51
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
52
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|
53
|
LncRNA CCAT2, involving miR-34a/TGF-β1/Smad4 signaling, regulate hepatic stellate cells proliferation. Sci Rep 2022; 12:21199. [PMID: 36482069 PMCID: PMC9732356 DOI: 10.1038/s41598-022-25738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
miR-34a targeting on Smad4 plays important role in TGF-β1 pathway which is a dominant factor for balancing collagen production and degradation in hepatic stellate cells. TGF-β1/Smad4 regulated collagen deposition is a hallmark of hepatic fibrosis. The potential regulation on miR-34a by LncRNAs in hepatic stellate cells (HSCs) is still reserved to be revealed. In current study, it was hypothesized that a miR-34a interactor, lncRNA CCAT2 may regulate TGF-β1 pathway in liver fibrotic remodeling. The interaction between CCAT2 and miR-34a-5p was checked by dual luciferase assay. the effects of CCAT2 and miR-34a-5p on cell proliferation and apoptosis were verified by MTT assay, colony formation assay, and flow cytometry assay. Dual luciferase activity showed CCAT2 are targets of miR-34a-5p. Sh-CCAT2 transfection prohibit HSCs proliferation and induce HSCs apoptosis, also inhibited ECM protein synthesis in HSCs. Decreased miR-34a-5p enhanced HSCs proliferation, blocked HSCs apoptosis and promoted ECM protein production. miR-34a-5p inhibitor undo protective regulation of sh-CCAT2 in liver fibrosis. Furthermore, clinical investigation showed that CCAT2 and Smad4 expression level were significantly induced, while miR-34a-5p was significantly decreased in HBV related liver fibrosis serum. In conclusion, activated HSCs via TGF-β1/Smad4 signaling pathway was successfully alleviated by CCAT2 inhibition through miR-34a-5p elevation.
Collapse
|
54
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
55
|
Shen LH, Fan L, Zhang Y, Zhu YK, Zong XL, Peng GN, Cao SZ. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022; 14:nu14235071. [PMID: 36501102 PMCID: PMC9737791 DOI: 10.3390/nu14235071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The placenta contains multiple biologically active substances, which exert antioxidation, anti-inflammatory, immunomodulatory, and delayed aging effects. Its extract can improve hepatic morphology and function: on the one hand, it can reduce liver interstitial collagen deposition, lipogenesis, and inflammatory cell infiltration and improve fibrosis; on the other hand, it can prevent hepatocellular degeneration by scavenging reactive oxygen species (ROS) and inhibiting inflammatory cytokine production, further improve hepatocyte apoptosis and necrosis, and promote hepatocyte regeneration, making it a promising liver-protective agent. Current research on placenta extract (PE) mainly focuses on treating a specific type of liver injury, and there are no systematic reports. Therefore, this review comprehensively summarizes the treatment reports of PE on liver injury and analyzes its mechanism of action.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-181-0901-7590
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying-Kun Zhu
- School of Agriculture & Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
56
|
Dean LS, Chow DC, Ndhlovu LC, Boisvert WA, Chang SP, Shikuma CM, Park J. Characterization of Circulating Fibrocytes in People Living with HIV on Stable Antiretroviral Therapy. Immunohorizons 2022; 6:760-767. [PMID: 36445359 PMCID: PMC10402248 DOI: 10.4049/immunohorizons.2200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Highly effective combination antiretroviral therapy has reduced HIV infection to a manageable chronic disease, shifting the clinical landscape toward management of noninfectious comorbidities in people living with HIV (PLWH). These comorbidities are diverse, generally associated with accelerated aging, and present within multiple organ systems. Mechanistically, immune dysregulation and chronic inflammation, both of which persist in PLWH with well-controlled virally suppressive HIV infection, are suggested to create and exacerbate noninfectious comorbidity development. Persistent inflammation often leads to fibrosis, which is the common end point pathologic feature associated with most comorbidities. Fibrocytes are bone marrow-derived fibroblast-like cells, which emerged as key effector cells in tissue repair and pathologic fibrotic diseases. Despite their relevance to fibrosis, the circulating fibrocyte concentration in PLWH remains poorly characterized, and an understanding of their functional role in chronic HIV is limited. In this study, utilizing PBMCs from a cross-sectional adult HIV cohort study with matched uninfected controls (HIV-), we aimed to identify and compare circulating fibrocytes in blood. Both the percentage and number of fibrocytes and α-smooth muscle actin+ fibrocytes in circulation did not differ between the HIV+ and HIV- groups. However, circulating fibrocyte levels were significantly associated with increasing age in both the HIV+ and HIV- groups (the percentage and number; r = 0.575, p ≤ 0.0001 and r = 0.558, p ≤ 0.0001, respectively). Our study demonstrates that circulating fibrocyte levels and their fibroblast-like phenotype defined as collagen I and α-smooth muscle actin+ expression are comparable between, and strongly associated with, age irrespective of HIV status.
Collapse
Affiliation(s)
- Logan S. Dean
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Dominic C. Chow
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - Cecilia M. Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| |
Collapse
|
57
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
58
|
Sharma N, Shaikh TB, Eedara A, Kuncha M, Sistla R, Andugulapati SB. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur J Pharmacol 2022; 937:175366. [DOI: 10.1016/j.ejphar.2022.175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
|
59
|
Associations between Extracellular Matrix Protein 1 Gene Polymorphism and Progression of Liver Disease. Genet Res (Camb) 2022; 2022:9304264. [PMID: 36299684 PMCID: PMC9586790 DOI: 10.1155/2022/9304264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Our study aimed to investigate the relationship between extracellular matrix 1 (ECM1) gene polymorphism and progression of liver fibrosis in the Chinese population. Methods A total 656 patients with hepatitis B virus (HBV) infection and 298 healthy individuals of the Chinese Han population were recruited for a retrospective case-control study. Of the disease group, 104 cases had chronic hepatitis B (CHB), 266 had LC, and 286 had hepatocellular carcinoma (HCC). Subjects were frequency-matched according to age and gender. Polymorphisms of the ECM1 gene were examined using the MassARRAY SNP genotyping method. Results There were no associations between genotype and allele frequencies of ECM1 rs3737240 and rs13294 loci with the risk of CHB and CHB-related HCC. After adjustment for age, sex, smoking status, and drinking habits, the GT genotype was dramatically related to a reduced risk of chronic HBV infection in both non-HCC (OR = 0.68, 95% CI: 0.49-0.94) and total chronic HBV infection patients (OR = 0.75, 95% CI: 0.56-1.00). Haplotype analyses revealed twelve protective haplotypes against total chronic HBV infection and four against non-HCC chronic HBV infection. Conclusion ECM1 gene polymorphism in rs3834087 and rs3754217 loci is associated with a reduced risk of chronic HBV infection but not with liver fibrosis development and the occurrence of HCC.
Collapse
|
60
|
Edinga BEE, Bigna JJ, Nansseu JR, Tchapmi AY, Mbouna SFM, Belinga S, Njoya O, Ama-Moor VJ, Njouom R. Simple noninvasive tests for liver fibrosis diagnosis in sub-Saharan African adults with chronic viral hepatitis B or C: A cross sectional study in Cameroon. Clin Chim Acta 2022; 536:56-60. [PMID: 36155867 DOI: 10.1016/j.cca.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS This study aimed at measure the correlation between simple less expensive and noninvasive tests for liver fibrosis and Fibrotest among patients with chronic hepatitis B (HBV) or C (HCV) in resource-limited settings. MATERIALS AND METHODS This was a cross-sectional study conducted at the Centre Pasteur of Cameroon among adults with chronic HBV or HCV infection. The correlation between aspartate aminotransferase to platelet ratio index(APRI), the gamma-glutamyl transferase to platelet ratio (GPR), and Fibrosis-4 score (FIB-4); and Fibrotest was assessed using the Spearman rank test providing the rho (ρ) coefficient of correlation. RESULTS Of the 52 patients (mean age: 49 years, males: 51.9%) included, 52% were infected with HBV (n = 27). The APRI, GPR, FIB-4, and Fibrotest median scores (25th-75th percentiles) were: 0.37 (0.25-0.64), 0.34 (0.20-1.45), 1.49 (0.88-3.12), and 0.43 (0.21-0.80), respectively. The correlation with Fibrotest were: APRI (ρ = 0.678, p value < 0.0001), GPR (ρ = 0.621, p value < 0.0001) and FIB-4 (ρ = 0.772, p value < 0.0001). CONCLUSIONS This study found a significant correlation between APRI, GPR and FIB-4; and Fibrotest among patients with chronic HBV or HCV infection in Cameroon. FIB-4 appeared as the diagnosis method with the strongest correlation with Fibrotest.
Collapse
Affiliation(s)
- Bertille Elodie E Edinga
- National Laboratory of Public Health, Ministry of Health, Yaounde, Cameroon; Department of Biochemistry, Higher Institute of Medical Technologies, Yaoundé, Cameroon.
| | - Jean Joel Bigna
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Jobert Richie Nansseu
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Adrienne Y Tchapmi
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| | | | - Suzanne Belinga
- Department of Medical Analyses, Centre Pasteur of Cameroon, Yaoundé, Cameroon.
| | - Oudou Njoya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Vicky Jocelyne Ama-Moor
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon; Department of Biochemistry, Yaoundé University Teaching Hospital, Yaoundé, Cameroon.
