51
|
Wu X, Wang Y, Jia R, Fang F, Liu Y, Cui W. Computational and biological investigation of the soybean lecithin-gallic acid complex for ameliorating alcoholic liver disease in mice with iron overload. Food Funct 2019; 10:5203-5214. [PMID: 31380553 DOI: 10.1039/c9fo01022j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Alcoholic liver disease (ALD) is associated with significant morbidity and mortality globally. In this study, the soybean lecithin-gallic acid complex was synthesized, and its physicochemical properties were evaluated, which confirmed the complex formation. Compared with the free state of the drug, gallic acid exhibited significantly different physicochemical properties after it was complexed with soybean lecithin. To clarify the binding mode between two monomers, computational investigation was performed. From the computational data, we deduced the structure of the compound and predicted that it has a high affinity for human phosphatidylcholine transfer protein and exhibits strong pharmacological activities in vivo. The complex not only effectively ameliorated liver fibrosis, lipid peroxidation, and oxidative stress, but also reduced liver iron overload in a mouse ALD model induced by alcohol (p < 0.05). Additionally, it regulated iron metabolism by inhibiting TfR1 expression (p < 0.05) and promoting hepcidin expression (p < 0.05). These results suggest that the soybean lecithin-gallic acid complex ameliorates hepatic damage and iron overload induced by alcohol and exert hepatoprotective effects.
Collapse
Affiliation(s)
- Xiangqun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, P. R. China.
| | | | | | | | | | | |
Collapse
|
52
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)–induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1–dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
53
|
Cheng W, Cheng Z, Xing D, Zhang M. Asparagus Polysaccharide Suppresses the Migration, Invasion, and Angiogenesis of Hepatocellular Carcinoma Cells Partly by Targeting the HIF-1 α/VEGF Signalling Pathway In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3769879. [PMID: 31239858 PMCID: PMC6556301 DOI: 10.1155/2019/3769879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a key role by triggering the transcriptional activation of a number of genes involved in migration, invasion, and angiogenesis in hepatocellular carcinoma (HCC). Thus, suppressing tumour growth by targeting the HIF-1α/VEGF signalling pathway represents a promising strategy for the treatment of HCC. In our previous studies, we found that asparagus polysaccharide (ASP) suppressed the proliferation and promoted the apoptosis of HCC cells both in vivo and in vitro. To further explore the potential mechanisms of the antitumor effects of ASP in HCC, we investigated effects of ASP on the migration, invasion, and angiogenesis of HCC cells (SK-Hep1 and Hep-3B) using an in vitro experimental model. First, we found that ASP effectively suppressed the proliferation of the SK-Hep1 and Hep-3B cells but did not cause significant cytotoxicity in normal liver cells (L-O2). Then, we found that ASP inhibited the migration and invasion of the SK-Hep1 and Hep-3B cells and HCC cells-induced angiogenesis of human umbilical vein endothelial cells in a concentration-dependent manner. Mechanistic studies revealed that the inhibition of migration, invasion, and angiogenesis by ASP in the SK-Hep1 and Hep-3B cells might occur via the downregulation of HIF-1α/VEGF signalling pathway. Finally, our results also showed that the inhibition of HIF-1α by ASP may be mediated through the downregulation of the phosphorylation levels of AKT, mTOR, and ERK. In conclusion, our results suggest that ASP suppresses the migration, invasion, and angiogenesis of HCC cells partly via inhibiting the HIF-1α/VEGF signalling pathway.
Collapse
Affiliation(s)
- Wei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ziwei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Dongwei Xing
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
54
|
Zhang Y, Chen Z, Feng L, Jiang P, Li X, Wang X. Ionizing Radiation-inducible microRNA-21 Induces Angiogenesis by Directly Targeting PTEN. Asian Pac J Cancer Prev 2019; 20:1587-1593. [PMID: 31128066 PMCID: PMC6857897 DOI: 10.31557/apjcp.2019.20.5.1587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Previous experimental studies have established that MicroRNAs (miRNAs) can function as oncogenes or tumor suppressors in the regulation of tumor biology or pathology. However, the effects of ionizing radiation (IR) on the expression levels of cellular miRNAs and their further effects on the biological behavior of tumor cells require further investigation. Methods: We determined the proliferation, migration and tube formation of HUVEC cells after ionizing radiation (control, 0h and 24h), and the changes of miR-21, VEFG and HIF-1α levels after ionizing radiation were measured by Western blot (WB). The effects of miR-21 mimics and inhibitors on the protein and mRNA expression of PTEN were determined by RT-PCT and WB. Two independent luciferase reporter plasmids were constructed to detect changes in PTEN protein expression. Results: We found that both IR and miR-21 increase proliferation, migration and tube formation of HUVEC cells. Ionizing radiation directly targets the inhibition of PTEN expression by causing an increase in miR-21 expression, and induces the accumulation of VEGF and HIF-1α expression in cells by the PI3K / AKT signaling pathway. Simultaneous induction of ectopic expression of PTEN can rescue radiation-induced proliferation, migration and tube formation in tumor cells. Conclusion: miR-21 promotes tumor cell proliferation and migration by targeting inhibition of PTEN expression, which may become a potential target for tumor therapy in the future.
