7R transplanted animals showed improvement neither in behavior nor in striatal dopamine level. The grafted striatum revealed increased GFAP staining intensity in 7D and SSEA-, but not in 7R cells transplanted group, suggesting a vital role played by glial cells in the recovery. Substantia nigra ipsilateral to the side of the striatum, which received transplants showed more tyrosine hydroxylase immunostained neurons, as compared to 6-hydroxydopamine-infused animals. CONCLUSION These results demonstrate that default differentiated mixed population of cells are better than sorted, enriched dopaminergic cells, or cells containing more mature neurons for transplantation recovery in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Laboratory of Clinical & Experimental Neuroscience, Jadavpur, India
| | | | | | | | | |
Collapse
|
57
|
Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 2014; 6:504-18. [PMID: 24477866 PMCID: PMC3992077 DOI: 10.1002/emmm.201302878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.
Collapse
Affiliation(s)
- Christoph Proschel
- Department for Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
58
|
Giordano R, Canesi M, Isalberti M, Isaias IU, Montemurro T, Viganò M, Montelatici E, Boldrin V, Benti R, Cortelezzi A, Fracchiolla N, Lazzari L, Pezzoli G. Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study. J Transl Med 2014; 12:14. [PMID: 24438512 PMCID: PMC3912501 DOI: 10.1186/1479-5876-12-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background Progressive Supranuclear Palsy (PSP) is a sporadic and progressive neurodegenerative disease which belongs to the family of tauopathies and involves both cortical and subcortical structures. No effective therapy is to date available. Methods/design Autologous bone marrow (BM) mesenchymal stem cells (MSC) from patients affected by different type of parkinsonisms have shown their ability to improve the dopaminergic function in preclinical and clinical models. It is also possible to isolate and expand MSC from the BM of PSP patients with the same proliferation rate and immuphenotypic profile as MSC from healthy donors. BM MSC can be efficiently delivered to the affected brain regions of PSP patients where they can exert their beneficial effects through different mechanisms including the secretion of neurotrophic factors. Here we propose a randomized, placebo-controlled, double-blind phase I clinical trial in patients affected by PSP with MSC delivered via intra-arterial injection. Discussion To our knowledge, this is the first clinical trial to be applied in a no-option parkinsonism that aims to test the safety and to exploit the properties of autologous mesenchymal stem cells in reducing disease progression. The study has been designed to test the safety of this “first-in-man” approach and to preliminarily explore its efficacy by excluding the placebo effect. Trial registration NCT01824121
Collapse
Affiliation(s)
- Rosaria Giordano
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, Lowrance S, Bombard M, DeKorver N, Lescaudron L, Dunbar GL. Transplants of Adult Mesenchymal and Neural Stem Cells Provide Neuroprotection and Behavioral Sparing in a Transgenic Rat Model of Huntington's Disease. Stem Cells 2014; 32:500-9. [DOI: 10.1002/stem.1508] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2013] [Accepted: 07/27/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Julien Rossignol
- Department of Psychology; Central Michigan University; Mount Pleasant Michigan USA
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
- College of Medicine; Central Michigan University; Mount Pleasant Michigan USA
- Field Neurosciences Institute; Saginaw Michigan USA
| | - Kyle Fink
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Kendra Davis
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Steven Clerc
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Andrew Crane
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Jessica Matchynski
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Steven Lowrance
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Matthew Bombard
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Nicholas DeKorver
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
| | - Laurent Lescaudron
- INSERM UMR 643; Nantes France
- ITUN, Institut Transplantation Urologie Nephrologie; CHU Nantes France
- Université de Nantes; UFR des Sciences et des Techniques; Nantes France
| | - Gary L. Dunbar
- Department of Psychology; Central Michigan University; Mount Pleasant Michigan USA
- Program in Neuroscience; Central Michigan University; Mount Pleasant Michigan USA
- College of Medicine; Central Michigan University; Mount Pleasant Michigan USA
- Field Neurosciences Institute; Saginaw Michigan USA
| |
Collapse
|
60
|
de Munter JP, Melamed E, Wolters EC. Stem cell grafting in parkinsonism – Why, how and when. Parkinsonism Relat Disord 2014; 20 Suppl 1:S150-3. [DOI: 10.1016/s1353-8020(13)70036-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
61
|
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70:3871-82. [PMID: 23456256 PMCID: PMC11113366 DOI: 10.1007/s00018-013-1290-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs' secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
62
|
Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats. PLoS One 2013; 8:e72501. [PMID: 24069147 PMCID: PMC3772067 DOI: 10.1371/journal.pone.0072501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
We report here protection against rotenone-induced behavioural dysfunction, striatal dopamine depletion and nigral neuronal loss, following intra-striatal transplantation of neurons differentiated from murine embryonic stem cells (mES). mES maintained in serum free medium exhibited increase in neuronal, and decrease in stem cell markers by 7th and 10th days as revealed by RT-PCR and immunoblot analyses. Tyrosine hydroxylase, NURR1, PITX3, LMX1b and c-RET mRNA showed a significant higher expression in differentiated cells than in mES. Dopamine level was increased by 3-fold on 10th day as compared to 7 days differentiated cells. Severity of rotenone-induced striatal dopamine loss was attenuated, and amphetamine-induced unilateral rotations were significantly reduced in animals transplanted with 7 days differentiated cells, but not in animals that received undifferentiated ES transplant. However, the ratio of contralateral to ipsilateral swings in elevated body swing test was significantly reduced in both the transplanted groups, as compared to control. Striatal grafts exhibited the presence of tyrosine hydroxylase positive cells, and the percentage of dopaminergic neurons in the substantia nigra was also found to be higher in the ipsilateral side of 7 days and mES grafted animals. Increased expression of CD11b and IBA-1, suggested a significant contribution of these microglia-derived factors in controlling the limited survival of the grafted cells. Astrocytosis in the grafted striatum, and significant increase in the levels of glial cell line derived neurotrophic factor may have contributed to the recovery observed in the hemiparkinsonian rats following transplantation.
