51
|
Lunina NA, Safina DR. Intercellular Interactions in the Tumor Stroma and Their Role in Oncogenesis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
52
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
53
|
Tijore A, Yang B, Sheetz M. Cancer cells can be killed mechanically or with combinations of cytoskeletal inhibitors. Front Pharmacol 2022; 13:955595. [PMID: 36299893 PMCID: PMC9589226 DOI: 10.3389/fphar.2022.955595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
For over two centuries, clinicians have hypothesized that cancer developed preferentially at the sites of repeated damage, indicating that cancer is basically “continued healing.” Tumor cells can develop over time into other more malignant types in different environments. Interestingly, indefinite growth correlates with the depletion of a modular, early rigidity sensor, whereas restoring these sensors in tumor cells blocks tumor growth on soft surfaces and metastases. Importantly, normal and tumor cells from many different tissues exhibit transformed growth without the early rigidity sensor. When sensors are restored in tumor cells by replenishing depleted mechanosensory proteins that are often cytoskeletal, cells revert to normal rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive to mechanical stretching or ultrasound which will cause apoptosis of transformed growth cells (Mechanoptosis). Mechanoptosis is driven by calcium entry through mechanosensitive Piezo1 channels that activate a calcium-induced calpain response commonly found in tumor cells. Since tumor cells from many different tissues are in a transformed growth state that is, characterized by increased growth, an altered cytoskeleton and mechanoptosis, it is possible to inhibit growth of many different tumors by mechanical activity and potentially by cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Ajay Tijore
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| |
Collapse
|
54
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
55
|
Wen Z, Yang C, Zou D, Liu J, Wang S, Liu X, Zhang Y, Zhang Y. Pan-cancer analysis of PSAP identifies its expression and clinical relevance in gastric cancer. Pathol Res Pract 2022; 238:154027. [PMID: 36084426 DOI: 10.1016/j.prp.2022.154027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
Prosaposin (PSAP) plays a critical role in sphingolipid and cancer metabolism. Reports have shown that PSAP was involved in proliferation, tumorigenesis, and metastasis. However, the expression pattern of PSAP and its prognostic roles in gastric cancer remain elusive. PSAP expression pattern and its prognostic roles in gastric cancer (GC) were explored using data from the TCGA and Kaplan-Meier Plotter. Immunohistochemical staining of GC tissues was performed to validate the prognostic role of PSAP. TISIDB was used to analyze its correlation with immunomodulators. PSAP-associated genes, PDCD1, TGFB1, and CSF1R were used to build a risk model to evaluate immunotherapy outcomes of patients with stomach adenocarcinoma (STAD). Results showed that PSAP was highly expressed in GC. High PSAP expression in GC patients also significantly indicated a poor prognosis. The results of immunohistochemical staining showed that PSAP was an independent prognostic factor in GC patients. Based on three PSAP-associated genes, a risk model that could predict the prognosis and immunotherapy outcome of STAD was bulit. PSAP was an independent prognostic factor in GC. Our results have identified three prognosis-related genes which were useful to evaluate immunotherapy outcomes of STAD patients.
Collapse
Affiliation(s)
- Zhenpeng Wen
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Dan Zou
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province 110042, PR China.
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Song Wang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Xuqin Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| |
Collapse
|
56
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
57
|
Ibrahim LI, Hajal C, Offeddu GS, Gillrie MR, Kamm RD. Omentum-on-a-chip: A multicellular, vascularized microfluidic model of the human peritoneum for the study of ovarian cancer metastases. Biomaterials 2022; 288:121728. [PMID: 35995621 DOI: 10.1016/j.biomaterials.2022.121728] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Epithelial ovarian cancer has the highest mortality rate of any gynecologic malignancy and most frequently metastasizes to the peritoneal cavity. Intraperitoneal metastases are highly associated with ascites, the pathologic accumulation of peritoneal fluid due to impaired drainage, increased peritoneal permeability, and tumor and stromal cytokine secretion. However, the relationship between ascites, vascular and mesothelial permeability, and ovarian cancer intraperitoneal metastases remains poorly understood. In this study, a vascularized in vitro model of the human peritoneal omentum and ovarian tumor microenvironment (TME) was employed to study stromal cell effects on tumor cell (TC) attachment and growth, as well as TC effects on vascular and mesothelial permeability in models of both early- and late-stage metastases. Control over the number of TCs seeded in the vascularized peritoneum revealed a critical cell density requirement for tumor growth, which was further enhanced by stromal adipocytes and endothelial cells found in the peritoneal omentum. This tumor growth resulted in both a physically-mediated decrease and cytokine-mediated increase in microvascular permeability, emphasizing the important and potentially opposing roles of tumor cells in ascites formation. This system provides a robust platform to elucidate TC-stromal cell interactions during intraperitoneal metastasis of ovarian cancer and presents the first in vitro vascularized model of the human peritoneum and ovarian cancer TME.
