51
|
Wu Y, Cao D, Qu L, Cao X, Jia Z, Zhao T, Wang Q, Jiang J. PD-1 and PD-L1 co-expression predicts favorable prognosis in gastric cancer. Oncotarget 2017; 8:64066-64082. [PMID: 28969052 PMCID: PMC5609984 DOI: 10.18632/oncotarget.19318] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
While the prognosis of gastric cancer (GC) remains poor, PD-1 and PD-L1/L2 are promising prognostic biomarkers. We evaluated PD-1 and PD-L1/L2 expression in tumor cells (TCs) and tumor-infiltrating immune cells (TIICs). We determined the Helicobacter pylori (Hp) and Epstein-Barr virus (EBV) infection status in a GC cohort (n=340), then analyzed the relationship between the expression of PD-1, PD-L1/L2 and GC prognosis. We found that PD-1, PD-L1, and PD-L2 mRNA levels were up-regulated in GC tissues, and were positively correlated with one another (P=0.043, P=0.008 and P=0.035). PD-1 protein expression in TIICs was observed in 22.6% of GC patients. The PD-L1 and PD-L2 positivity rates were 40.3% and 53.8% in TCs, respectively, and 60.0% and 60.9% in TIICs, respectively. PD-L1 was up-regulated in EBV-infected GC patients in both TCs (P=0.009) and TIICs (P=0.003). Hp status was not associated with PD-1 or PD-L1/PD-L2 expression. In TIICs, PD-L1 expression was independently associated with better GC prognosis (HR=0.72, 95%CI: 0.53-0.99). Co-expression of PD-1 and PD-L1, but not PD-L2, was a favorable prognostic marker that indicated a dose effect on the mortality risk of GC patients (P-value for trend=0.005). Comprehensive evaluation of PD-1 and PD-L1 in TCs and TIICs could help predict the prognosis of gastric cancers, as well as reveal patients who might benefit from targeted treatment.
Collapse
Affiliation(s)
- Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Limei Qu
- Department of Pathology, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhifang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tiancheng Zhao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Quan Wang
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
52
|
Lu R, Shao Y, Ye G, Xiao B, Guo J. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol 2017; 39:1010428317704175. [PMID: 28656881 DOI: 10.1177/1010428317704175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs are new type of endogenous RNAs, which play an important role in the regulation of gene expression and indicate a great capacity in clinical diagnosis and treatments of diseases. However, the role of circular RNAs in gastric cancer remains unknown. In this study, we chose hsa_circ_0006633 as the target circular RNA and measured its levels in human gastric cancer tissues, plasma, and gastric cell lines by real-time quantitative reverse transcription polymerase chain reaction. Hsa_circ_0006633 levels at multiple stages of gastric tumorigenesis were then explored, and its relationships with clinicopathological features were analyzed as well. We found that the expression levels of hsa_circ_0006633 in four gastric cancer cell lines, HGC-27, SGC-7901, MGC-803, and AGS, were downregulated than those in normal gastric mucosal epithelial cell line GES-1. Then, we further detected that it was downregulated in 79.2% (76/96) gastric cancer tissues compared with the adjacent non-tumorous tissues. The lower expression of hsa_circ_0006633 was associated with cancer distal metastasis ( p = 0.037) and tissue carcinoembryonic antigen level ( p = 0.041). In addition, hsa_circ_0006633 expression was significantly decreased in gastritis and dysplasia tissues comparing with the healthy control. Moreover, plasma hsa_circ_0006633 levels were significantly increased in gastric cancer compared with healthy control. Our data imply that hsa_circ_0006633 may play an important role in gastric carcinogenesis and is also a potential biomarker for screening gastric cancer.
Collapse
Affiliation(s)
- Rongdan Lu
- 1 Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,2 Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Yongfu Shao
- 2 Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Guoliang Ye
- 2 Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Bingxiu Xiao
- 1 Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Junming Guo
- 1 Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
53
|
Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040134. [PMID: 28398251 PMCID: PMC5408208 DOI: 10.3390/toxins9040134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Persistent infections with the human pathogen and class-I carcinogen Helicobacter pylori (H. pylori) are closely associated with the development of acute and chronic gastritis, ulceration, gastric adenocarcinoma and lymphoma of the mucosa-associated lymphoid tissue (MALT) system. Disruption and depolarization of the epithelium is a hallmark of H. pylori-associated disorders and requires extensive modulation of epithelial cell surface structures. Hence, the complex network of controlled proteolysis which facilitates tissue homeostasis in healthy individuals is deregulated and crucially contributes to the induction and progression of gastric cancer through processing of extracellular matrix (ECM) proteins, cell surface receptors, membrane-bound cytokines, and lateral adhesion molecules. Here, we summarize the recent reports on mechanisms how H. pylori utilizes a variety of extracellular proteases, involving the proteases Hp0169 and high temperature requirement A (HtrA) of bacterial origin, and host matrix-metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and tissue inhibitors of metalloproteinases (TIMPs). H. pylori-regulated proteases represent predictive biomarkers and attractive targets for therapeutic interventions in gastric cancer.