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.
| |
Collapse
|
61
|
Zhou L, Liang Q, Li Y, Cao Y, Li J, Yang J, Liu J, Bi J, Liu Y. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy. Acta Biomater 2022; 152:235-254. [PMID: 36087869 DOI: 10.1016/j.actbio.2022.08.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Liver fibrosis is a pathological process of multiple chronic liver diseases progressing to cirrhosis for which there are currently no effective treatment options. During fibrosis progression, the overproduction of extracellular matrix (ECM) collagen secreted by hepatic stellate cells (HSCs) greatly impedes drug delivery and reduces drug therapeutic effects. In this study, a glycyrrhetinic acid (GA)-conjugated prodrug micellar system with collagenase I (COL) decoration (COL-HA-GA, abbreviated as CHG) was designed to codelivery sorafenib (Sora/CHG, abbreviated as S/CHG) for potentiating ECM degradation and HSCs targeting on liver fibrosis therapy. In ECM barrier models established in vitro or in vivo, CHG micelles efficiently degraded pericellular collagen and demonstrated enormous ECM penetration abilities as well as superior HSCs internalization. Moreover, CHG micelles exhibited more Sora & GA accumulations and activated HSCs targeting efficiencies in the fibrotic livers than those in the normal livers. More importantly, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating the fibrosis-related factors, leading to reverse the fibrotic liver to normal liver through the multi-mechanisms including angiogenesis reduction, liver fibrosis microenvironment regulation, and epithelial-mesenchymal transition inhibition. In conclusion, the developed COL decorated nano-codelivery system with fibrotic ECM collagen degradation and activated HSCs targeting dual-functions exhibited great potential for liver fibrosis therapy. STATEMENT OF SIGNIFICANCE: A glycyrrhetinic acid (GA)-conjugated prodrug with collagenase I (COL) decoration (CHG) was designed for codelivery with sorafenib (S/CHG), potentiating extracellular matrix (ECM) degradation-penetration and hepatic stellate cells (HSCs) targeting on liver fibrosis therapy. In ECM barrier models, CHG micelles efficiently degraded pericellular collagen and demonstrated ECM penetration abilities, as well as displayed superior HSCs internalization. Moreover, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating cytokines, reversing the fibrotic liver to normal through various mechanisms. In conclusion, the developed fibrotic ECM degradation and HSCs targeting dual-functional nano-codelivery system provided a prospective potentiality in liver fibrosis therapy.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiawei Bi
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
62
|
Interplays of liver fibrosis-associated microRNAs: Molecular mechanisms and implications in diagnosis and therapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
Loss of FOXA2 induces ER stress and hepatic steatosis and alters developmental gene expression in human iPSC-derived hepatocytes. Cell Death Dis 2022; 13:713. [PMID: 35973994 PMCID: PMC9381545 DOI: 10.1038/s41419-022-05158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
FOXA2 has been known to play important roles in liver functions in rodents. However, its role in human hepatocytes is not fully understood. Recently, we generated FOXA2 mutant induced pluripotent stem cell (FOXA2-/-iPSC) lines and illustrated that loss of FOXA2 results in developmental defects in pancreatic islet cells. Here, we used FOXA2-/-iPSC lines to understand the role of FOXA2 on the development and function of human hepatocytes. Lack of FOXA2 resulted in significant alterations in the expression of key developmental and functional genes in hepatic progenitors (HP) and mature hepatocytes (MH) as well as an increase in the expression of ER stress markers. Functional assays demonstrated an increase in lipid accumulation, bile acid synthesis and glycerol production, while a decrease in glucose uptake, glycogen storage, and Albumin secretion. RNA-sequencing analysis further validated the findings by showing a significant increase in genes associated with lipid metabolism, bile acid secretion, and suggested the activation of hepatic stellate cells and hepatic fibrosis in MH lacking FOXA2. Overexpression of FOXA2 reversed the defective phenotypes and improved hepatocyte functionality in iPSC-derived hepatic cells lacking FOXA2. These results highlight a potential role of FOXA2 in regulating human hepatic development and function and provide a human hepatocyte model, which can be used to identify novel therapeutic targets for FOXA2-associated liver disorders.
Collapse
|
64
|
Moreno Traspas R, Teoh TS, Wong PM, Maier M, Chia CY, Lay K, Ali NA, Larson A, Al Mutairi F, Al-Sannaa NA, Faqeih EA, Alfadhel M, Cheema HA, Dupont J, Bézieau S, Isidor B, Low DY, Wang Y, Tan G, Lai PS, Piloquet H, Joubert M, Kayserili H, Kripps KA, Nahas SA, Wartchow EP, Warren M, Bhavani GS, Dasouki M, Sandoval R, Carvalho E, Ramos L, Porta G, Wu B, Lashkari HP, AlSaleem B, BaAbbad RM, Abreu Ferrão AN, Karageorgou V, Ordonez-Herrera N, Khan S, Bauer P, Cogne B, Bertoli-Avella AM, Vincent M, Girisha KM, Reversade B. Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nat Genet 2022; 54:1214-1226. [PMID: 35864190 PMCID: PMC7615854 DOI: 10.1038/s41588-022-01120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.
Collapse
Affiliation(s)
- Ricardo Moreno Traspas
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tze Shin Teoh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pui-Mun Wong
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michael Maier
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Crystal Y Chia
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Kenneth Lay
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nur Ain Ali
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Austin Larson
- Section of Pediatrics-Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO, USA
| | - Fuad Al Mutairi
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medical Genomic Research, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Huma Arshad Cheema
- Division of Pediatric Gastroenterology-Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Lahore, Pakistan
| | - Juliette Dupont
- Department of Pediatrics, Genetic Services, Lisbon North University Hospital Center, Lisbon, Portugal
| | - Stéphane Bézieau
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Bertrand Isidor
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Dorrain Yanwen Low
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Grace Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hugues Piloquet
- Gastropediatrics Department, Nantes University Hospital Center, Nantes, France
| | - Madeleine Joubert
- Anatomopathology Department, Nantes University Hospital Center, Nantes, France
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey
| | - Kimberly A Kripps
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Shareef A Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric P Wartchow
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Majed Dasouki
- Department of Pediatric Genetics, AdventHealth Medical Group, Orlando, FL, USA
| | - Renata Sandoval
- Department of Oncogenetics, Hospital Sírio-Libanês, Brasília, Brazil
| | - Elisa Carvalho
- Department of Pediatric Gastroenterology and Hepatology, Hospital da Criança de Brasília José Alencar, UniCEUB, Brasília, Brazil
| | - Luiza Ramos
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Gilda Porta
- Department of Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Badr AlSaleem
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Raeda M BaAbbad
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | | | - Marie Vincent
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
65
|
Luan SH, Yang YQ, Ye MP, Liu H, Rao QF, Kong JL, Wu FR. ASIC1a promotes hepatic stellate cell activation through the exosomal miR-301a-3p/BTG1 pathway. Int J Biol Macromol 2022; 211:128-139. [PMID: 35561854 DOI: 10.1016/j.ijbiomac.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.
Collapse
Affiliation(s)
- Shao-Hua Luan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | | | - Man-Ping Ye
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Hui Liu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Qiu-Fan Rao
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jin-Ling Kong
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Fan-Rong Wu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
66
|
The potential role of FNDC5/irisin in various liver diseases: awakening the sleeping beauties. Expert Rev Mol Med 2022; 24:e23. [PMID: 35695040 DOI: 10.1017/erm.2022.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) is a transmembrane protein and the precursor of irisin, which serves as a systemic exerkine/myokine with multiple origins. Since its discovery in 2012, this hormone-like polypeptide has rapidly evolved to a component significantly involved in a gamut of metabolic dysregulations and various liver diseases. After a decade of extensive investigation on FNDC5/irisin, we are still surrounded by lots of open questions regarding its diagnostic and therapeutic values. In this review, we first concentrated on the structure-function relationship of FNDC5/irisin. Next, we comprehensively summarised the current knowledge and research findings regarding pathogenic roles/therapeutic applications of FNDC5/irisin in the context of non-alcoholic fatty liver disease, fibrosis, liver injury due to multiple detrimental insults, hepatic malignancy and intrahepatic cholestasis of pregnancy. Moreover, the prominent molecules involved in the underlying mechanisms and signalling pathways were highlighted. As a result, emerging evidence reveals FNDC5/irisin may act as a proxy for diagnosing liver disease pathology, a sensitive biomarker for assessing damage severity, a predisposing factor for surveilling illness progression and a treatment option with protective/preventive impact, all of which are highly dependent on disease grading and contextually pathological features.