Collapse
Affiliation(s)
- Lina I Ibrahim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark R Gillrie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
58
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
59
|
Li B, Ren MY, Chen YZ, Meng YQ, Song TN, Su ZP, Yang B. SYNGR2 serves as a prognostic biomarker and correlates with immune infiltrates in esophageal squamous cell carcinoma. J Gene Med 2022; 24:e3441. [PMID: 35840542 DOI: 10.1002/jgm.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synaptogyrin-2 (SYNGR2) plays an important role in regulating membrane traffic in nonneuronal cells. However, the role of SYNGR2 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS All original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.5.3. SYNGR2 expression was explored in the TCGA and GEO databases. The correlations between SYNGR2 and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. RESULTS In general, SYNGR2 was predominantly overexpressed and had reference value in the diagnosis and prognostic estimation of ESCC. Upregulated SYNGR2 was associated with poorer overall survival, poorer disease-specific survival and T stage in ESCC. Mechanistically, we identified hub genes that included a total of 38 SYNGR2-related genes, which were tightly associated with the protein polyubiquitination pathway in ESCC patients. SYNGR2 expression was negatively related to the infiltrating levels of T helper cells. SYNGR2 methylation was positively correlated with the expression of chemokines (CCL2 and CXCL12), chemokine receptors (CCR1 and CCR2), immunoinhibitors (CXCL12 and TNFRSF4) and immunostimulators (CSF1R and PDCD1LG2) in ESCC. CONCLUSION SYNGR2 may be used as a biomarker for determining prognosis and immune infiltration in ESCC.
Collapse
Affiliation(s)
- Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Mei-Yu Ren
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu-Zhen Chen
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tie-Niu Song
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Zhi-Peng Su
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Bo Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| |
Collapse
|
60
|
Gong XY, Chen HB, Zhang LQ, Chen DS, Li W, Chen DH, Xu J, Zhou H, Zhao LL, Song YJ, Xiao MZ, Deng WL, Qi C, Wang XR, Chen X. NOTCH1 mutation associates with impaired immune response and decreased relapse-free survival in patients with resected T1-2N0 laryngeal cancer. Front Immunol 2022; 13:920253. [PMID: 35911687 PMCID: PMC9336464 DOI: 10.3389/fimmu.2022.920253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients with early-stage laryngeal cancer, even stage T1-2N0, are at considerable risk of recurrence and death. The genetic and immunologic characteristics of recurrent laryngeal cancer remain unclear. Methods A total of 52 T1-2N0 laryngeal cancer patients were enrolled. Of these, 42 tissue samples were performed by targeted DNA sequencing, and 21 cases were performed by NanoString immuno-oncology targeted RNA sequencing to identify the distinct molecular bases and immunologic features associated with relapse in patients with early laryngeal cancer, respectively. Results To the best to our knowledge, we present for the first time an overview of the genomic mutation spectrum of early-stage laryngeal cancers. A total of 469 genomic alterations were detected in 211 distinct cancer-relevant genes, and the genes found to be mutated in more than five patients (>10%) included tumor protein p53 (TP53, 78.5%), FAT atypical cadherin 1 (FAT1, 26%), LDL receptor related protein 1B (LRP1B, 19%), cyclin dependent kinase inhibitor 2A (CDKN2A, 17%), tet methylcytosine dioxygenase 2 (TET2, 17%), notch receptor 1 (NOTCH1, 12%) and neuregulin 1 (NRG1, 12%). Recurrent laryngeal cancer demonstrated a higher tumor mutation burden (TMB), as well as higher LRP1B mutation and NOTCH1 mutation rates. Univariate and multivariate analyses revealed that high TMB (TMB-H) and NOTCH1 mutation are independent genetic factors that are significantly associated with shorter relapse-free survival (RFS). Simultaneously, the results of the transcriptome analysis presented recurrent tumors with NOTCH1 mutation displayed upregulation of the cell cycle pathway, along with decreased B cells score, T cells score, immune signature score and tumor-infiltrating lymphocytes (TILs) score. The Cancer Genome Atlas (TCGA)-laryngeal cancer dataset also revealed weakened immune response and impaired adhesion functions in NOTCH1-mutant patients. Conclusions Genomic instability and impaired immune response are key features of the immunosurveillance escape and recurrence of early laryngeal cancer after surgery. These findings revealed immunophenotypic attenuation in recurrent tumors and provided valuable information for improving the management of these high-risk patients. Due to the small number of patients in this study, these differences need to be further validated in a larger cohort.