Collapse
|
63
|
Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 2013; 247:25-38. [DOI: 10.1016/j.expneurol.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
64
|
De Vocht N, Praet J, Reekmans K, Le Blon D, Hoornaert C, Daans J, Berneman Z, Van der Linden A, Ponsaerts P. Tackling the physiological barriers for successful mesenchymal stem cell transplantation into the central nervous system. Stem Cell Res Ther 2013; 4:101. [PMID: 23998480 PMCID: PMC3854758 DOI: 10.1186/scrt312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past decade a lot of research has been performed towards the therapeutic use of mesenchymal stem cells (MSCs) in neurodegenerative and neuroinflammatory diseases. MSCs have shown to be beneficial in different preclinical studies of central nervous system (CNS) disorders due to their immunomodulatory properties and their capacity to secrete various growth factors. Nevertheless, most of the transplanted cells die within the first hours after transplantation and induce a neuroinflammatory response. In order to increase the efficacy of MSC transplantation, it is thus imperative to completely characterise the mechanisms mediating neuroinflammation and cell death following MSC transplantation into the CNS. Consequently, different components of these cell death- and neuroinflammation-inducing pathways can be targeted in an attempt to improve the therapeutic potential of MSCs for CNS disorders.
Collapse
|
65
|
Fu W, Zheng Z, Zhuang W, Chen D, Wang X, Sun X, Wang X. Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy. Int J Neurosci 2013; 123:883-91. [DOI: 10.3109/00207454.2013.814132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
66
|
Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 2013; 95:2246-56. [PMID: 23871834 DOI: 10.1016/j.biochi.2013.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden.
| | | |
Collapse
|
67
|
Xu H, Belkacemi L, Jog M, Parrent A, Hebb MO. Neurotrophic factor expression in expandable cell populations from brain samples in living patients with Parkinson's disease. FASEB J 2013; 27:4157-68. [PMID: 23825231 DOI: 10.1096/fj.12-226555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-based therapies offer promise for patients with Parkinson's disease (PD); however, durable and effective transplantation substrates need to be defined. This study characterized the feasibility and growth properties of primary cultures established from small-volume brain biopsies taken during deep brain stimulation (DBS) surgery in patients with PD. The lineage and expression of neurotrophic factors with known beneficial actions in PD-affected brain circuitry were also evaluated. Nineteen patients with PD undergoing DBS surgery consented to brain biopsies prior to electrode implantation. Cultures from these samples exhibited exponential and plateau phases of growth and were readily expanded throughout multiple passages. There was robust expression of progenitor markers and the unexpected colocalization of neural and mesenchymal proteins. The oligodendrocyte transcription factor, Olig1, and the myelin-specific sphingolipid, galactocerebroside, were coexpressed with each of glial-derived neurotrophic factor, brain-derived neurotrophic factor, and cerebral dopamine neurotrophic factor. Fluorescence-activated cell sorting demonstrated homogeneous expression of both nestin and Olig1 throughout the expanded cultures. Cells remained viable after a year in cryostorage. These findings confirm the feasibility of small brain biopsies as an expandable source of autologous cell substrate in living patients and demonstrate the complex phenotype of these cells, with implications for therapeutic application in PD and other neurological diseases.
Collapse
Affiliation(s)
- Hu Xu
- 1Department of Clinical Neurological Sciences (Neurosurgery), University of Western Ontario, 339 Windermere Rd., C7-134, London, ON, Canada N6A 5A5.
| | | | | | | | | |
Collapse
|
68
|
Chen G, Ma J, Shatos MA, Chen H, Cyr D, Lashkari K. Application of human persistent fetal vasculature neural progenitors for transplantation in the inner retina. Cell Transplant 2013; 21:2621-34. [PMID: 23317920 DOI: 10.3727/096368912x647153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Persistent fetal vasculature (PFV) is a potentially serious developmental anomaly in human eyes, which results from a failure of the primary vitreous and the hyaloid vascular systems to regress during development. Recent findings from our laboratory indicate that fibrovascular membranes harvested from subjects with PFV contain neural progenitor cells (herein called NPPFV cells). Our studies on successful isolation, culture, and characterization of NPPFV cells have shown that they highly express neuronal progenitor markers (nestin, Pax6, and Ki67) as well as retinal neuronal markers (β-III-tubulin and Brn3a). In the presence of retinoic acid and neurotrophins, these cells acquire a neural morphological appearance in vitro, including a round soma and extensive neurites, and express mature neuronal markers (β-III-tubulin and NF200). Further experiments, including real-time qRT-PCR to quantify characteristic gene expression profiles of these cells and Ca(2+) imaging to evaluate the response to stimulation with different neurotransmitters, indicate that NPPFV cells may resemble a more advanced stage of retinal development and show more differentiation toward inner retinal neurons rather than photoreceptors. To explore the potential of inner retinal transplantation, NPPFV cells were transplanted intravitreally into the eyes of adult C57BL/6 mice. Engrafted NPPFV cells survived well in the intraocular environment in presence of rapamycin and some cells migrated into the inner nuclear layer of the retina 1 week posttransplantation. Three weeks after transplantation, NPPFV cells were observed to migrate and integrate in the inner retina. In response to daily intraperitoneal injections of retinoic acid, a portion of transplanted NPPFV cells exhibited retinal ganglion cell-like morphology and expressed mature neuronal markers (β-III-tubulin and synaptophysin). These findings indicate that fibrovascular membranes from human PFV harbor a population of neuronal progenitors that may be potential candidates for cell-based therapy for degenerative diseases of the inner retina.
Collapse
Affiliation(s)
- Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
69
|
de Munter JPJM, Lee C, Wolters EC. Cell based therapy in Parkinsonism. Transl Neurodegener 2013; 2:13. [PMID: 23734727 PMCID: PMC3674952 DOI: 10.1186/2047-9158-2-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/02/2013] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a synucleinopathy-induced chronic progressive neurodegenerative disorder, worldwide affecting about 5 million humans. As of yet, actual therapies are symptomatic, and neuroprotective strategies are an unmet need. Due to their capability to transdifferentiate, to immune modulate and to increase neuroplasticity by producing neurotrophic factors, adult stem cells (ASC) might fill this gap. Preclinical research in 6-hydroxydopamine (6-OHDA) and/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned animals established persistent improvements of motor behavior after ASC-treatment. Histological/histochemical measurements in these animals evidenced an intracerebral applied ASC-induced increase of Tyrosine Hydroxylase-positive (TH+) cells with increased striatal dopamine levels, suggesting cell rescue. Likewise, clinical experience with subventricular applied ASCs in PD patients, although limited, is encouraging, evidencing neurorescue especially during the early phase of the disease. In multiple system atrophy (MSA) or progressive supranuclear palsy (PSP) patients, though, only marginal reduced progression of natural progression could be established after subventricular or intravasal ASC implantations.