Collapse
|
67
|
Safran M, Masoud R, Sultan M, Tachlytski I, Chai Gadot C, Pery R, Balint-Lahat N, Pappo O, Buzaglo N, Ben-Ari Z. Extracellular Vesicular Transmission of miR-423-5p from HepG2 Cells Inhibits the Differentiation of Hepatic Stellate Cells. Cells 2022; 11:cells11101715. [PMID: 35626751 PMCID: PMC9139792 DOI: 10.3390/cells11101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis (LF) is a major cause of morbidity and mortality worldwide. Hepatic stellate cells (HSCs) are the primary source of extracellular matrix in the liver and their activation is a central event in LF development. Extracellular vesicles (EVs) are intercellular communication agents, which play important roles in physiological processes in chronic liver diseases. The aim of this study was to examine the crosstalk between hepatocytes and HSCs mediated by hepatocyte-secreted EVs. EVs were purified from primary mouse hepatocytes, HepG2 cell lines, under normal or stressed conditions. The effect of EVs on primary HSCs (pHSCs) differentiation was evaluated by measuring of differentiation markers. In addition, their impact on the carbon tetrachloride (CCl4)-induced fibrosis mouse model was evaluated. The results demonstrated that HepG2-EVs regulate HSC differentiation and that under stress conditions, promoted pHSCs differentiation into the myofibroblast phenotype. The evaluation of miRNA sequences in the HepG2 secreted EVs demonstrated high levels of miR-423-5p. The examination of EV cargo following stress conditions identified a significant reduction of miR-423-5p in HepG2-EVs relative to HepG2-EVs under normal conditions. In addition, pHSCs transfected with miR-423-5p mimic and exhibit lower mRNA levels of alpha smooth muscle actin and Collagen type 1 alpha, and the mRNA expression level of genes targeted the family with sequence-similarity-3 (FAM3) and Monoacylglycerol lipase (Mgll). This study strengthened the hypothesis that EVs are involved in LF and that their cargo changes in stress conditions. In addition, miR-423-5p was shown to be involved in HSCs differentiation and hence, fibrosis development.
Collapse
Affiliation(s)
- Michal Safran
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Rula Masoud
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Maya Sultan
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Irena Tachlytski
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Chofit Chai Gadot
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Ron Pery
- Department of General Surgery, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel;
| | - Nora Balint-Lahat
- Pathology Department, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (N.B.-L.); (O.P.)
| | - Orit Pappo
- Pathology Department, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (N.B.-L.); (O.P.)
| | - Nahum Buzaglo
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Ziv Ben-Ari
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
- Pathology Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6329302, Israel
- Correspondence: ; Tel.: +972-3-5307180
| |
Collapse
|
68
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, involving approximately 25% of the general population and increasing in prevalence in patient populations afflicted with metabolic syndrome and type 2 diabetes. This article discusses the complex interplay between NAFLD and chronic kidney disease (CKD), as well as the underlying pathogenesis and mechanisms through which NAFLD and CKD are linked. Exploration of these sophisticated relationships and causative factors is essential to accurately assessing kidney function in patients with NAFLD, recommending pharmacologic treatment of disease, and identifying favorable avenues for future investigation.
Collapse
|
69
|
Garbuzenko DV. Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. World J Clin Cases 2022; 10:3662-3676. [PMID: 35647163 PMCID: PMC9100727 DOI: 10.12998/wjcc.v10.i12.3662] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a complex pathological process controlled by a variety of cells, mediators and signaling pathways. Hepatic stellate cells play a central role in the development of liver fibrosis. In chronic liver disease, hepatic stellate cells undergo dramatic phenotypic activation and acquire fibrogenic properties. This review focuses on the pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. They enter the cell cycle under the influence of various triggers. The “Initiation” phase of hepatic stellate cells activation overlaps and continues with the “Perpetuation” phase, which is characterized by a pronounced inflammatory and fibrogenic reaction. This is followed by a resolution phase if the injury subsides. Knowledge of these pathophysiological mechanisms paved the way for drugs aimed at preventing the development and progression of liver fibrosis. In this respect, impairments in intracellular signaling, epigenetic changes and cellular stress response can be the targets of therapy where the goal is to deactivate hepatic stellate cells. Potential antifibrotic therapy may focus on inducing hepatic stellate cells to return to an inactive state through cellular aging, apoptosis, and/or clearance by immune cells, and serve as potential antifibrotic therapy. It is especially important to prevent the formation of liver cirrhosis since the only radical approach to its treatment is liver transplantation which can be performed in only a limited number of countries.
Collapse
|
70
|
Miao H, Ouyang H, Guo Q, Wei M, Lu B, Kai G, Ji L. Chlorogenic acid alleviated liver fibrosis in methionine and choline deficient diet-induced nonalcoholic steatohepatitis in mice and its mechanism. J Nutr Biochem 2022; 106:109020. [PMID: 35472433 DOI: 10.1016/j.jnutbio.2022.109020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 01/19/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), one of the most common chronic liver diseases, is a progressive form of nonalcoholic fatty liver disease (NAFLD) accompanied by the development of liver fibrosis. Chlorogenic acid (CGA) is a natural polyphenolic compound. This study aims to observe the CGA-provided alleviation on liver fibrosis in methionine and choline deficient (MCD) diet-induced NASH in mice and to elucidate its engaged mechanism. CGA attenuated hepatocellular injury, decreased the elevated hepatic lipids accumulation and attenuated liver fibrosis by reducing hepatic collagen deposition in mice fed with MCD diet. CGA abrogated the activation of hepatic stellate cells (HSCs) and promoted mitochondrial biogenesis both in vivo and in vitro. Moreover, the CGA-provided inhibition on HSCs activation in vitro was obviously disappeared after the application of peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PGC1α) siRNA. CGA reduced the enhanced hepatic extracellular matrix (ECM) expression and the elevated serum high-mobility group box 1 (HMGB1) content in mice fed with MCD diet. CGA decreased the HMGB1-induced ECM production in both human liver sinusoidal endothelial cells (LSECs) and human umbilical vein endothelial cells (HUVECs). CGA also weakly promoted mitochondrial biogenesis in both LSECs and HUVECs incubated with HMGB1. Hence, CGA ameliorated hepatic fibrosis in mice fed with MCD diet through inhibiting HSCs activation via promoting mitochondrial biogenesis and reducing the HMGB1-initiated ECM production in hepatic vascular endothelial cells.
Collapse
Affiliation(s)
- Hui Miao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
71
|
Yu S, Ericson M, Fanjul A, Erion DM, Paraskevopoulou M, Smith EN, Cole B, Feaver R, Holub C, Gavva N, Horman SR, Huang J. Genome-wide CRISPR Screening to Identify Drivers of TGF-β-Induced Liver Fibrosis in Human Hepatic Stellate Cells. ACS Chem Biol 2022; 17:918-929. [PMID: 35274923 PMCID: PMC9016707 DOI: 10.1021/acschembio.2c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis progression in chronic liver disease leads to cirrhosis, liver failure, or hepatocellular carcinoma and often ends in liver transplantation. Even with an increased understanding of liver fibrogenesis and many attempts to generate therapeutics specifically targeting fibrosis, there is no approved treatment for liver fibrosis. To further understand and characterize the driving mechanisms of liver fibrosis, we developed a high-throughput genome-wide CRISPR/Cas9 screening platform to identify hepatic stellate cell (HSC)-derived mediators of transforming growth factor (TGF)-β-induced liver fibrosis. The functional genomics phenotypic screening platform described here revealed the novel biology of TGF-β-induced fibrogenesis and potential drug targets for liver fibrosis.
Collapse
Affiliation(s)
- Shan Yu
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Matthew Ericson
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Andrea Fanjul
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Derek M. Erion
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, United States
| | - Maria Paraskevopoulou
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, United States
| | - Erin N. Smith
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Banumathi Cole
- HemoShear Therapeutics, Inc., Charlottesville, Virginia 22902, United States
| | - Ryan Feaver
- HemoShear Therapeutics, Inc., Charlottesville, Virginia 22902, United States
| | - Corine Holub
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Narender Gavva
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Shane R. Horman
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Jie Huang
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| |
Collapse
|
72
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
73
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
74
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
75
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
|
76
|
Ichimura-Shimizu M, Tsuchiyama Y, Morimoto Y, Matsumoto M, Kobayashi T, Sumida S, Kakimoto T, Oya T, Ogawa H, Yamashita M, Matsuda S, Omagari K, Taira S, Tsuneyama K. A Novel Mouse Model of Nonalcoholic Steatohepatitis Suggests that Liver Fibrosis Initiates around Lipid-Laden Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:31-42. [PMID: 34710382 DOI: 10.1016/j.ajpath.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Yosuke Tsuchiyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
77
|
Baek DW, Cho HJ, Kim JH, Ahn JS, Kim HJ, Lim SN, Cheong JW, Kim SY, Lee HS, Won JH, Yhim HY, Sohn SK, Moon JH. Results of Multicenter Phase II Study With Imatinib Mesylate in Allogeneic Recipients With Steroid-Refractory Chronic GVHD. Cell Transplant 2022; 31:9636897221113789. [PMID: 35861214 PMCID: PMC9310209 DOI: 10.1177/09636897221113789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this multicenter phase II study, we evaluated the safety and efficacy of imatinib in patients with steroid-resistant chronic graft-versus-host disease (cGVHD) and evaluated the quality of life (QOL) of the enrolled patients using the Short Form 36 (SF-36) health survey questionnaire. Thirty-six patients who were diagnosed with steroid-refractory cGVHD and treated with imatinib between March 2013 and February 2019 received 100 mg/day of imatinib for 2 weeks. Depending on the patient’s condition and investigator’s decision, the imatinib dose was allowed to be increased by 100 mg every 2 weeks up to 400 mg/day. Patients who achieved stable disease (SD), partial remission (PR), and complete remission (CR) at 3-month response evaluations continued imatinib for up to 6 months. The majority of the patients had multi-organ cGVHD, with skin (63.9%), lungs (44.4%), mouth (38.9%), and eyes (38.9%) as the most common sites. The overall response rate was 58.3%, including 3 and 18 patients with CR and PR, respectively, and an overall decline in National Institutes of Health (NIH) severity scores was observed at study completion in the absence of significant adverse effects. The overall response rates were 70.5%, 66.7%, 34.8%, and 25% in patients with gastrointestinal, liver, skin, and lung cGVHD, respectively. Factors representing emotional well-being were significantly improved based on the patient-reported QOL evaluation using SF-36. The effect of imatinib on steroid tapering, which was notable in responders, was also present in 50% of those who achieved SD without worsening cGVHD. Imatinib exhibited therapeutic efficacy in steroid-refractory and steroid-dependent cGVHD with tolerable toxicity. Clinical Trial Registration: KCT0006785.