Collapse
Affiliation(s)
- Xiao-yang Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-bin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-qing Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dong-sheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Wang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dong-hui Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Le-le Zhao
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Yun-jie Song
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Ming-zhe Xiao
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Wang-long Deng
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Chuang Qi
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Xue-rong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
- *Correspondence: Xi Chen, ; Xue-rong Wang,
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xi Chen, ; Xue-rong Wang,
| |
Collapse
|
61
|
Iman H, Benjamin A, Peyton K, Habbit NL, Ahmed B, Heslin MJ, Mobley JA, Greene MW, Lipke EA. Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line. Biofabrication 2022; 14:10.1088/1758-5090/ac73b6. [PMID: 35617932 PMCID: PMC9822569 DOI: 10.1088/1758-5090/ac73b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/26/2022] [Indexed: 01/11/2023]
Abstract
The development of physiologically relevantin vitrocolorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of thisin vivomodel is costly and low-throughput. Here we report the establishment and in-depth characterization of anin vitrotissue-engineered CRC model using PDX cells. To form the 3D engineered CRC-PDX (3D-eCRC-PDX) tissues, CRC PDX tumors were expandedin vivo, dissociated, and the isolated cells encapsulated within PEG-fibrinogen hydrogels. Following PEG-fibrinogen encapsulation, cells remain viable and proliferate within 3D-eCRC-PDX tissues. Tumor cell subpopulations, including human cancer and mouse stromal cells, are maintained in long-term culture (29 days); cellular subpopulations increase ratiometrically over time. The 3D-eCRC-PDX tissues mimic the mechanical stiffness of originating tumors. Extracellular matrix protein production by cells in the 3D-eCRC-PDX tissues resulted in approximately 57% of proteins observed in the CRC-PDX tumors also being present in the 3D-eCRC-PDX tissues on day 22. Furthermore, we show congruence in enriched gene ontology molecular functions and Hallmark gene sets in 3D-eCRC-PDX tissues and CRC-PDX tumors compared to normal colon tissue, while prognostic Kaplan-Meier plots for overall and relapse free survival did not reveal significant differences between CRC-PDX tumors and 3D-eCRC-PDX tissues. Our results demonstrate high batch-to-batch consistency and strong correlation between ourin vitrotissue-engineered PDX-CRC model and the originatingin vivoPDX tumors, providing a foundation for future studies of disease progression and tumorigenic mechanisms.
Collapse
Affiliation(s)
- Hassani Iman
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Anbiah Benjamin
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Kuhlers Peyton
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Nicole L. Habbit
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Bulbul Ahmed
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Martin J. Heslin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
- Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
| | - Michael W. Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
62
|
Wu F, Yang J, Shang G, Zhang Z, Niu S, Liu Y, Liu H, Jing J, Fang Y. Exosomal miR-224-5p from Colorectal Cancer Cells Promotes Malignant Transformation of Human Normal Colon Epithelial Cells by Promoting Cell Proliferation through Downregulation of CMTM4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5983629. [PMID: 35814269 PMCID: PMC9262543 DOI: 10.1155/2022/5983629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Background Interactions between malignant cells and neighboring normal cells are important for carcinogenesis. In addition, cancer cell-derived exosomes have been shown to promote the malignant transformation of recipient cells, but the mechanisms remain unclear. Methods The level of miR-224-5p in CRC cell-derived exosomes was determined by RT-qPCR assay. In addition, PKH26 dye-labeled exosomes were used to assess the efficacy of the transfer of exosomes between SW620 and normal colon epithelial cell line CCD 841 CoN. Results In this study, we found that overexpression of miR-224-5p significantly promoted the proliferation, migration, and invasion and inhibited the oxidative stress of SW620 cells. In addition, miR-224-5p can be transferred from SW620 cells to CCD 841 CoN cells via exosomes. SW620 cell-derived exosomal miR-224-5p markedly promoted proliferation, migration, and invasion of CCD 841 CoN cells. Meanwhile, SW620 cell-derived exosomal miR-224-5p notably decreased the expression of CMTM4 in CCD 841 CoN cells. Furthermore, SW620 cell-derived exosomal miR-224-5p significantly promoted tumor growth in a xenograft model in vivo. Conclusion These findings suggested that SW620 cell-derived exosomal miR-224-5p could promote malignant transformation and tumorigenesis in vitro and in vivo via downregulation of CMTM4, suggesting that miR-224-5p might be a potential target for therapies in CRC.