Collapse
Affiliation(s)
- Johannes PJM de Munter
- Department of Neurosciences University Maastricht, Maastricht, The Netherlands
- Amarna Stem Cells Group, Maastricht, The Netherlands
| | - Chongsik Lee
- Department of Neurology, Asan Medical Center University of Ulsan, Seoel, South Korea
| | - Erik Ch Wolters
- Department of Neurosciences University Maastricht, Maastricht, The Netherlands
- Department of Neurology, UniversitatsSpital, Zurich, Switzerland
| |
Collapse
|
70
|
Neirinckx V, Marquet A, Coste C, Rogister B, Wislet-Gendebien S. Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice. PLoS One 2013; 8:e64723. [PMID: 23741377 DOI: 10.1371/journal.pone.0064723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/18/2013] [Indexed: 12/13/2022] Open
Abstract
Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management.
Collapse
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Unit of Neurosciences, University of Liege, Liège, Belgium
| | | | | | | | | |
Collapse
|
71
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
72
|
Transplantation of mouse CGR8 embryonic stem cells producing GDNF and TH protects against 6-hydroxydopamine neurotoxicity in the rat. Int J Biochem Cell Biol 2013; 45:1265-73. [PMID: 23535049 DOI: 10.1016/j.biocel.2013.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/02/2013] [Accepted: 03/17/2013] [Indexed: 01/17/2023]
Abstract
Embryonic stem cells (ESCs)-based therapies have been increasingly recognized as a potential tool to replace or support cells and their function damaged by the neurodegenerative process that underlies Parkinson's disease (PD). In this study, we implanted engineered mouse embryonic stem (ES) CGR8 cells, which stably co-express glial cell line-derived neurotrophic factor (GDNF) and tyrosine hydroxylase (TH), into striatum (Str) or both Str and substantia nigra (SN) of parkinsonian rats lesioned by 6-hydroxydopamine (6-OHDA). We found that cell transplantation into Str or both Str and SN rescued behavioral abnormalities and striatal DA depletion associated with 6-OHDA lesion. Our findings suggested that the profound functional impairment in nigrostriatal circuitry could be at least partially restored by ESCs-based expression of TH and GDNF, which may be developed into a useful tool for PD therapy.
Collapse
|
73
|
Salama M, Helmy B, El-Gamal M, Reda A, Ellaithy A, Tantawy D, Mohamed M, El-Gamal A, Sheashaa H, Sobh M. Role of L-thyroxin in counteracting rotenone induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:270-277. [PMID: 23357603 DOI: 10.1016/j.etap.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
A key feature of Parkinson's disease is the dopaminergic neuronal cell loss in the substantia nigra pars compacta. Many triggering pathways have been incriminated in the pathogenesis of this disease including inflammation, oxidative stress, excitotoxicity and apoptosis. Thyroid hormone is an essential agent for the growth and maturation of neurons; moreover, it has variable mechanisms for neuroprotection. So, we tested the efficacy of (L)-thyroxin as a neuroprotectant in rotenone model of Parkinson's disease in rats. Thirty Sprague Dawley rats aged 3 months were divided into 3 equal groups. The first received daily intraperitoneal injections of 0.5% carboxymethyl cellulose (CMC) 3 mL/Kg. The second group received rotenone suspended in 0.5% CMC intraperitoneally at a dose of 3 mg/kg, daily. The third group received the same rotenone regimen subcutaneous l-thyroxine at a dose of 7.5 μg daily. All animals were evaluated regarding locomotor disturbance through blinded investigator who monitored akinesia, catalepsy, tremors and performance in open field test. After 35 days the animals were sacrificed and their brains were immunostained against anti-tyrosine hydroxylase and iba-1. Photomicrographs for coronal sections of the substantia nigra and striatum were taken and analyzed using image J software to evaluate cell count in SNpc and striatal fibers density and number of microglia in the nigrostriatal system. The results were then analyzed statistically. Results showed selective protective effects of thyroxin against rotenone induced neurotoxicity in striatum, however, failed to exert similar protection on SN. Moreover, microglial elevated number in nigrostriatal system that was induced by rotenone injections was diminished selectively in striatum only in the l-thyroxin treated group. One of the possible mechanisms deduced from this work was the selective regulation of microglia in striatal tissues. Thus, this study provides an insight into thyroxin neuroprotection warranting further investigation as therapeutic option for Parkinson's disease patients.
Collapse
Affiliation(s)
- Mohamed Salama
- Toxicology Department, Mansoura University, 35111, Mansoura, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Neurorescue effects and stem properties of chorionic villi and amniotic progenitor cells. Neuroscience 2013; 234:158-72. [PMID: 23291343 DOI: 10.1016/j.neuroscience.2012.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022]
Abstract
The capability to integrate into degenerative environment, release neurotrophic cytokines, contrast oxidative stress and an inherent differentiation potential towards siteappropriate phenotypes are considered crucial for the use of stem cells in tissue repair and regeneration. Naïve human chorial villi- (hCVCs) and amniotic fluid- (hAFCs) derived cells, whose properties and potentiality have not been extensively investigated, may represent two novel foetal cell sources for stem cell therapy. We previously described that long-term transplantation of hAFCs in the lateral ventricles of wobbler and healthy mice was feasible and safe. In the present study we examine the in vitro intrinsic stem potential of hCVCs and hAFCs for future therapeutic applications in neurodegenerative disorders. Presence of stem lineages was evaluated assessing the expression pattern of relevant candidate markers by flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. Release of cytokines that may potentialy sustain endogenous neurogenesis and/or activate neuroprotective pathways was quantified by enzyme-linked immunosorbent assays (ELISAs). We also performed an in vitro neurorescue assay, wherein a neuroblastoma cell line damaged by 6-hydroxydopamine (6-OHDA) was treated with hCVC/hAFC-derived conditioned medium (CM). Naïve hCVCs/hAFCs show a neurogenic/angiogenic predisposition. Both cell types express several specific neural stem/progenitor markers, such as nestin and connexin 43, and release significant amounts of brain-derived neurotrophic factor, as well as vascular endothelial growth factor. hCVC and hAFC populations comprise several interesting cell lineages, including mesenchymal stem cells (MSCs) and cells with neural-like phenotypes. Moreover, although CMs obtained from both cell cultures actively sustained metabolic activity in a 6-OHDA-induced Parkinson's disease (PD) cell model, only hCVC-derived CMs significantly reduced neurotoxin-induced apoptosis. In conclusion, this study demonstrates that naïve hAFCs and hCVCs may enhance cell-recovery following neuronal damage through multiple rescue mechanisms, and may provide a suitable means of stem cell therapy for neurodegenerative disorders including PD.