Collapse
Affiliation(s)
- Dong Won Baek
- Department of Hematology-Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hee Jeong Cho
- Department of Hematology-Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyung Kim
- Department of Hematology-Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun-gun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun-gun, South Korea
| | - Sung Nam Lim
- Department of Hematology-Oncology, Inje University Haeundae Paik Hospital, Pusan, South Korea
| | - Jun Won Cheong
- Department of Hematology-Oncology, Severance Hospital, Yonsei University Medical School, Seoul, South Korea
| | - Sung-Yong Kim
- Division of Hematology, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Ho Sup Lee
- Department of Hematology-Oncology, Kosin University Gospel Hospital, Pusan, South Korea
| | - Jong Ho Won
- Department of Hematology-Oncology, SoonChunHyang University Hospital, Seoul, South Korea
| | - Ho-Young Yhim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Korea
| | - Sang Kyun Sohn
- Department of Hematology-Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Ho Moon
- Department of Hematology-Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
78
|
Tao S, Duan R, Xu T, Hong J, Gu W, Lin A, Lian L, Huang H, Lu J, Li T. Salvianolic acid B inhibits the progression of liver fibrosis in rats via modulation of the Hedgehog signaling pathway. Exp Ther Med 2022; 23:116. [PMID: 34970339 PMCID: PMC8713182 DOI: 10.3892/etm.2021.11039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Salvianolic acid B (Sal B) has previously reported anti-hepatic fibrosis effects, though it is not clear if it can inhibit hepatic fibrosis by regulating the hedgehog (Hh) signaling pathway. The aim of the present study was to explore the roles and mechanism of Sal B in preventing and treating liver fibrosis in rats. The study also aimed to determine the role of the Hh signaling pathway in this process. A rat model of liver fibrosis was induced through the subcutaneous injection of 50% carbon tetrachloride, followed by treatment with Sal B. After gavage, blood was collected to detect serum markers of liver injury. The degree of liver fibrosis and tissue damage was assessed using histopathological analysis. Western blotting and reverse transcription-quantitative PCR were used to detect the expression levels of TGF-β1 and Hh signaling pathway-related genes, including Sonic hedgehog (Shh) protein, membrane protein receptor protein patched homolog 1 (Ptch1), membrane protein receptor Smoothened (Smo) and transcription factor glioma-associated oncogene homolog 1 (Gli1). Serum alanine aminotransferase, aspartate aminotransferase and total bilirubin levels were decreased, whilst levels of albumin were increased in rats with liver fibrosis that were treated with Sal B (P<0.05). Additionally, significant increases in TGF-β1, Shh, Ptch1, Smo, Gli1 and α-smooth muscle actin expression levels were observed in the liver tissues of rats with hepatic fibrosis (P<0.05). However, Sal B treatment significantly reduced the expression levels of these proteins (P<0.05). In conclusion, the results of the present study suggested that the Hh signaling pathway may be activated during the process of rat liver fibrosis. Thus, Sal B may exert its anti-hepatic fibrosis effects, at least in part, by inhibiting the activation of the Hh signaling pathway.
Collapse
Affiliation(s)
- Shanjun Tao
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China.,Department of Clinical Biochemistry, School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Renjie Duan
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Tong Xu
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jiao Hong
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Wenjie Gu
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Aiqin Lin
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Likai Lian
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Haoyu Huang
- Department of Clinical Biochemistry, School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jiangtao Lu
- Department of Clinical Biochemistry, School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Tiechen Li
- Department of Medical Biology, School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
79
|
Duspara K, Bojanic K, Pejic JI, Kuna L, Kolaric TO, Nincevic V, Smolic R, Vcev A, Glasnovic M, Curcic IB, Smolic M. Targeting the Wnt Signaling Pathway in Liver Fibrosis for Drug Options: An Update. J Clin Transl Hepatol 2021; 9:960-971. [PMID: 34966659 PMCID: PMC8666372 DOI: 10.14218/jcth.2021.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a life-threatening disease, with challenging morbidity and mortality for healthcare systems worldwide. It imparts an enormous economic burden to societies, making continuous research and informational updates about its pathogenesis and treatment crucial. This review's focus is on the current knowledge about the Wnt signaling pathway, serving as an important pathway in liver fibrosis development and activation of hepatic stellate cells (HSCs). Two types of Wnt pathways are distinguished, namely the ß-catenin-dependent canonical and non-canonical Ca2+ or planar cell polarity (PCP)-dependent pathway. The dynamic balance of physiologically healthy liver and hepatocytes is disturbed by repeated liver injuries. Activation of the ß-catenin Wnt pathway prevents the regeneration of hepatocytes by the replacement of extracellular matrix (ECM), leading to the appearance of scar tissue and the formation of regenerated nodular hepatocytes, lacking the original function of healthy hepatocytes. Therefore, liver function is reduced due to the severely advanced disease. Selective inhibition of ß-catenin inhibits inflammatory processes (since chemokines and pro-inflammatory cytokines are produced during Wnt activation), reduces growth of activated HSCs and reduces collagen synthesis and angiogenesis, thereby reducing the progression of liver fibrosis in vivo. While the canonical Wnt pathway is usually inactive in a physiologically healthy liver, it shows activity during cell regeneration or renewal and in certain pathophysiological conditions, such as liver diseases and cancer. Targeted blocking of some of the basic components of the Wnt pathway is a therapeutic approach. These include the frizzled transmembrane receptor (Fz) receptors using the secreted frizzled-related protein family (sFRP), Fz-coreceptors low-density LRP 5/6 through dickkopf-related protein 1 (DKK1) or niclosamide, glycogen kinase-3 beta (GSK-3β) using SB-216763, cyclic-AMP response element-binding protein (CBP) using PRI-724 and ICG-001, the lymphoid enhancer binding factor (LEF)/T cell-specific transcription factor (TCF) system as well as Wnt inhibitory factor 1 (WIF1) and miR-17-5p using pinostilbene hydrate (PSH). Significant progress has been made in inhibiting Wnt and thus stopping the progression of liver fibrosis by diminishing key components for its action. Comprehending the role of the Wnt signaling pathway in liver fibrosis may lead to discovery of novel targets in liver fibrosis therapeutic strategies' development.
Collapse
Affiliation(s)
- Kristina Duspara
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Bojanic
- Department of Biophysics and Radiology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Biophysics and Radiology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Radiology, Health Center Osijek, Osijek, Croatia
| | - Josipa Ivanusic Pejic
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Tea Omanovic Kolaric
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vjera Nincevic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Smolic
- Department of Medicine, Division of Gastroenterology/Hepatology, University Hospital Osijek, Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pathophysiology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Aleksandar Vcev
- Department of Medicine, Division of Gastroenterology/Hepatology, University Hospital Osijek, Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pathophysiology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Glasnovic
- Department of Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Bilic Curcic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Medicine, Division of Endocrinology, University Hospital Osijek, Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Correspondence to: Martina Smolic, University of Osijek, Faculty of Medicine, Department of Pharmacology; Faculty of Dental Medicine and Health, Department of Pharmacology and Biochemistry, J. Huttlera 4, Osijek 31000, Croatia. ORCID: https://orcid.org/0000-0002-6867-826X. Tel: + 385-31-512-800, Fax: +385-31-512-833, E-mail:
| |
Collapse
|
80
|
Liu F, Sun C, Chen Y, Du F, Yang Y, Wu G. Indole-3-propionic Acid-aggravated CCl 4-induced Liver Fibrosis via the TGF-β1/Smads Signaling Pathway. J Clin Transl Hepatol 2021; 9:917-930. [PMID: 34966655 PMCID: PMC8666369 DOI: 10.14218/jcth.2021.00032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS The pathogenesis of liver fibrosis involves liver damage, inflammation, oxidative stress, and intestinal dysfunction. Indole-3-propionic acid (IPA) has been demonstrated to have antioxidant, anti-inflammatory and anticancer activities, and a role in maintaining gut homeostasis. The current study aimed to investigate the role of IPA in carbon tetrachloride (CCl4)-induced liver fibrosis and explore the underlying mechanisms. METHODS The liver fibrosis model was established in male C57BL/6 mice by intraperitoneal injection of CCl4 twice weekly. IPA intervention was made orally (20 mg/kg daily). The degree of liver injury and fibrosis were assessed by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathology. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qPCR) were used to detect the inflammatory cytokines. The malondialdehyde (MDA), glutathione, glutathione peroxidase, superoxide dismutase, and catalase were determined via commercial kits. Hepatocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of mRNA and protein was assayed by qPCR, Western blotting, or immunohistochemical staining. RESULTS After IPA treatment, the ALT and AST, apoptotic cells, and pro-inflammatory factor levels were enhanced significantly. Moreover, IPA intervention up-regulated the expression of collagen I, α-smooth muscle actin, tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-2, transforming growth factor-β1 (TGF-β1), Smad3, and phosphorylated-Smad2/3. Additionally, IPA intervention did not affect the MDA level. Attractively, the administration of IPA remodeled the gut flora structure. CONCLUSIONS IPA aggravated CCl4-induced liver damage and fibrosis by activating HSCs via the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wu
- Correspondence to: Gang Wu, Department of Infectious Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China. ORCID: https://orcid.org/0000-0002-2513-5089. Tel/Fax: +86-830-3165-625, E-mail:
| |
Collapse
|
81
|
Xiong Y, Hu J, Xuan C, Tian J, Tan K, Chen Z, Luo Y, Du X, Cheng J, Zhang L, Cao W. Transcriptome analysis reveals the molecular mechanism of Yiqi Rougan decoction in reducing CCl 4-induced liver fibrosis in rats. Chin Med 2021; 16:142. [PMID: 34952623 PMCID: PMC8709947 DOI: 10.1186/s13020-021-00552-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Liver fibrosis develops from various chronic liver diseases, and there is currently a lack of specific treatment strategies. Yiqi Rougan decoction (YQRG) is a traditional Chinese medicine that has shown durative effects in the treatment of liver fibrosis; however, the mechanism associated with YQRG-related improvements in liver fibrosis remains to be experimentally determined. This study evaluated the therapeutic effect of YQRG on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and its molecular mechanism. Methods We used low-, medium-, and high-dose YQRG to treat CCl4-induced liver fibrosis in rats, followed by assessment of liver injury and fibrosis according to liver appearance, body weight, liver mass index, histopathologic examination, and serum testing. Additionally, we performed transcriptome analysis using RNA-sequencing (RNA-seq) technology, including cluster, Gene Ontology (GO), and pathway analyses, to identify differentially expressed genes (DEGs), and protein and gene expression were detected by immunofluorescence (IFC), western blot and real-time quantitative PCR. Results The results showed that YQRG effectively alleviated CCl4-induced liver injury and fibrosis in rats, including observations of improved liver function, decreased activity of hepatic stellate cells (HSCs), and decreased extracellular matrix (ECM) deposition. Moreover, we identified downregulated and upregulated DEGs in the model group relative to the control and YQRG-treated groups, with GO analysis revealing their enrichment in biological processes, such as endoplasmic reticulum stress (ERS), apoptosis, and autophagy. Furthermore, pathway analysis showed that YQRG treatment downregulated the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/AKT) signalling pathways and upregulated other signalling pathways, including those related to peroxisome proliferator-activated receptors(PPAR) and AMP-activated protein kinase(AMPK), with these findings subsequently verified experimentally. Conclusion These findings showed that YQRG improved CCl4-induced liver fibrosis through multiple mechanisms and pathways, offering critical insight into the YQRG-related therapeutic mechanism and promoting further research into its potential application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00552-w.