Collapse
Affiliation(s)
- Yongchun Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhiying Chen
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lingxin Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Peng Jiang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiumei Li
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiang Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
55
|
A critical review on anti-angiogenic property of phytochemicals. J Nutr Biochem 2019; 71:1-15. [PMID: 31174052 DOI: 10.1016/j.jnutbio.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Angiogenesis, a process involved in neovascularization, has been found to be associated with several metabolic diseases like cancer, retinopathy etc. Thus, currently, the focus on anti-angiogenic therapy for treatment and prevention of diseases has gained significant attention. Currently available Food and Drug Administration (FDA) approved drugs are targeting either vascular endothelial growth factor or it's receptor, but in the long term, these approaches were shown to cause several side effects and the chances of developing resistance to these drugs is also high. Therefore, identification of safe and cost-effective anti-angiogenic molecules is highly imperative. Over the past decades, dietary based natural compounds have been studied for their anti-angiogenic potential which provided avenues in improving the angiogenesis based therapy. In this review, major emphasis is given to the molecular mechanism behind anti-angiogenic effect of natural compounds from dietary sources.
Collapse
|
56
|
Cantharidin inhibits melanoma cell proliferation via the miR‑21‑mediated PTEN pathway. Mol Med Rep 2018; 18:4603-4610. [PMID: 30221692 DOI: 10.3892/mmr.2018.9440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/26/2018] [Indexed: 11/05/2022] Open
Abstract
Cantharidin (CTD) is an active component isolated from the blister beetle that has been demonstrated to exert antitumor effects on multiple types of cancer. The current study aimed to investigate whether the potential inhibitory effects of CTD exist in human melanoma cells and to assess the underlying antitumor mechanisms of CTD. Using the Cell Counting Kit‑8 assay, it was demonstrated that CTD treatment reduced A375 cell proliferation significantly in a dose‑dependent manner. The colony formation assay demonstrated that CTD treatment could decrease the number of A375 cell colonies. Using subcutaneous xenograft tumor models, it was also demonstrated that CTD retarded solid tumor growth significantly. Furthermore, CTD treatment could induce A375 cell apoptosis, as detected by Annexin V‑fluorescein isothiocyanate/propidium iodide staining and western blot analysis. Notably, CTD treatment reduced microRNA (miR)‑21 expression and enhanced phosphatase and tensin homolog (PTEN) protein expression levels in A375 cells. Furthermore, overexpressing miR‑21 in A375 cells with the miR‑21 agomir blocked the antitumor effect of CTD both in vitro and in vivo. Finally, it was demonstrated that the inhibitory effects of CTD on A375 cells may be regulated by attenuating miR‑21‑mediated PTEN suppression. Based on these observations, it was suggested that CTD be used as a novel anti‑proliferation agent of human melanoma via targeting the miR‑21‑PTEN signaling pathway.
Collapse
|
57
|
Gu R, Zhang M, Meng H, Xu D, Xie Y. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. Biomed Pharmacother 2018; 105:491-497. [PMID: 29883944 DOI: 10.1016/j.biopha.2018.05.158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML.