Collapse
|
75
|
|
76
|
Zavala-Arcos J, Gonzalez-Garza MT, Gutierrez-Alcala J, Martinez HR, Moreno-Cuevas JE. Direct pre-differentiation of rat mesenchymal stem cells into dopaminergic cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.32018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
77
|
Hayashi T, Wakao S, Kitada M, Ose T, Watabe H, Kuroda Y, Mitsunaga K, Matsuse D, Shigemoto T, Ito A, Ikeda H, Fukuyama H, Onoe H, Tabata Y, Dezawa M. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Invest 2012. [PMID: 23202734 DOI: 10.1172/jci62516] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson's disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Takuya Hayashi
- Functional Probe Research Laboratory, Center for Molecular Imaging Science, RIKEN, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation - a mini-review. Int J Artif Organs 2012; 35:323-37. [PMID: 22505200 DOI: 10.5301/ijao.5000085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have gained considerable interest due to their potential use in cell therapies and tissue engineering. They have been reported to differentiate into various anchorage-dependent cell types, including bone, cartilage, and tendon. Our focus is on the differentiation of MSCs into neuron-like cells through the use of soluble chemical stimuli or specific growth factor supplements. The resulting cells appear to adopt neural phenotypes and express some typical neuronal markers, however, their electrophysiological properties and synaptic function remains unclear. RESULTS This mini-review illustrates how particular characteristics, electrophysiological properties, and synaptic functions of MSCs change during their neuronal differentiation. In particular we focus on changes in ion currents, ion channels, synaptic communication, and neurotransmitter release. We also highlight conflicting results, caused by inconsistencies in the experimental conditions used and in the methodologies adopted. CONCLUSIONS We conclude that there is insufficient data and that further, carefully controlled investigations are required in order to ascertain whether MSC-derived neuron-like cells can exhibit the necessary neuronal functions to become clinically relevant for use in neural repairs.
Collapse
|
79
|
Huang H, Xi H, Chen L, Zhang F, Liu Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant 2012; 21 Suppl 1:S23-31. [PMID: 22507677 DOI: 10.3727/096368912x633734] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The neurorestorative effect of the parenchymal transplantation of olfactory ensheathing cells (OECs) for cord trauma remains clinically controversial. The aim of this article is to study the long-term result of OECs for patients with complete chronic spinal cord injury (SCI). One hundred and eight patients suffered from complete chronic SCI were followed up successfully within the period of 3.47 ± 1.12 years after OEC therapy. They were divided into two groups based on the quality and quantity of their rehabilitative training: group A (n = 79) in sufficient rehabilitation (or active movement-target enhancement-neurorehabilitation therapy, AMTENT) and group B (n = 29) in insufficient rehabilitation. All patients were assessed by using the American Spinal Injury Association (ASIA) standard and the International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS). Thirty-one patients were evaluated by the tests of magnetic resonance imaging (MRI), electromyography (EMG), and paravertebral sensory evoked potential (PVSEP). We found the following. 1) According to ASIA and IANR-SCIFRS assessment for all 108 patients, averaged motor scores increased from 37.79 ± 18.45 to 41.25 ± 18.18 (p < 0.01), light touch scores from 50.32 ± 24.71 to 55.90 ± 24.46 (p < 0.01), pin prick scores from 50.53 ± 24.92 to 54.53 ± 24.62 (p < 0.01); IANR-SCIFRS scores increased from 19.32 ± 9.98 to 23.12 ± 10.30 (p < 0.01). 2) The score changes in terms of motor, light touch, pin prick, and IANR-SCIFRS in group A were remarkably different (all p < 0.01). The score changes in group B were remarkably different in terms of motor (p < 0.05) and IANR-SCIFRS (p < 0.01), but not light touch or pin prick (p > 0.05). 3) Comparing group A with group B, the increased scores in terms of motor, light touch, and pin prick were remarkably different (all p < 0.01), but not IANR-SCIFRS (p > 0.05). 4) Fourteen of 108 patients (12.96%) became ASIA B from ASIA A; 18 of 108 (16.67%) became ASIA C from ASIA A. Nine of them (8.33%) improved their walk ability or made them rewalk by using a walker with or without assistance; 12 of 84 men (14.29%) improved their sex function. 5) MRI examinations were taken for 31 patients; there were no neoplasm, bleeding, swelling, cysts, neural tissue destruction or infection (abscess) or any other pathological changes in or around OEC transplant sites. 6) EMG examinations were done on 31 patients; 29 showed improvement and the remaining 2 had no change. PVSEP tests were performed in 31 patients; 28 showed improvements and the remaining 3 had no change. 7) No deterioration or complications were observed in our patients within the follow-up period. Our data suggest OEC therapy is safe and can improve neurological functions for patients with complete chronic SCI and ameliorate their quality of life; the AMTENT most likely plays a critical role in enhancing functional recovery after cell-based neurorestorotherapy.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China.