Collapse
Affiliation(s)
- Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jinyuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Chen Xuan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jiayu Tian
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Zhiwei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Yan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China.,Department of Kidney Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Xuqin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Junxiong Cheng
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Lanyue Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China. .,Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
82
|
New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021; 92:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a complex pathological process caused by multiple pathogenic factors,such as ethanol, viruses, toxins, drugs or cholestasis, and it can eventually develop into liver cirrhosis without effective treatment. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the pathogenesis of liver fibrosis. However, the pathogenesis of liver fibrosis has not been fully elucidated. DNA/RNA methylation can regulate gene expression without alteration in its sequence, and numerous studies have shown the involvement of DNA methylation in the activation of HSCs and then promote the progression of liver fibrosis. In addition, RNA methylation has recently been reported to play a regulatory role in this process. In this review, we focus on the aberrant DNA/RNA methylation of selected genes and explore their functional mechanism in regulating HSCs activation and liver fibrogenesis. All of these findings will enhance our understanding of DNA/RNA methylation and their roles in liver fibrosis and provide the basis to identify effective therapeutic targets.
Collapse
|
83
|
Schreier B, Zipprich A, Uhlenhaut H, Gekle M. Mineralocorticoid receptor in non-alcoholic fatty liver disease. Br J Pharmacol 2021; 179:3165-3177. [PMID: 34935140 DOI: 10.1111/bph.15784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Liver diseases are the fourth common death in Europe responsible for about 2 million death per year worldwide. Among the known detrimental causes for liver dysfunction are virus infections, intoxications and obesity. The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor activated by aldosterone or glucocorticoids but also by pathological milieu factors. Canonical actions of the MR take place in epithelial cells of kidney, colon and sweat glands and contribute to sodium reabsorption, potassium secretion and extracellular volume homeostasis. The non-canonical functions can be initiated by inflammation or an altered micro milieu leading to fibrosis, hypertrophy and remodeling in various tissues. This narrative review summarizes the evidence regarding the role of MR in portal hypertension, non-alcoholic fatty liver disease, liver fibrosis and cirrhosis, demonstrating that inhibition of the MR in vivo seems to be beneficial for liver function and not just for volume regulation. Unfortunately, the underlying molecular mechanisms are still not completely understood.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uhlenhaut
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
84
|
Li Y, Dong J, Zhou Y, Ye X, Cai Z, Zhang X, Shen L, Zhang M, Zhang W, Cai J. Therapeutic effects of CXCL9-overexpressing human umbilical cord mesenchymal stem cells on liver fibrosis in rats. Biochem Biophys Res Commun 2021; 584:87-94. [PMID: 34775285 DOI: 10.1016/j.bbrc.2021.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022]
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) transplantation has become a promising treatment for liver fibrosis. However, UC-MSCs have limited anti-fibrosis ability, and their homing ability of UC-MSCs to the injured liver seems to be poor. In our study, we aimed to determine if the CXCL9-overexpressing UC-MSCs could have synergistic anti-fibrosis effects and whether it can promote the homing ability of UC-MSCs. Overexpression of CXCL9 in UC-MSCs (CXCL9-UC-MSCs) was attained by transfecting the lenti-CXCL9-mCherry to naive UC-MSCs. The therapeutic effect of transducted CXCL9-UC-MSCs on both repairing of hepatic fibrosis and target homing were evaluated by comparing with the control of UC-MSCs transfected with empty lenti-mCherry vector. The results revealed that the liver function of CXCL9-UC-MSCs treated group was significantly improved when compared with that of control UC-MSCs (P < 0.05), and the histopathology indicated an obvious decrease of the collagen fiber content and significant disappearing of pseudo-lobules with basically normal morphology of hepatic lobules. Furthermore, liver frozen sections confirmed that CXCL9-UC-MSCs have significantly stronger chemotaxis and stable persistence in the injured liver tissues. In summary, overexpression of CXCL9 could improve the efficacy of UC-MSCs therapy for liver fibrosis repairing on account of an enhanced ability of UC-MSCs in homing to and staying in the injured sites of liver fibrosis in rat models.
Collapse
Affiliation(s)
- Yang Li
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jiantao Dong
- Department of Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ye Zhou
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xueshuai Ye
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Technical-Innovation Center of Cellular Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei, China
| | - Ziqi Cai
- Hebei Technical-Innovation Center of Cellular Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei, China
| | - Xueqian Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Li Shen
- Hebei Technical-Innovation Center of Cellular Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei, China
| | - Mengya Zhang
- Hebei Technical-Innovation Center of Cellular Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei, China
| | - Wanxing Zhang
- Department of Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China; Hebei Technical-Innovation Center of Cellular Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei, China.