Collapse
Affiliation(s)
- Ruixin Gu
- Department of Traditional Chinese Medicine, Wuhan Forth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minqin Zhang
- Department of Traditional Chinese Medicine, Wuhan Forth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hu Meng
- Department of Aesthetic Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Dandan Xu
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China; Department of Rehabilitation Medicine, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, Hubei, China.
| | - Yonghua Xie
- Department of Traditional Chinese Medicine, Wuhan Forth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
58
|
Gallnuts: A Potential Treasure in Anticancer Drug Discovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4930371. [PMID: 29785193 PMCID: PMC5896229 DOI: 10.1155/2018/4930371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 12/18/2022]
Abstract
Introduction. In the discovery of more potent and selective anticancer drugs, the research continually expands and explores new bioactive metabolites coming from different natural sources. Gallnuts are a group of very special natural products formed through parasitic interaction between plants and insects. Though it has been traditionally used as a source of drugs for the treatment of cancerous diseases in traditional and folk medicinal systems through centuries, the anticancer properties of gallnuts are barely systematically reviewed. Objective. To evidence the traditional uses and phytochemicals and pharmacological mechanisms in anticancer aspects of gallnuts, a literature review was performed. Materials and Methods. The systematic review approach consisted of searching web-based scientific databases including PubMed, Web of Science, and Science Direct. The keywords for searching include gallnut, Galla Chinensis, Rhus chinensis, Rhus potaninii, Rhus punjabensis, nutgall, gall oak, Quercus infectoria, Quercus lusitanica, and galla turcica. Two reviewers extracted papers independently to remove the papers unrelated to the anticancer properties of gallnuts. Patents, abstracts, case reports, and abstracts in symposium and congress were excluded. Results and Conclusion. As a result, 14 articles were eligible to be evaluated. It is primarily evident that gallnuts contain a number of bioactive metabolites, which account for anticancer activities. The phytochemical and pharmacological studies reviewed strongly underpin a fundamental understanding of anticancer properties for gallnuts (Galla Chinensis and Galla Turcica) and support their ongoing clinical uses in China. The further bioactive compounds screening and evaluation, pharmacological investigation, and clinical trials are expected to progress gallnut-based development to finally transform the wild medicinal gallnuts to the valuable authorized anticancer drugs.
Collapse
|
59
|
Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway. Pathol Res Pract 2017; 214:30-37. [PMID: 29254802 DOI: 10.1016/j.prp.2017.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
Abstract
Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway.
Collapse
|
60
|
Che F, Du H, Zhang W, Cheng Z, Tong Y. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF‑κB and VEGF pathway. Mol Med Rep 2017; 17:2724-2730. [PMID: 29207094 DOI: 10.3892/mmr.2017.8138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, the expression of microRNA (miR)‑132 and the mechanism by which it modifies angiogenesis in patients with ischemic cerebrovascular disease (ICD) was investigated. RNA isolation and reverse transcription‑quantitative polymerase chain reaction were used to measure miR‑132 expression in patients with ICD. Inflammatory factors were measured using ELISA kits and western blotting measured B‑cell lymphoma‑2 (Bcl‑2)‑associated X/Bcl‑2 ratio (Bax/Bcl‑2 ratio), nuclear factor (NF)‑κB p65, matrix metalloproteinase‑9 (MMP‑9), vascular cell adhesion molecule‑1 (VCAM‑1) and protein expression of inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor (VEGF) protein expression. miR‑132 expression in patients with ICD was lower compared with healthy volunteers. PC12 cells were used to create an oxygen glucose deprivation (OGD) model. miR‑132 overexpression in an in vitro model was able to reduce tumor necrosis factor‑a, interleukin (IL)‑1β, IL‑6, IL‑8, cyclooxygenase‑2, caspase‑3 and caspase‑9 levels, suppress Bax/Bcl‑2 ratio, NF‑κB p65, MMP‑9, VCAM‑1, iNOS, VEGF protein expression. The results suggested that miR‑132 may modify angiogenesis in patients with ICD by suppressing the NF‑κB pathway and promoting the VEGF pathway, and may develop into a therapy for ICD in future research.
Collapse
Affiliation(s)
- Fengli Che
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101145, P.R. China
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101145, P.R. China
| | - Weidong Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101145, P.R. China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101145, P.R. China
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101145, P.R. China
| |
Collapse
|
61
|
Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18071354. [PMID: 28672814 PMCID: PMC5535847 DOI: 10.3390/ijms18071354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.