| | | | | | | | | |
Collapse
|
80
|
Chen L, Chen D, Xi H, Wang Q, Liu Y, Zhang F, Wang H, Ren Y, Xiao J, Wang Y, Huang H. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 Suppl 1:S65-77. [PMID: 22507682 DOI: 10.3727/096368912x633789] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous series of studies have proven that olfactory ensheathing cell (OEC) transplantation appears to be able to slow the rate of clinical progression after OEC transplantation in the first 4 months and cell intracranial (key points for neural network restoration, KPNNR) and/or intraspinal (impaired segments) implants provide benefit for patients (including both the bulbar onset and limb onset subtypes) with amyotrophic lateral sclerosis (ALS). Here we report the results of cell therapy in patients with ALS on the basis of long-term observation following multiple transplants. From March of 2003 to January of 2010, 507 ALS patients received our cellular treatment. Among them, 42 patients underwent further OEC therapy by the route of KPNNR for two or more times (two times in 35 patients, three times in 5 patients, four times in 1 patient, and five times in 1 patient). The time intervals are 13.1 (6-60) months between the first therapy and the second one, 15.2 (8-24) months between the second therapy and the third one, 16 (6-26) months between the third therapy and the fourth one, and 9 months between the fourth therapy and the fifth time. All of the patients exhibited partial neurological functional recovery after each cell-based administration. Firstly, the scores of the ALS Functional Rating Scale (ALS-FRS) and ALS Norris Scale increased by 2.6 + 2.4 (0-8) and 4.9 + 5.2 (0-20) after the first treatment, 1.1 + 1.3 (0-5) and 2.3 + 2.9 (0-13) after the second treatment, 1.1 + 1.5 (0-4), and 3.4 + 6.9 (0-19) after the third treatment, 0.0 + 0.0 (0-0), and 2.5 + 3.5 (0-5) after the fourth treatment, and 1 point after the fifth cellular therapy, which were evaluated by independent neurologists. Secondly, the majority of patients have achieved improvement in electromyogram (EMG) assessments after the first, second, third, and fourth cell transplantation. After the first treatment, among the 42 patients, 36 (85.7%) patients' EMG test results improved, the remaining 6 (14.3%) patients' EMG results showed no remarkable change. After the second treatment, of the 42 patients, 30 (71.4%) patients' EMG results improved, 11 (26.2%) patients showed no remarkable change, and 1 (2.4%) patient became worse. After the third treatment, out of the 7 patients, 4 (57.1%) patients improved, while the remaining 3 (42.9%) patients showed no change. Thirdly, the patients have partially recovered their breathing ability as demonstrated by pulmonary functional tests. After the first treatment, 20 (47.6%) patients' pulmonary function ameliorated. After the second treatment, 18 (42.9%) patients' pulmonary function improved. After the third treatment, 2 (28.6%) patients recovered some pulmonary function. After the fourth and fifth treatment, patients' pulmonary function did not reveal significant change. The results show that multiple doses of cellular therapy definitely serve as a positive role in the treatment of ALS. This repeated and periodic cell-based therapy is strongly recommended for the patients, for better controlling this progressive deterioration disorder.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Moon J, Lee HS, Kang JM, Park J, Leung A, Hong S, Chung S, Kim KS. Stem cell grafting improves both motor and cognitive impairments in a genetic model of Parkinson's disease, the aphakia (ak) mouse. Cell Transplant 2012; 22:1263-79. [PMID: 23031199 DOI: 10.3727/096368912x657242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cell-based cell replacement of lost midbrain dopamine (mDA) neurons is a potential therapy for Parkinson's disease (PD). Toward this goal, it is critical to optimize various aspects of cell transplantation and to assess functional recovery through behavioral tests in validated animal model(s) of PD. At present, cell transplantation studies are being done almost exclusively in neurotoxin-based animal models, because few genetic models of PD exhibit robust mDA neuronal loss. Here we used a genetic model of PD, the aphakia mouse, which demonstrates selective degeneration of mDA neurons in the substantia nigra. We systematically investigated the functional effects of transplanting embryonic stem cell-derived cells at different stages of in vitro differentiation: embryoid body (EB), neural progenitor (NP), and neuronal differentiated (ND) stages. We found that transplantation of NP cells yielded the best outcomes for both survival and behavioral improvement, while transplantation of EB and ND cells resulted in high teratoma-like tumor formation and poor survival, respectively. In behavioral paradigms specific to basal ganglia, the NP cells group prominently improved motor behavioral defects 1 and 2 months posttransplantation. Furthermore, we found that NP cell transplantation also improved cognitive impairments of aphakia mice, as examined by the passive avoidance task. Importantly, these graft-induced functional improvements well correlated with survival of tyrosine hydroxylase-positive DA neurons. Taken together, we propose that the aphakia mouse can serve as a novel and useful platform for cell transplantation studies to assess both neurological and cognitive improvements and that NP stage cells represent an optimal stage for transplantation.
Collapse
Affiliation(s)
- Jisook Moon
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02178, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Survival of transplanted human neural stem cell line (ReNcell VM) into the rat brain with and without immunosuppression. Ann Anat 2012; 194:429-35. [DOI: 10.1016/j.aanat.2012.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
|
83
|
Salama M, ElDakroory SAE, ElTantawy D, Ghanem AA, Elghaffar HA, Elhusseiny M, ElHak SG. Regenerative effects of umbilical cord matrix cells (UCMCs) in a rodent model of rotenone neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:338-344. [PMID: 22717662 DOI: 10.1016/j.etap.2012.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Rotenone is one of the pesticides thought to have neurotoxic effect that could potentially play a role in the development of Parkinson's disease (PD). The neurotoxic effects of rotenone have been used to induce PD model in animals that can help in testing suggested therapies. Cell replacement therapies are suggested as new promising approach for treating PD. This study was done to evaluate the regenerative effect of intrathecal administered umbilical cord matrix cells in a rotenone model of PD in mice. Thirty, male BALB/c mice were used and divided into 3 equal groups. The control group (G.1) received only carboxymethyl cellulose orally once daily at a volume of 10ml/kg. The second group was given a daily rotenone oral dose of 30mg/kg for 28days. The third group received rotenone (30mg/(kgday) orally for 28days) and in the 15th day 1×10(5) of UCMCs were given intrathecally and then they completed the rotenone course. At the 23rd day all the animals were evaluated regarding locomotor incoordination through behavioral tests for monitoring PD development. At the end of the 28days all animals were sacrificed by overdose of phenobarbital and their brain were subjected to immunohistochemical analysis for dopaminergic neurons staining for anti TH antibodies. Intrathecal UCMCs revealed regenerative effects in SNpc as evidenced by immunohistochemical staining; this was in parallel with better performance in behavioral tests. In conclusion, the results of this study revealed the regenerative capacities of UCMCs against rotenone neurotoxicity in mice.