| |
Collapse
|
85
|
Wang Z, Yang X, Gui S, Yang F, Cao Z, Cheng R, Xia X, Li C. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol 2021; 12:779606. [PMID: 34899344 PMCID: PMC8652206 DOI: 10.3389/fphar.2021.779606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity including differentiation and development, metabolism, proliferation, apoptosis, and activation, and benefited from advances in transcriptomic and genomic research techniques and database management technologies, its functions and mechanisms in physiological and pathological states have been widely reported. Liver fibrosis is typically characterized by a reversible wound healing response, often accompanied by an excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs have been investigated and found to be involved in several cellular-level regulatory processes as competing endogenous RNAs (ceRNAs) that play an important role in the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute to the altered cell cycle, proliferation profile associated with the accelerated development of liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the development and regression of liver fibrosis, to explore the major lncRNAs involved in the signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Rehabilitation Medicine, Chaohu Hospital of Anhui Medical University, Hefei Anhui, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Cao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiaowei Xia
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chuanying Li
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|
86
|
Wang Y, Chen B, Xiao C, Yu J, Bu X, Jiang F, Ding W, Ge Z. Effect of miR-183-5p on Cholestatic Liver Fibrosis by Regulating Fork Head Box Protein O1 Expression. Front Physiol 2021; 12:737313. [PMID: 34867446 PMCID: PMC8639207 DOI: 10.3389/fphys.2021.737313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end-stage liver disease and has no effective treatment. MicroRNAs (miRNAs) have been found to modulate gene expression in liver disease. But the potential role of miRNA in hepatic fibrosis is still unclear. The objective of this research is to study the potential mechanism and biological function of miR-183-5p in liver fibrosis. In this study, we used high-throughput sequencing to find that miR-183-5p is upregulated in human fibrotic liver tissues. In addition, miR-183-5p was upregulated both in rat liver fibrosis tissue induced by bile-duct ligation (BDL) and activated LX-2 cells (human hepatic stellate cell line) according to the result of quantitative real-time PCR (RT-qPCR). Moreover, the inhibition of miR-183-5p alleviated liver fibrosis, decreased the fibrotic biomarker levels in vitro and in vivo, and led toLX-2 cell proliferation inhibition and, apoptosis induction. The result of dual-luciferase assay revealed that miR-183-5p suppressed fork head box protein O1 (FOXO1) expression by binding to its 3'UTR directly. Next, we used lentivirus to overexpress FOXO1 in LX-2 cells, and we found that overexpression of FOXO1 reversed the promotion of miR-183-5p on liver fibrosis, reducing the fibrotic biomarker levels inLX-2 cells, inhibitingLX-2 cell proliferation, and promoting apoptosis. Furthermore, overexpression of FOXO1 prevented the activation of the transforming growth factor (TGF)-β signaling pathway in TGF-β1-induced LX-2 cells according to the result of western blotting. In conclusion, the findings showed thatmiR-183-5p might act as a key regulator of liver fibrosis, and miR-183-5p could promote cholestatic liver fibrosis by inhibiting FOXO1 expression through the TGF-β signaling pathway. Thus, inhibition of miR-183-5pmay be a new way to prevent and improve liver fibrosis.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bin Chen
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiang Yu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiangyang Bu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fengxing Jiang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Weijie Ding
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhong Ge
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
87
|
Dai W, Qin Q, Li Z, Lin L, Li R, Fang Z, Han Y, Mu W, Ren L, Liu T, Zhan X, Xiao X, Bai Z. Curdione and Schisandrin C Synergistically Reverse Hepatic Fibrosis via Modulating the TGF-β Pathway and Inhibiting Oxidative Stress. Front Cell Dev Biol 2021; 9:763864. [PMID: 34858986 PMCID: PMC8631446 DOI: 10.3389/fcell.2021.763864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Hepatic fibrosis is the final pathway of several chronic liver diseases, which is characterized by the accumulation of extracellular matrix due to chronic hepatocyte damage. Activation of hepatic stellate cells and oxidative stress (OS) play an important role in mediating liver damage and initiating hepatic fibrosis. Hence, hepatic fibrosis can be reversed by inhibiting multiple channels such as oxidative stress, liver cell damage, or activation of hepatic stellate cells. Liuwei Wuling Tablets is a traditional Chinese medicine formula with the effect of anti- hepatic fibrosis, but the composition and mechanism of reversing hepatic fibrosis are still unclear. Our study demonstrated that one of the main active components of the Chinese medicine Schisandra chinensis, schisandrin C (Sin C), significantly inhibited oxidative stress and prevented hepatocyte injury. Meanwhile one of the main active components of the Chinese medicine Curdione inhibited hepatic stellate cell activation by targeting the TGF-β1/Smads signaling pathway. The further in vivo experiments showed that Sin C, Curdione and the combination of both have the effect of reversing liver fibrosis in mice, and the combined effect of inhibiting hepatic fibrosis is superior to treatment with Sin C or Curdione alone. Our study provides a potential candidate for multi-molecular or multi-pathway combination therapies for the treatment of hepatic fibrosis and demonstrates that combined pharmacotherapy holds great promise in the prevention and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Wenzhang Dai
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qin Qin
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhie Fang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanzhong Han
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lutong Ren
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
88
|
Shaker ME, Eisa NH, Elgaml A, El-Mesery A, El-Shafey M, El-Dosoky M, El-Mowafy M, El-Mesery M. Ingestion of mannose ameliorates thioacetamide-induced intrahepatic oxidative stress, inflammation and fibrosis in rats. Life Sci 2021; 286:120040. [PMID: 34637794 DOI: 10.1016/j.lfs.2021.120040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The monosaccharide mannose has gained recent interest for its beneficial effect against certain inflammatory disorders. Nevertheless, the influence of mannose on experimentally-induced liver fibrosis and the ensued inflammation is still not fully clear to date. MAIN METHODS The current study investigated the outcomes of treating rats with mannose (0.2 ml of 20% w/v, oral gavage) 30 min before the twice weekly intoxication with thioacetamide (TAA) (200 mg/kg, intraperitoneal) for a total period of 8 weeks. KEY FINDINGS The data indicated that mannose markedly dampened TAA-induced liver fibrosis, as indicated by lowering the fibrotic bridges shown by Masson's trichrome staining. This effect was consistent with reducing TAA-induced hepatocellular injury, as evidenced biochemically (serum ALT and AST activities) and pathologically (necroinflammation score). These hepatoprotective effects mediated by mannose were attributed to i) reversing TAA-induced rise in malondialdehyde (MDA) and decrease in reduced glutathione (GSH) expressions in the liver, ii) limiting TAA-induced release of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), iii) impairing TAA-induced activation of hepatic stellate cells by downregulating α-smooth muscle actin expression (α-SMA), and more importantly, iv) dampening TAA-induced fibrogenesis driven by transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). SIGNIFICANCE Mannose may be a valuable candidate for preventing oxidative stress, inflammation and fibrogenesis in the liver.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Ahmed El-Mesery
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Mohamed El-Dosoky
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail, Imam Abdulalrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
89
|
Yilmaz B, Kayadibi H, Yeniova AO, Koseoglu H, Simsek Z. The age, bilirubin and albumin (ABA) index: a novel noninvasive index for predicting liver fibrosis in patients with chronic hepatitis C infection. Eur J Gastroenterol Hepatol 2021; 33:e290-e296. [PMID: 33405426 DOI: 10.1097/meg.0000000000002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM It was to assess the diagnostic performance characteristics of a novel index, (ABA), which utilizes age, bilirubin and albumin to predict significant and severe fibrosis, and cirrhosis in patients with chronic hepatitis C infection. METHODS A total of 114 patients were included in this study. The liver biopsies were graded using the Ishak scoring system. Diagnostic performance of the ABA index was compared to aspartate aminotransferase (AST) to alanine aminotransferase ratio, age platelet index, AST to platelet ratio index, γ-glutamyl transpeptidase (GGT) to platelet ratio index, FIB-4, FibroQ, Goteborg University Cirrhosis Index, King's score, GGT/international normalization ratio, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, white blood cell to platelet distribution width ratio and mean platelet volume to platelet distribution width ratio (MPV/PDW) by receiver operating characteristics (ROC) curve analysis. RESULTS The ABA index was formulated as 1.5 + (0.065 × age) + (1.85 × bilirubin) - (1.65 × albumin) according to the multivariate logistic regression analysis. According to the ROC curve analyses, the ABA index had the area under these ROC curves (AUROCs) of 0.805 [95% confidence interval (CI), 0.727-0.883] for significant fibrosis, 0.874 (95% CI, 0.804-0.943) for severe fibrosis and 0.895 (95% CI, 0.828-0.961) for cirrhosis. CONCLUSION The ABA index was found to be superior to other evaluated noninvasive indexes of liver fibrosis by use of the cutoff point of 0 and 1. These findings should be confirmed by prospective and multicenter studies in patients with chronic hepatitis C infection.
Collapse
Affiliation(s)
- Baris Yilmaz
- Department of Gastroenterology, Biruni University School of Medicine, İstanbul
- Department of Gastroenterology, Hitit University School of Medicine, Corum
| | - Huseyin Kayadibi
- Department of Medical Biochemistry, Eskisehir Osmangazi University School of Medicine, Eskisehir
- Department of Medical Biochemistry, Hitit University School of Medicine, Corum
| | - Abdullah O Yeniova
- Department of Gastroenterology, Tokat Gaziosmanpasa University School of Medicine, Tokat
| | - Huseyin Koseoglu
- Department of Gastroenterology, Hitit University School of Medicine, Corum
| | - Zahide Simsek
- Clinic of Gastroenterology, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
90
|
Development of an Aged Full-Thickness Skin Model Using Flexible Skin-on-a-Chip Subjected to Mechanical Stimulus Reflecting the Circadian Rhythm. Int J Mol Sci 2021; 22:ijms222312788. [PMID: 34884594 PMCID: PMC8657468 DOI: 10.3390/ijms222312788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The skin is subject to both intrinsic aging caused by metabolic processes in the body and extrinsic aging caused by exposure to environmental factors. Intrinsic aging is an important obstacle to in vitro experimentation as its long-term progression is difficult to replicate. Here, we accelerated aging of a full-thickness skin equivalent by applying periodic mechanical stimulation, replicating the circadian rhythm for 28 days. This aging skin model was developed by culturing a full-thickness, three-dimensional skin equivalent with human fibroblasts and keratinocytes to produce flexible skin-on-a-chip. Accelerated aging associated with periodic compressive stress was evidenced by reductions in the epidermal layer thickness, contraction rate, and secretion of Myb. Increases in β-galactosidase gene expression and secretion of reactive oxygen species and transforming growth factor-β1 were also observed. This in vitro aging skin model is expected to greatly accelerate drug development for skin diseases and cosmetics that cannot be tested on animals.