Collapse
Affiliation(s)
- Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Guoyin Shang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhijia Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Sijia Niu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yang Liu
- Pharmacy Intravenous Admixture Services, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hongru Liu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jing Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yu Fang
- Department of Phase I Clinical Trial Ward, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
63
|
Song Y, Baxter SS, Dai L, Sanders C, Burkett S, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Difilippantonio S, Karim B, Kadariya Y, Pinto LA, Testa JR, Shoemaker RH. Mesothelioma Mouse Models with Mixed Genomic States of Chromosome and Microsatellite Instability. Cancers (Basel) 2022; 14:3108. [PMID: 35804881 PMCID: PMC9264972 DOI: 10.3390/cancers14133108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g., asbestos). Genomic studies have revealed that the most frequent genetic lesions in human MMe are mutations in tumor suppressor genes. Several genetically engineered mouse models have been generated by introducing the same genetic lesions found in human MMe. However, most of these models require specialized breeding facilities and long-term exposure of mice to asbestos for MMe development. Thus, an alternative model with high tumor penetrance without asbestos is urgently needed. We characterized an orthotopic model using MMe cells derived from Cdkn2a+/-;Nf2+/- mice chronically injected with asbestos. These MMe cells were tumorigenic upon intraperitoneal injection. Moreover, MMe cells showed mixed chromosome and microsatellite instability, supporting the notion that genomic instability is relevant in MMe pathogenesis. In addition, microsatellite markers were detectable in the plasma of tumor-bearing mice, indicating a potential use for early cancer detection and monitoring the effects of interventions. This orthotopic model with rapid development of MMe without asbestos exposure represents genomic instability and specific molecular targets for therapeutic or preventive interventions to enable preclinical proof of concept for the intervention in an immunocompetent setting.
Collapse
Affiliation(s)
- Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Shaneen S. Baxter
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Lisheng Dai
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Chelsea Sanders
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Sandra Burkett
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Ryan N. Baugher
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Stephanie D. Mellott
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Todd B. Young
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Heidi E. Lawhorn
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Simone Difilippantonio
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Yuwaraj Kadariya
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Ligia A. Pinto
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
64
|
Quantitative phosphoproteomics reveals ectopic ATP synthase on mesenchymal stem cells to promote tumor progression via ERK/c-Fos pathway activation. Mol Cell Proteomics 2022; 21:100237. [PMID: 35439648 PMCID: PMC9117939 DOI: 10.1016/j.mcpro.2022.100237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
The tumor microenvironment (TME), which comprises cellular and noncellular components, is involved in the complex process of cancer development. Emerging evidence suggests that mesenchymal stem cells (MSCs), one of the vital regulators of the TME, foster tumor progression through paracrine secretion. However, the comprehensive phosphosignaling pathways that are mediated by MSC-secreting factors have not yet been fully established. In this study, we attempt to dissect the MSC-triggered mechanism in lung cancer using quantitative phosphoproteomics. A total of 1958 phosphorylation sites are identified in lung cancer cells stimulated with MSC-conditioned medium. Integrative analysis of the identified phosphoproteins and predicted kinases demonstrates that MSC-conditioned medium functionally promotes the proliferation and migration of lung cancer via the ERK/phospho-c-Fos-S374 pathway. Recent studies have reported that extracellular ATP accumulates in the TME and stimulates the P2X7R on the cancer cell membrane via purinergic signaling. We observe that ectopic ATP synthase is located on the surface of MSCs and excreted extracellular ATP into the lung cancer microenvironment to trigger the ERK/phospho-c-Fos-S374 pathway, which is consistent with these previous findings. Our results suggest that ectopic ATP synthase on the surface of MSCs releases extracellular ATP into the TME, which promotes cancer progression via activation of the ERK/phospho-c-Fos-S374 pathway. Mesenchymal stem cells (MSCs) enhance lung cancer development through extracellular factor secretion. Phosphoproteomics discover MSCs-regulated phosphosignaling in the lung cancer. Ectopic ATP synthase on MSCs surface produces ATP into the tumor microenvironment. MSC-secreted extracellular ATP mediates the phosphorylation of the ERK/c-Fos axis.