Collapse
Affiliation(s)
- Mohamed Salama
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt.
| | | | - Dina ElTantawy
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Abdel Aziz Ghanem
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt
| | - Hasan Abd Elghaffar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Egypt
| | - Mahmoud Elhusseiny
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Egypt
| | - Seham Gad ElHak
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
84
|
Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, Brenot M, Itier V, Seminatore C, Baldauf K, Turnovcova K, Jirak D, Teletin M, Côme J, Tournois J, Reymann K, Sykova E, Viville S, Onteniente B. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant 2012; 21:2587-602. [PMID: 22889472 DOI: 10.3727/096368912x653228] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a most appealing source for cell replacement therapy in acute brain lesions. We evaluated the potential of hiPSC therapy in stroke by transplanting hiPSC-derived neural progenitor cells (NPCs) into the postischemic striatum. Grafts received host tyrosine hydroxylase-positive afferents and contained developing interneurons and homotopic GABAergic medium spiny neurons that, with time, sent axons to the host substantia nigra. Grafting reversed stroke-induced somatosensory and motor deficits. Grafting also protected the host substantia nigra from the atrophy that follows disruption of reciprocal striatonigral connections. Graft innervation by tyrosine hydoxylase fibers, substantia nigra protection, and somatosensory functional recovery were early events, temporally dissociated from the slow maturation of GABAergic neurons in the grafts and innervation of substantia nigra. This suggests that grafted hiPSC-NPCs initially exert trophic effects on host brain structures, which precede integration and potential pathway reconstruction. We believe that transplantation of NPCs derived from hiPSCs can provide useful interventions to limit the functional consequences of stroke through both neuroprotective effects and reconstruction of impaired pathways.
Collapse
|
85
|
Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, Lah TT. Human Mesenchymal Stem Cells Exploit the Immune Response Mediating Chemokines to Impact the Phenotype of Glioblastoma. Cell Transplant 2012; 21:1529-45. [DOI: 10.3727/096368912x640547] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In contrast to the application of human mesenchymal stem cells (hMSCs) in regenerative medicine, only a limited number of studies are addressing their use in anticancer therapy. As the latter may represent a new hope to improve the survival of patients with glioblastoma multiformae (GBM), the most common and malignant form of the brain tumors, we aimed to investigate the interactions of hMSCs and GBM cells under in vitro conditions. Four hMSC clones and three different GBM cell lines were used to study their mutual paracrine interactions in cocultures compared to their monocultures, where cells were grown under the same experimental conditions. The effects on cell growth, proliferation, and invasion in Matrigel were quantified. Further, bioinformatics tools were used to relate these results to the data obtained from cytokine macroarrays and cDNA microarrays that revealed proteins and genes significantly involved in cellular cross-talk. We showed that hMSCs are responsible for the impairment of GBM cell invasion and growth, possibly via induction of their senescence. On the other hand, GBM cells inversely affected some of these characteristics in hMSCs. We found CCL2/MCP-1 to be the most significantly regulated chemokine during hMSC and U87-MG paracrine signaling in addition to several chemokines that may account for changed cocultured cells' phenotype by affecting genes associated with proliferation ( Pmepa-1, NF-κ B, IL-6, IL-1b), invasion ( EphB2, Sod2, Pcdh18, Col7A1, Gja1, Mmp1/2), and senescence ( Kiaa1199, SerpinB2). As we functionally confirmed the role of CCL2/MCP-1 in GBM cell invasion we thereby propose a novel mechanism of CCL2/MCP-1 antimigratory effects on GBM cells, distinct from its immunomodulatory role. Significant alterations of GBM phenotype in the presence of hMSCs should encourage the studies on the naive hMSC use for GBM treatment.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Matjaž Hren
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Bioinstrumentation Laboratory, Centre of Excellence for Biosensors, Instrumentation and Process Control, Solkan, Slovenia
| | - Christian Schichor
- Tumorbiological Laboratory, Neurosurgical Department, Ludwig-Maximilians-University, Munich, Germany
| | - Monika Primon
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
86
|
Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211:51-76. [DOI: 10.1016/j.neuroscience.2011.10.057] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
|
87
|
Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in thesubstantia nigrato oxidative insult in individuals at risk to Parkinson's disease? Cell Biol Int 2012; 36:617-24. [DOI: 10.1042/cbi20110602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Mathieu P, Roca V, Gamba C, Del Pozo A, Pitossi F. Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson's disease. J Neuroimmunol 2012; 246:43-50. [PMID: 22458982 DOI: 10.1016/j.jneuroim.2012.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Microglial activation in the substantia nigra (SN) is a ubiquitous feature in PD which could mediate toxic effects. Human mesenchymal stromal cells (hMSCs) possess immunomodulatory properties. We evaluated whether the transplantation of hMSCs obtained from umbilical cord had a neuroprotective effect in a not-immunosuppressed rat Parkinson's disease (PD) model. Rats receiving hMSCs in the SN displayed significant preservation in the number of dopaminergic neurons in the SN at 21 days after lesion and an improved performance in behavioral tests compared to control rats. However, no differences in any inflammatory parameter tested were found. These results suggest that grafted hMSCs exert neuroprotection but not neuromodulatory effects on degenerating dopaminergic neurons.
Collapse
Affiliation(s)
- Patricia Mathieu
- Laboratory of Regenerative and Protective Therapies of the Nervous System, Foundation Leloir Institute, IIBBA-CONICET, 435 Av Patricias Argentinas, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
89
|
Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson's disease: a pilot clinical study. Stem Cells Int 2012; 2012:931902. [PMID: 22550521 PMCID: PMC3328274 DOI: 10.1155/2012/931902] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
The progress of PD and its related disorders cannot be prevented with the medications available. In this study, we recruited 8 PD and 4 PD plus patients between 5 to 15 years after diagnosis. All patients received BM-MSCs bilaterally into the SVZ and were followed up for 12 months. PD patients after therapy reported a mean improvement of 17.92% during “on” and 31.21% during “off” period on the UPDRS scoring system. None of the patients increased their medication during the follow-up period. Subjectively, the patients reported clarity in speech, reduction in tremors, rigidity, and freezing attacks. The results correlated with the duration of the disease. Those patients transplanted in the early stages of the disease (less than 5 years) showed more improvement and no further disease progression than the later stages (11–15 years). However, the PD plus patients did not show any change in their clinical status after stem cell transplantation. This study demonstrates the safety of adult allogenic human BM-MSCs transplanted into the SVZ of the brain and its efficacy in early-stage PD patients.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW We identify the major recent advances in sourcing, preparation and delivery of primary and stem cell transplants into the brain, the preclinical studies in animal models and preliminary results on feasibility, safety and efficacy in an increasing range of human neurodegenerative diseases. RECENT FINDINGS After a decade of debate concerning the reliability and safety of foetal cell transplantation in Parkinson's and Huntington's diseases, the conditions for eliminating side-effects and achieving more consistent efficacy are being implemented in renewed trials. In parallel, rapid advances are being made in identifying alternative sources of stem cells for transplantation, establishing the protocols for their reliable differentiation into specific neuronal phenotypes and translating these novel sources to cell therapy for patients in new clinical trials. Objective assessment of efficacy in patients does not always reveal outcomes that are as impressive as claimed - either in the preclinical animal models or by many commercial stem cell clinics - and even when stem cell therapies do appear to have been validated, the mechanisms are not always clear. SUMMARY In spite of rapid progress, the conditions for reliable, well tolerated and effective cell therapies in brain disease are not yet fully established.