Collapse
|
91
|
Naringenin: A Promising Therapeutic Agent against Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1210675. [PMID: 34804359 PMCID: PMC8601819 DOI: 10.1155/2021/1210675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the final common pathology of most chronic diseases as seen in the heart, liver, lung, kidney, and skin and contributes to nearly half of death in the developed countries. Fibrosis, or scarring, is mainly characterized by the transdifferentiation of fibroblasts into myofibroblasts and the excessive accumulation of extracellular matrix (ECM) secreted by myofibroblasts. Despite immense efforts made in the field of organ fibrosis over the past decades and considerable understanding of the occurrence and development of fibrosis gained, there is still lack of an effective treatment for fibrotic diseases. Therefore, identifying a new therapeutic strategy against organ fibrosis is an unmet clinical need. Naringenin, a flavonoid that occurs naturally in citrus fruits, has been found to confer a wide range of pharmacological effects including antioxidant, anti-inflammatory, and anticancer benefits and thus potentially exerting preventive and curative effects on numerous diseases. In addition, emerging evidence has revealed that naringenin can prevent the pathogenesis of fibrosis in vivo and in vitro via the regulation of various pathways that involved signaling molecules such as transforming growth factor-β1/small mother against decapentaplegic protein 3 (TGF-β1/Smad3), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), sirtuin1 (SIRT1), nuclear factor-kappa B (NF-κB), or reactive oxygen species (ROS). Targeting these profibrotic pathways by naringenin could potentially become a novel therapeutic approach for the management of fibrotic disorders. In this review, we present a comprehensive summary of the antifibrotic roles of naringenin in vivo and in vitro and their underlying mechanisms of action. As a food derived compound, naringenin may serve as a promising drug candidate for the treatment of fibrotic disorders.
Collapse
|
92
|
Su Q, Kim SY, Adewale F, Zhou Y, Aldler C, Ni M, Wei Y, Burczynski ME, Atwal GS, Sleeman MW, Murphy AJ, Xin Y, Cheng X. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience 2021; 24:103233. [PMID: 34755088 PMCID: PMC8560975 DOI: 10.1016/j.isci.2021.103233] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health-care problem with limited therapeutic options. To obtain a cellular resolution of pathogenesis, 82,168 single-cell transcriptomes (scRNA-seq) across different NAFLD stages were profiled, identifying hepatocytes and 12 other non-parenchymal cell (NPC) types. scRNA-seq revealed insights into the cellular and molecular mechanisms of the disease. We discovered a dual role for hepatic stellate cells in gene expression regulation and in the potential to trans-differentiate into myofibroblasts. We uncovered distinct expression profiles of Kupffer cells versus monocyte-derived macrophages during NAFLD progression. Kupffer cells showed stronger immune responses, while monocyte-derived macrophages demonstrated a capability for differentiation. Three chimeric NPCs were identified including endothelial-chimeric stellate cells, hepatocyte-chimeric endothelial cells, and endothelial-chimeric Kupffer cells. Our work identified unanticipated aspects of mouse with NAFLD at the single-cell level and advanced the understanding of cellular heterogeneity in NAFLD livers. Of all, 82,168 single-cell transcriptomes across different NAFLD stages were profiled Hepatocytes and 12 non-parenchymal cell types were identified in mouse liver Three chimeric NPCs were identified in mouse liver
Collapse
Affiliation(s)
- Qi Su
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Sun Y Kim
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Funmi Adewale
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Ye Zhou
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Christina Aldler
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Michael E Burczynski
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Mark W Sleeman
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| |
Collapse
|
93
|
Abou Zaghla HMA, El Sebai AA, Ahmed OA, Ahmed AF, Saab AAR. Growth differentiation factor 15: an emerging diagnostic biomarker of liver fibrosis in chronic hepatitis C patients. EGYPTIAN LIVER JOURNAL 2021; 11:6. [PMID: 34777864 PMCID: PMC7814860 DOI: 10.1186/s43066-021-00075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Chronic liver disease and cirrhosis are of the major health concern worldwide. Assessment of liver fibrosis is necessary to determine disease severity and prognosis at the time of presentation to determine suitable treatment. Liver biopsy is considered as standard golden method in diagnosis of liver fibrosis. However, this procedure is invasive; thus, multiple laboratory and radiologic tests are used to help determination of the degree of fibrosis. Growth differentiation factor 15 (GDF-15) is a pleiotropic cytokine involved in regulating inflammatory and apoptotic pathways. It is suggested that GDF-15 plays an important role in pathogenesis of liver fibrosis. In this study, we aimed to evaluate efficiency of growth differentiation factor 15 in diagnosing liver fibrosis. The study was a case-control study conducted on 55 chronic HCV patients recruited from hepatitis C virus clinic at Faculty of Medicine Ain Shams Research Institute (MASRI), and 30 healthy subjects age- and sex-matched. The patients were classified into three subgroups according to the degree of liver fibrosis assessed by fibro-scan. Serum concentration of GDF-15 was determined by enzyme-linked immunosorbent assay. Results Our results revealed a highly significant statistical rise in GDF-15 levels among studied chronic HCV patients with liver fibrosis when compared to the control group (p < 0.01). Furthermore, there was a significant positive correlation between the degree of fibrosis assessed by fibro-scan and GDF-15 serum levels. Levels of GDF-15 were significantly higher in patients with mild degree of fibrosis (patients’ subgroup І) when compared with the controls’ group (p < 0.01) suggesting the role of this marker in early detection of liver fibrosis. A statistically significant increase in serum GDF-15 levels was noticed among patients with advanced fibrosis “subgroup ІІІ” compared to those with mild fibrosis “subgroup І” (p < 0.05). The diagnostic sensitivity and specificity of GDF-15 were 96.7%, 98.2%, respectively at a cut-off value of 150 ng/L for discrimination between patients’ and controls’ groups. Conclusion Growth differentiation factor 15 could be a potential marker of liver fibrosis especially in early detection as its levels were significantly higher in patients’ group with liver fibrosis than controls’ group and there was a significant positive correlation between the degree of liver fibrosis and GDF-15 serum levels.
Collapse
|
94
|
Tsukanov VV, Gorchilova EG, Kolenchukova OA, Gvozdev II, Savchenko AA, Kasparov EV, Vasyutin AV, Tonkikh JL, Borisov AG, Rzhavicheva OS. Functional activity of blood neutrophilic granulocytes in patients with opisthorchiasis, depending on the severity of liver fibrosis. TERAPEVT ARKH 2021; 93:1271-1277. [PMID: 36286648 DOI: 10.26442/00403660.2021.11.201165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Aim. To study the activity of neutrophilic granulocytes in patients with opisthorchiasis, depending on the severity of liver fibrosis.
Materials and methods. A total of 74 patients with chronic opisthorchiasis (39 men and 35 women, average age 42.3 years) and 32 practically healthy patients (17 men and 15 women, average age 41.5 years) aged 24 to 60 years were examined. Diagnosis of opisthorchiasis was carried out by two methods: coprooscopy and identification of eggs or bodies of adult parasites in duodenal content. Liver fibrosis was determined by the method of elastometry according to the METAVIR scale in all 74 patients with opisthorchiasis. The study of the functional activity of neutrophils in the blood was performed to all 74 patients with opisthorchiasis and 32 healthy individuals from the control group by chemiluminescent analysis with measurement of the reactive oxygen species (ROS) production intensity in a spontaneous and zymosan-induced reaction in lucigenin and luminol-dependent processes.
Results. Liver fibrosis F2 by METAVIR was registered in 20.3% of the examined individuals, liver fibrosis F3F4 by METAVIR was detected in 17.6% of patients with opisthorchiasis. In patients with opisthorchiasis with liver fibrosis F3F4 by METAVIR, a significant decrease in the functional activity of neutrophilic granulocytes was registered in comparison with individuals with liver fibrosis F0F1 by METAVIR, as evidenced by a significant decrease in the maximum intensity of ROS production (Imax) and the area under the curve (S) chemiluminescence in lucigenin and luminol-dependent processes both in the spontaneous and zymosan-induced reaction.
Conclusion. These results provide new information to explain the mechanisms of liver fibrosis in patients opisthorchiasis and create opportunities for the development of diagnostics and preventive technologies.
Collapse
|
95
|
Luo N, Li J, Wei Y, Lu J, Dong R. Hepatic Stellate Cell: A Double-Edged Sword in the Liver. Physiol Res 2021; 70:821-829. [PMID: 34717063 DOI: 10.33549/physiolres.934755] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) are located in the space of Disse, between liver sinusoidal endothelia cells (LSECs) and hepatocytes. They have surprised and excited hepatologists for their biological characteristics. Under physiological quiescent conditions, HSCs are the major vitamin A-storing cells of the liver, playing crucial roles in the liver development, regeneration, and tissue homeostasis. Upon injury-induced activation, HSCs convert to a pro-fibrotic state, producing the excessive extracellular matrix (ECM) and promoting angiogenesis in the liver fibrogenesis. Activated HSCs significantly contribute to liver fibrosis progression and inactivated HSCs are key to liver fibrosis regression. In this review, we summarize the comprehensive understanding of HSCs features, including their roles in normal liver and liver fibrosis in hopes of advancing the development of emerging diagnosis and treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Nianan Luo
- Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China. ,
| | | | | | | | | |
Collapse
|
96
|
Sulfatase-2 Regulates Liver Fibrosis through the TGF-β Signaling Pathway. Cancers (Basel) 2021; 13:cancers13215279. [PMID: 34771445 PMCID: PMC8582359 DOI: 10.3390/cancers13215279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor-β (TGF-β) activates hepatic stellate cells (HSCs), which drive liver fibrosis via the production and deposition of extracellular matrix (ECM). We aimed to elucidate the mechanistic role of sulfatase-2 (SULF2) in liver fibrosis. To this end, we induced liver fibrosis in wild-type (WT) and SULF2 knockout (Sulf2-KO) mice (6-8 weeks-old) via bile duct ligation (BDL), intraperitoneal injection of carbon tetrachloride (CCl4) or thioacetamide (TAA). The levels of fibrosis in the liver sections were assessed via Sirius red and Masson's trichrome staining, immunohistochemistry and immunoblotting for α-smooth muscle actin (α-SMA) and hydroxyproline. To evaluate the interaction between TGF-β and SULF2, we transfected human HSCs with scrambled control shRNA and shRNA constructs targeting SULF2 and measured α-SMA expression following treatment with TGF-β1 ligand. We show here that knockout of SULF2 significantly decreases collagen content, as well as bands of bridging fibrosis, as demonstrated by Sirius red, Masson's trichrome and α-SMA staining after BDL, CCl4 and TAA injection in Sulf2-KO versus WT mice. In all three models of liver fibrosis, we observed significantly lower levels of hydroxyproline in the Sulf2-KO mice compared to the WT mice. HSCs with reduced levels of SULF2 failed to significantly express α-SMA and collagen type I following treatment with TGF-β1. Furthermore, SULF2 co-localizes with TGFBR3 and the in vitro knockdown of SULF2 in HSCs decreases the release of TGF-β1 from TGFBR3. Together, these data suggest that SULF2 regulates liver fibrosis via the TGF-β signaling pathway. Pharmacologic inhibition of SULF2 may represent a novel therapeutic approach to improve liver fibrosis.