Collapse
|
54
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Maddalena F, Condelli V, Landriscina M, Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:163-198. [PMID: 28427560 DOI: 10.1016/bs.apcsb.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts. In recent years, oxidative phosphorylation has been linked to a remodeling of inflammatory response due to autocrine or paracrine secretion of interleukines that, in turn, induces a regulation of gene expression involving, among others, molecules responsible for the onset of drug resistance. This process is especially relevant in ovarian cancer, characterized by low survival, high frequency of disease relapse and chemoresistance. Recently, the molecular chaperone TRAP1 (tumor necrosis factor-associated protein 1) has been identified as a key junction molecule in these processes in ovarian cancer: in fact, TRAP1 mediates a metabolic switch toward oxidative phosphorylation that, in turn, triggers cytokines secretion, with consequent gene expression remodeling, finally leading to cisplatin resistance and epithelial-to-mesenchymal transition in ovarian cancer models. This review summarizes how metabolism, chemoresistance, inflammation, and epithelial-to-mesenchymal transition are strictly interconnected, and how TRAP1 stays at the crossroads of these processes, thus shedding new lights on molecular networks at the basis of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Maddalena
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Matteo Landriscina
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy; Università degli Studi di Foggia, Foggia, Italy.
| | | |
Collapse
|
55
|
Shen L, Zhao L, Tang J, Wang Z, Bai W, Zhang F, Wang S, Li W. Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data. Pathol Oncol Res 2017; 23:745-752. [PMID: 28058586 DOI: 10.1007/s12253-016-0178-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
RNA-seq data of stomach adenocarcinoma (STAD) were analyzed to identify critical genes in STAD. Meanwhile, relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. Gene expression data of STAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. Relationships with correlation coefficient > 0.6 were retained in the gene co-expression network. Functional enrichment analysis was performed for the genes in the network with DAVID and KOBASS 2.0. Modules were identified using Cytoscape. Relevant small molecules drugs, transcription factors (TFs) and microRNAs (miRNAs) were revealed by using CMAP and WebGestalt databases. A total of 520 DEGs were identified between 285 STAD samples and 33 normal controls, including 244 up-regulated and 276 down-regulated genes. A gene co-expression network containing 53 DEGs and 338 edges was constructed, the genes of which were significantly enriched in focal adhesion, ECM-receptor interaction and vascular smooth muscle contraction pathways. Three modules were identified from the gene co-expression network and they were associated with skeletal system development, inflammatory response and positive regulation of cellular process, respectively. A total of 20 drugs, 9 TFs and 6 miRNAs were acquired that may regulate the DEGs. NFAT-COL1A1/ANXA1, HSF2-FOS, SREBP-IL1RN and miR-26-COL5A2 regulation axes may be important mechanisms for STAD.
Collapse
Affiliation(s)
- Li Shen
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Lizhi Zhao
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Jiquan Tang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Zhiwei Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weisong Bai
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Feng Zhang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Shouli Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weihua Li
- The People's Hospital in Gansu Province, Center Lab, No, 204 west Donggang Rood, Lanzhou City, Gansu Province, 730000, China.
| |
Collapse
|
56
|
Li X, Ma X, Tang L, Wang B, Chen L, Zhang F, Zhang X. Prognostic value of neutrophil-to-lymphocyte ratio in urothelial carcinoma of the upper urinary tract and bladder: a systematic review and meta-analysis. Oncotarget 2016; 8:62681-62692. [PMID: 28977980 PMCID: PMC5617540 DOI: 10.18632/oncotarget.17467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is an inflammation marker that has prognostic value for various tumors, but its prognostic value in urothelial carcinoma (UC) remains controversial. This meta-analysis investigated the prognostic value of NLR in UC. A systematic search was performed on PubMed, ISI Web of Science, and Embase for studies focusing on the association between NLR and clinical features or prognosis of UC and published until November 2016. Prognostic outcomes and clinical features were collected and analyzed. A total of 11,538 patients from 32 studies were included in the meta-analysis. Increased pretreatment NLR predicted poor overall survival (hazard ratio [HR] = 1.72, 95% confidence interval [CI] = 1.45–2.05), progression free survival (HR = 1.68, 95% CI = 1.44–1.96), and cancer specific survival (HR = 1.64, 95% CI = 1.39–1.93) in all the patients. The increased pretreatment NLR was correlated with increased lymphovascular invasion (HR = 1.29, 95% CI = 1.17–1.43), high tumor T stage (HR = 1.25, 95% CI = 1.12–1.39), and tumor grade (HR = 1.07, 95% CI = 1.01–1.14) but not with lymph node involvement, carcinoma in situ, multifocality, or positive margin. Our meta-analysis indicated that NLR could predict the prognosis for UC and was associated with UC progression in terms of lymphovascular invasion, tumor T stage, and tumor grade.
Collapse
Affiliation(s)
- Xintao Li
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lu Tang
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Luyao Chen
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Disease, Chinese PLA Medical Academy, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|