Collapse
|
91
|
Bossolasco P, Cova L, Levandis G, Diana V, Cerri S, Deliliers GL, Polli E, Silani V, Blandini F, Armentero MT. Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease. Int J Nanomedicine 2012; 7:435-47. [PMID: 22334776 PMCID: PMC3273978 DOI: 10.2147/ijn.s27537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have previously shown that human mesenchymal stem cells (hMSCs) can reduce toxin-induced neurodegeneration in a well characterized rodent model of Parkinson's disease. However, the precise mechanisms, optimal cell concentration required for neuroprotection, and detailed cell tracking need to be defined. We exploited a near-infrared imaging platform to perform noninvasive tracing following transplantation of tagged hMSCs in live parkinsonian rats. METHODS hMSCs were labeled both with a membrane intercalating dye, emitting in the near- infrared 815 nm spectrum, and the nuclear counterstain, Hoechst 33258. Effects of near-infrared dye on cell metabolism and proliferation were extensively evaluated in vitro. Tagged hMSCs were then administered to parkinsonian rats bearing a 6-hydroxydopamine-induced lesion of the nigrostriatal pathway, via two alternative routes, ie, intrastriatal or intranasal, and the cells were tracked in vivo and ex vivo using near-infrared technology. RESULTS In vitro, NIR815 staining was stable in long-term hMSC cultures and did not interfere with cell metabolism or proliferation. A significant near-infrared signal was detectable in vivo, confined around the injection site for up to 14 days after intrastriatal transplantation. Conversely, following intranasal delivery, a strong near-infrared signal was immediately visible, but rapidly faded and was completely lost within 1 hour. After sacrifice, imaging data were confirmed by presence/absence of the Hoechst signal ex vivo in coronal brain sections. Semiquantitative analysis and precise localization of transplanted hMSCs were further performed ex vivo using near-infrared imaging. CONCLUSION Near-infrared technology allowed longitudinal detection of fluorescent-tagged cells in living animals giving immediate information on how different delivery routes affect cell distribution in the brain. Near-infrared imaging represents a valuable tool to evaluate multiple outcomes of transplanted cells, including their survival, localization, and migration over time within the host brain. This procedure considerably reduces the number of animal experiments needed, as well as interindividual variability, and may favor the development of efficient therapeutic strategies promptly applicable to patients.
Collapse
Affiliation(s)
- P Bossolasco
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - L Cova
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
| | - G Levandis
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - V Diana
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
| | - S Cerri
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - G Lambertenghi Deliliers
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - E Polli
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - V Silani
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
- Department of Neurology and Laboratory of Neuroscience, Centro “Dino Ferrari” Università degli Studi di Milano-IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - F Blandini
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - MT Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| |
Collapse
|
92
|
Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 2012; 22:138-49. [PMID: 22271527 DOI: 10.1007/s12640-012-9311-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.
Collapse
|
93
|
Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous Lung-Derived Mesenchymal Stem Cell Transplantation in Experimental Emphysema. Cell Transplant 2012; 21:175-89. [DOI: 10.3727/096368910x550233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous lung-derived mesenchymal stem cells (LMSCs) were transplanted endoscopically into sheep with experimental emphysema to assess their capacity to regenerate functional tissue. LMSC lines were derived from transbronchial biopsies, cloned at passage 2, expanded in culture, and labeled. A delivery scaffold containing 1% fibrinogen, 20 μg/ml of fibronectin, and 20 μg/ml of poly-L-lysine was used to promote cell attachment and spreading. Treatment animals received scaffold containing 5–10 × 106 cells/site; control animals received scaffold alone. Phenotypic markers, differentiation capacity, extracellular matrix protein expression, and paracrine function of LMSCs were characterized in vitro. Responses to LMSC transplantation in vivo were assessed in terms of clinical toxicity, lung physiology, change in tissue mass (measured by CT scanning) and perfusion (measured by scintigraphy scanning), and tissue histology. At 4-week follow-up, transplants were well tolerated and associated with increased tissue mass and lung perfusion compared to control treatment. Histology confirmed cell retention, increased cellularity, and increased extracellular matrix content following LMSC treatment. Labeled cells were distributed in the alveolar septum and peribronchiolar interstitium. Some label was also present within phagocytes, indicating that a fraction of autologous LMSCs do not survive transplantation. These results suggest that endobronchial delivery of autologous LMSCs has potential therapeutic utility for regenerating functional lung in emphysema.
Collapse
Affiliation(s)
- Edward P. Ingenito
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Tsai
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shankar Murthy
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shivraj Tyagi
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Mazan
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| | - Andrew Hoffman
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| |
Collapse
|
94
|
Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI. Neural stem cells: therapeutic potential for neurodegenerative diseases. Br Med Bull 2012; 104:7-19. [PMID: 22988303 DOI: 10.1093/bmb/lds024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Neural stem cells (NSCs) from specific brain areas or developed from progenitors of different sources are of therapeutic potential for neurodegenerative diseases. SOURCES OF DATA Treatment strategies involve the (i) transplantation of exogenous NSCs; (ii) pharmacological modulations of endogenous NSCs and (iii) modulation of endogenous NSCs via the transplantation of exogenous NSCs. AREAS OF AGREEMENT There is a consensus about the therapeutic potential of transplanted NSCs. The ability of NSCs to home into areas of central nervous system injury allows their delivery by intravenous injection. There is also a general agreement about the neuroprotective mechanisms of NSCs involving a 'bystander effect'. AREAS OF CONTROVERSY Individual laboratories may be using phenotypically diverse NSCs, since these cells have been differentiated by a variety of neurotrophins and/or cultured on different ECM proteins, therefore differing in the expression of neuronal markers. GROWING POINTS Optimization of the dose, delivery route, timing of administration of NSCs, their interactions with the immune system and combination therapies in conjunction with tissue engineered neural prostheses are under investigation. AREAS TIMELY FOR DEVELOPING RESEARCH In-depth understanding of the biological properties of NSCs, including mechanisms of therapy, safety, efficacy and elimination from the organism. These areas are central for further use in cell therapy. CAUTIONARY NOTE: As long as critical safety and efficacy issues are not resolved, we need to be careful in translating NSC therapy from animal models to patients.