Collapse
|
97
|
Li W, Deng M, Gong J, Zhang X, Ge S, Zhao L. Sodium Acetate Inhibit TGF-β1-Induced Activation of Hepatic Stellate Cells by Restoring AMPK or c-Jun Signaling. Front Nutr 2021; 8:729583. [PMID: 34660662 PMCID: PMC8515000 DOI: 10.3389/fnut.2021.729583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are crucial gut microbial metabolites that play a major role in the occurrence and development of hepatic fibrosis (HF). However, the effect of SCFAs on hepatic stellate cells (HSCs), the major pro-fibrogenic cells, is yet undefined. In this study, the effects of three major SCFAs (acetate, propionate, and butyrate) were assessed on the activation of HSCs. LX2 cells were activated with TGF-β1 and treated with sodium acetate (NaA), sodium propionate (NaP), or sodium butyrate (NaB). SCFA treatment significantly reduced the protein levels of α-SMA and the phosphorylation of Smad2 and decreased the mRNA expression of Acta2/Col1a1/Fn in cells compared to the TGF-β1 treatment. Among the three SCFAs, NaA revealed the best efficacy at alleviating TGF-β1-induced LX2 cell activation. Additionally, acetate accumulated in the cells, and G protein-coupled receptor (GPR) 43 silencing did not have any impact on the inhibition of LX2 cell activation by NaA. These findings indicated that NaA enters into the cells to inhibit LX2 cell activation independent of GPR43. The results of phosphokinase array kit and Western blot indicated that NaA increased the AMP-activated protein kinase (AMPK) activation and reduced the phosphorylation of c-Jun in cultured LX2 cells, and siRNA-peroxisome proliferator-activated receptor (PPAR) -γ abolished the inhibitory effects of NaA against TGF-β1-induced LX2 cell activation. In conclusion, this study showed that NaA inhibited LX2 cell activation by activating the AMPK/PPARγ and blocking the c-Jun signaling pathways. Thus, SCFAs might represent a novel and viable approach for alleviating HF.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingjuan Deng
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Jiahui Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
98
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. RNA sequencing of LX-2 cells treated with TGF-β1 identifies genes associated with hepatic stellate cell activation. Mol Biol Rep 2021; 48:7677-7688. [PMID: 34648138 PMCID: PMC8604886 DOI: 10.1007/s11033-021-06774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
Background Hepatic stellate cells (HSCs) are liver-resident myofibroblast precursors responsible for the production of collagen and maintenance of the hepatic extracellular matrix (ECM). As such, they are generally associated with fibrotic liver diseases. HSCs become “activated” in response to tissue damage or pathogen invasion, a process most commonly driven by transforming growth factor-β1 (TGF-β1). Despite this, the full extent of TGF-β1 signalling in these cells is poorly understood. Clarifying the range and diversity of this signalling will further improve our understanding of the process of HSC activation. Methods and results RNA sequencing was used to quantitate the transcriptomic changes induced in LX-2 cells, an activated human HSC line, following TGF-b1 treatment. In total, 5,258 genes were found to be significantly differentially expressed with a false discovery rate cut-off of < 0.1. The topmost deregulated of these genes included those with no currently characterised role in either HSC activation or fibrotic processes, including CIITA and SERPINB2. In silico analysis revealed the prominent signalling pathways downstream of TGF-β1 in LX-2 cells. Conclusions In this study, we describe the genes and signalling pathways significantly deregulated in LX-2 cells following TGF-β1 treatment. We identified several highly deregulated genes with no currently characterised role in HSC activation, which may represent novel mediators of fibrotic responses in HSCs or the liver macroenvironment. This work may be of use in the identification of new markers of liver fibrosis and could provide insight into prospective genes or pathways that might be targeted for the amelioration of fibrotic liver disease in the future.
Collapse
Affiliation(s)
- Jack P. Carson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, QLD 4029 Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, 4006 Herston, QLD Australia
| | - Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| |
Collapse
|
99
|
Macias RI, Monte MJ, Serrano MA, González-Santiago JM, Martín-Arribas I, Simão AL, Castro RE, González-Gallego J, Mauriz JL, Marin JJ. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging (Albany NY) 2021; 13:23416-23434. [PMID: 34633987 PMCID: PMC8544321 DOI: 10.18632/aging.203620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
Aging involves progressive physiological and metabolic reprogramming to adapt to gradual deterioration of organs and functions. This includes mechanisms of defense against pre-malignant transformations. Thus, certain tumors are more prone to appear in elderly patients. This is the case of the two most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Accordingly, aging hallmarks, such as genomic instability, telomere attrition, epigenetic alterations, altered proteostasis, mitochondrial dysfunction, cellular senescence, exhaustion of stem cell niches, impaired intracellular communication, and deregulated nutrient sensing can play an important role in liver carcinogenesis in the elders. In addition, increased liver fragility determines a worse response to risk factors, which more frequently affect the aged population. This, together with the difficulty to carry out an early detection of HCC and iCCA, accounts for the late diagnosis of these tumors, which usually occurs in patients with approximately 60 and 70 years, respectively. Furthermore, there has been a considerable controversy on what treatment should be used in the management of HCC and iCCA in elderly patients. The consensus reached by numerous studies that have investigated the feasibility and safety of different curative and palliative therapeutic approaches in elders with liver tumors is that advanced age itself is not a contraindication for specific treatments, although the frequent presence of comorbidities in these individuals should be taken into consideration for their management.
Collapse
Affiliation(s)
- Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jesús M. González-Santiago
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Isabel Martín-Arribas
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
100
|
Liu YF, Niu GC, Li CY, Guo JB, Song J, Li H, Zhang XL. Mechanism of Ulcerative Colitis-Aggravated Liver Fibrosis: The Activation of Hepatic Stellate Cells and TLR4 Signaling Through Gut-Liver Axis. Front Physiol 2021; 12:695019. [PMID: 34603071 PMCID: PMC8484790 DOI: 10.3389/fphys.2021.695019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The progression of liver disorders is frequently associated with inflammatory bowel disease through the gut-liver axis. However, no direct evidence showed the mechanisms of ulcerative colitis (UC) in the development of liver fibrosis per se. Thus, this study aimed to evaluate the effects of UC on liver fibrosis and its potential mechanism in the experimental model. Methods: Male C57BL/6 mice were allocated into five groups (n = 10 per group) to receive either drinking water (control), 2% dextran sulfate sodium (DSS), olive oil, carbon tetrachloride (CCl4) or DSS + CCl4 for 4 cycles. Blood was collected for biochemical analysis. Colons were excised for the evaluation of colon length and morphological score. Liver, colon, and mesenteric lymph nodes (MLNs) were collected for histopathological staining, expression analysis, and bacterial translocation assay to evaluate the inflammation, fibrosis, the activation of hepatic stellate cells (HSCs), and gut barrier function. Results: DSS caused severe colitis in mice treated or treated with CCl4, as evident from the elevation of disease activity index (DAI), histological abnormalities, and increased pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-17A). Histopathological staining revealed that DSS treatment aggravated the CCl4-induced extracellular matrix deposition, liver fibrosis, and inflammation in mice. Additionally, biochemical and expression analysis indicated the DSS treatment caused the increase of hydroxyproline and pro-inflammatory cytokines, as well as the abnormal liver function indexes in CCl4-induced mice. Gut barrier function was impaired in DSS- and DSS + CCl4-treated mice, manifesting as the increase in bacterial translocation and lipopolysaccharide level, and the reduction in tight junction proteins (occluding, claudin-1 and ZO-1) expression. Further, the activations of HSCs and TLR4 signaling pathway were observed after DSS + CCl4 treatment, presenting with the increase in expression of α-SMA, vimentin, TGF-β, collagen type I, collagen type II, TIMP-2, TLR4, TRAF6, and NF-κB p65, and a decrease in GFAP and MMP-2 expression. Conclusion: The present study verified that UC aggravated CCl4-induced liver injury, inflammation, and fibrosis in mice through the gut-liver axis. Gut barrier dysfunction in UC leads to bacterial translocation and elevated lipopolysaccharide, which may promote the activation of TLR4 signaling and HSCs in the liver.
Collapse
Affiliation(s)
- Yu-Feng Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, Dingzhou People's Hospital of Hebei Province, Dingzhou, China
| | - Guo-Chao Niu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen-Yang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Bo Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Lan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|