Collapse
|
62
|
Kang TH, Seo JH, Oh H, Yoon G, Chae JI, Shim JH. Licochalcone A Suppresses Specificity Protein 1 as a Novel Target in Human Breast Cancer Cells. J Cell Biochem 2017; 118:4652-4663. [PMID: 28498645 DOI: 10.1002/jcb.26131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Licochalcone A (LCA), isolated from the root of Glycyrrhiza inflata, are known to have medicinal effect such as anti-oxidant, anti-bacterial, anti-viral, and anti-cancer. Though, as a pharmacological mechanism regulator, anti-cancer studies on LCA were not investigated in human breast cancer. We investigated the anti-proliferative and apoptotic effect of LCA in human breast cancer cells MCF-7 and MDA-MB-231 through MTS assay, PI staining, Annexin-V/7-AAD assay, mitochondrial membrane potential assay, multi-caspase assay, RT-PCR, Western blot analysis, and anchorage-independent cell transformation assay. Our results showed the little difference between two cells, as MCF-7 cell is both estrogen/progesterone receptor positive, there were only effect on Sp1 protein level, but not in mRNA level. Adversely, estrogen/progesterone/human epidermal growth factor receptor 2 triple negative, MDA-MB-231 showed decreased Sp1 mRNA, and protein levels. To confirm the participation of Sp1 in breast cancer cell viability, siRNA techniques were introduced. Both cells showed dysfunction of mitochondrial membrane potential and mitochondrial ROS production, which reflects it passed intracellular mitochondrial apoptosis pathway. Additionally, LCA showed the anti-proliferative and apoptotic effect in breast cancer cells through regulating Sp1 and apoptosis-related proteins in a dose- and a time-dependent manner. Consequently, LCA might be a potential anti-breast cancer drug substitute. J. Cell. Biochem. 118: 4652-4663, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
63
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
64
|
He QS, Zhang L, Fan ZY, Feng G, Wang FJ, Liu ZQ, Tang T, Kuang SX. RETRACTED: Protective effects of total flavonoids in Caragana against hypoxia/reoxygenation-induced injury in human brain microvascular endothelial cells. Biomed Pharmacother 2017; 89:316-322. [PMID: 28236705 DOI: 10.1016/j.biopha.2017.01.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/10/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the Transwell assay images shown in Figure 4A, which appear to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/FE1B7461C358F48E6838BF1622C291; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. An additional suspected image duplication within Figure 5A was also identified. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Qian-Song He
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Li Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Zi-Yuan Fan
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Guo Feng
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Fu-Jiang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Zheng-Qi Liu
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Ting Tang
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Shi-Xiang Kuang
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| |
Collapse
|
65
|
Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent. J Colloid Interface Sci 2017; 494:1-7. [DOI: 10.1016/j.jcis.2017.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
|
66
|
Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016; 39:253-260. [DOI: 10.3892/ijmm.2016.2833] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
67
|
Liu AL, Liao HQ, Li ZL, Liu J, Zhou CL, Guo ZF, Xie HY, Peng CY. New Insights into mTOR Signal Pathways in Ovarian-Related Diseases: Polycystic Ovary Syndrome and Ovarian Cancer. Asian Pac J Cancer Prev 2016; 17:5087-5094. [PMID: 28122439 PMCID: PMC5454641 DOI: 10.22034/apjcp.2016.17.12.5087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
mTOR, the mammalian target of rapamycin, is a conserved serine/threonine kinase which belongs to the phosphatidyl-linositol kinase-related kinase (PIKK) family. It has two complexes called mTORC1 and mTORC2. It is well established that mTOR plays important roles in cell growth, proliferation and differentiation. Over-activation of the mTOR pathway is considered to have a relationship with the development of many types of diseases, including polycystic ovary syndrome (PCOS) and ovarian cancer (OC). mTOR pathway inhibitors, such as rapamycin and its derivatives, can directly or indirectly treat or relieve the symptoms of patients suffering from PCOS or OC. Moreover, mTOR inhibitors in combination with other chemical-molecular agents may have extraordinary efficacy. This paper will discuss links between mTOR signaling and PCOS and OC, and explore the mechanisms of mTOR inhibitors in treating these two diseases, with conclusions regarding the most effective therapeutic approaches.
Collapse
Affiliation(s)
- Ai Ling Liu
- Institute of Biological Science, The Key Laboratory of Biological Toxicology and Ecological Restoration of Hengyang City, School of Pharmaceutical and Biological Science, University of South China, Heng yang 421001, Hunan Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
He YH, Li MF, Zhang XY, Meng XM, Huang C, Li J. NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma. Toxicology 2016; 359-360:47-57. [DOI: 10.1016/j.tox.2016.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
|