Collapse
Affiliation(s)
- Galit Gincberg
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
95
|
Sanberg PR, Eve DJ, Cruz LE, Borlongan CV. Neurological disorders and the potential role for stem cells as a therapy. Br Med Bull 2012; 101:163-81. [PMID: 22357552 PMCID: PMC3577100 DOI: 10.1093/bmb/lds001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction Neurological disorders are routinely characterized by loss of cells in response to an injury or a progressive insult. Stem cells could therefore be useful to treat these disorders. Sources of data Pubmed searches of recent literature. Areas of agreement Stem cells exhibit proliferative capacity making them ideally suited for replacing dying cells. However, instead of cell replacement therapy stem cell transplants frequently appear to work via neurotrophic factor release, immunomodulation and upregulation of endogenous stem cells. Areas of controversy and areas timely for developing research Many questions remain with respect to the use of stem cells as a therapy, the answers to which will vary depending on the disorder to be treated and mode of action. Whereas the potential tumorigenic capability of stem cells is a concern, most studies do not support this notion. Further determination of the optimal cell type, and whether to perform allogeneic or autologous transplants warrant investigation before the full potential of stem cells can be realized. In addition, the use of stem cells to develop disease models should not be overlooked.
Collapse
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
96
|
Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis 2011; 17:289-304. [DOI: 10.1007/s10495-011-0679-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
97
|
Kang EJ, Lee YH, Kim MJ, Lee YM, Kumar BM, Jeon BG, Ock SA, Kim HJ, Rho GJ. Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 2011; 7:169-82. [PMID: 22081626 DOI: 10.1002/term.504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 06/10/2011] [Accepted: 07/19/2011] [Indexed: 12/31/2022]
Abstract
The present study compared mesenchymal stem cells derived from umbilical cord matrix (UCM-MSCs) with bone marrow (BM-MSCs) of miniature pigs on their phenotypic profiles and ability to differentiate in vitro into osteocytes, adipocytes and neuron-like cells. This study further evaluated the therapeutic potential of UCM-MSCs in a mouse Parkinson's disease (PD) model. Differences in expression of some cell surface and cytoplasm specific markers were evident between UCM-MSCs and BM-MSCs. However, the expression profile indicated the primitive nature of UCM-MSCs, along with their less or non-immunogenic features, compared with BM-MSCs. In vitro differentiation results showed that BM-MSCs had a higher tendency to form osteocytes and adipocytes, whereas UCM-MSCs possessed an increased potential to transform into immature or mature neuron-like cells. Based on these findings, UCM-MSCs were transplanted into the right substantia nigra (SN) of a mouse PD model. Transplantation of UCM-MSCs partially recovered the mouse PD model by showing an improvement in basic motor behaviour, as assessed by rotarod and bridge tests. These observations were further supported by the expression of markers, including nestin, tyrosine hydroxylase (TH), neuronal growth factor (NGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), at the site of cell transplantation. Our findings of xenotransplantation have collectively suggested the potential utility of UCM-MSCs in developing viable therapeutic strategies for PD.
Collapse
Affiliation(s)
- Eun-Ju Kang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kang EJ, Lee YH, Kim MJ, Lee YM, Mohana Kumar B, Jeon BG, Ock SA, Kim HJ, Rho GJ. Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 2011. [DOI: 10.1002/term.504 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Young-Hyurk Lee
- Department of Anatomy and Neurobiology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | - Min-Jeong Kim
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | - Yeon-Mi Lee
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | | - Byeong-Gyun Jeon
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | | - Hyun-Joon Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju; Republic of Korea
| | | |
Collapse
|
99
|
Signaling of Glial Cell Line-Derived Neurotrophic Factor and Its Receptor GFRα1 Induce Nurr1 and Pitx3 to Promote Survival of Grafted Midbrain-Derived Neural Stem Cells in a Rat Model of Parkinson Disease. J Neuropathol Exp Neurol 2011; 70:736-47. [DOI: 10.1097/nen.0b013e31822830e5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
100
|
Seo Y, Yang SR, Jee MK, Joo EK, Roh KH, Seo MS, Han TH, Lee SY, Ryu PD, Jung JW, Seo KW, Kang SK, Kang KS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Protect against Neuronal Cell Death and Ameliorate Motor Deficits in Niemann Pick Type C1 Mice. Cell Transplant 2011; 20:1033-47. [DOI: 10.3727/096368910x545086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Niemann Pick disease type C1 (NPC) is an autosomal recessive disease characterized by progressive neurological deterioration leading to premature death. In this study, we hypothesized that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have the multifunctional abilities to ameliorate NPC symptoms in the brain. To test this hypothesis, hUCB-MSCs were transplanted into the hippocampus of NPC mice in the early asymptomatic stage. This transplantation resulted in the recovery of motor function in the Rota Rod test and impaired cholesterol homeostasis leading to increased levels of cholesterol efflux-related genes such as LXRα, ABCA1, and ABCG5 while decreased levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase were observed in NPC mice. In the cerebrum, hUCB-MSCs enhanced neuronal cell survival and proliferation, where they directly differentiated into electrically active MAP2-positive neurons as demonstrated by whole-cell patch clamping. In addition, we observed that hUCB-MSCs reduced Purkinje neuronal loss by suppression of inflammatory and apoptotic signaling in the cerebellum as shown by immunohistochemistry. We further investigated how hUCB-MSCs enhance cellular survival and inhibit apoptosis in NPC mice. Neuronal cell survival was associated with increased PI3K/AKT and JAK2/STAT3 signaling; moreover, hUCB-MSCs modulated the levels of GABA/glutamate transporters such as GAT1, EAAT2, EAAT3, and GAD6 in NPC mice as assessed by Western blot analysis. Taken together, our findings suggest that hUCB-MSCs might play multifunctional roles in neuronal cell survival and ameliorating motor deficits of NPC mice.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Ran Yang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ki Jee
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Kyung Joo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hwan Roh
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Soo Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Hee Han
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Won Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soo-Kyung Kang
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|