Collapse
|
65
|
Elseragy A, Bello IO, Wahab A, Coletta RD, Mäkitie AA, Leivo I, Almangush A, Salo T. Emerging histopathologic markers in early-stage oral tongue cancer: A systematic review and meta-analysis. Head Neck 2022; 44:1481-1491. [PMID: 35229398 PMCID: PMC9545479 DOI: 10.1002/hed.27022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Although there are many histopathologic prognosticators, grading of early oral tongue squamous cell carcinoma (OTSCC) is still based on morphological cell differentiation which has low prognostic value. Here we summarize the emerging histopathological markers showing powerful prognostic value, but are not included in pathology reports. Using PubMed, Scopus, Ovid Medline, and Web of Science databases, a systematic literature search was preformed to identify early OTSCC studies that investigated the prognostic significance of hematoxylin–eosin‐based histopathologic markers. Our meta‐analysis showed that tumor budding was associated with overall survival (hazard ratio [HR] 2.32; 95% CI 1.40–3.84; p < 0.01) and disease‐specific survival (DSS) (1.89; 95% CI 1.13–3.15; p = 0.02). Worst pattern of invasion was associated with disease‐free survival (DFS) (1.95; 95% CI 1.04–3.64; p = 0.04). Tumor–stroma ratio was also associated with DFS (1.75, 95% CI 1.24–2.48; p < 0.01) and DSS (1.69; 95% CI 1.19–2.42; p < 0.01). Tumor budding, worst pattern of invasion, and tumor–stroma ratio have a promising prognostic value in early OTSCC. The evaluation and reporting of these markers is cost‐effective and can be incorporated in daily practice.
Collapse
Affiliation(s)
- Amr Elseragy
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ibrahim O Bello
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Department of Oral Medicine and Diagnostic Sciences, King Saud University College of Dentistry, Riyadh, Saudi Arabia
| | - Awais Wahab
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil.,Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Antti A Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Turku University Central Hospital, Turku, Finland
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
66
|
Alzawi A, Iftikhar A, Shalgm B, Jones S, Ellis I, Islam M. Receptor, Signal, Nucleus, Action: Signals That Pass through Akt on the Road to Head and Neck Cancer Cell Migration. Cancers (Basel) 2022; 14:2606. [PMID: 35681586 PMCID: PMC9179418 DOI: 10.3390/cancers14112606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
This review aims to provide evidence for the role of the tumour microenvironment in cancer progression, including invasion and metastasis. The tumour microenvironment is complex and consists of tumour cells and stromal-derived cells, in addition to a modified extracellular matrix. The cellular components synthesise growth factors such as EGF, TGFα and β, VEGF, and NGF, which have been shown to initiate paracrine signalling in head and neck cancer cells by binding to cell surface receptors. One example is the phosphorylation, and hence activation, of the signalling protein Akt, which can ultimately induce oral cancer cell migration in vitro. Blocking of Akt activation by an inhibitor, MK2206, leads to a significant decrease, in vitro, of cancer-derived cell migration, visualised in both wound healing and scatter assays. Signalling pathways have therefore been popular targets for the design of chemotherapeutic agents, but drug resistance has been observed and is related to direct tumour-tumour cell communication, the tumour-extracellular matrix interface, and tumour-stromal cell interactions. Translation of this knowledge to patient care is reliant upon a comprehensive understanding of the complex relationships present in the tumour microenvironment and could ultimately lead to the design of efficacious treatment regimens such as targeted therapy or novel therapeutic combinations.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammad Islam
- Unit of Cell & Molecular Biology, School of Dentistry, University of Dundee, Dundee DD1 4HN, UK; (A.A.); (A.I.); (B.S.); (S.J.); (I.E.)
| |
Collapse
|
67
|
Lin A, Qi C, Li M, Guan R, Imyanitov EN, Mitiushkina NV, Cheng Q, Liu Z, Wang X, Lyu Q, Zhang J, Luo P. Deep Learning Analysis of the Adipose Tissue and the Prediction of Prognosis in Colorectal Cancer. Front Nutr 2022; 9:869263. [PMID: 35634419 PMCID: PMC9131178 DOI: 10.3389/fnut.2022.869263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research has shown that the lipid microenvironment surrounding colorectal cancer (CRC) is closely associated with the occurrence, development, and metastasis of CRC. According to pathological images from the National Center for Tumor diseases (NCT), the University Medical Center Mannheim (UMM) database and the ImageNet data set, a model called VGG19 was pre-trained. A deep convolutional neural network (CNN), VGG19CRC, was trained by the migration learning method. According to the VGG19CRC model, adipose tissue scores were calculated for TCGA-CRC hematoxylin and eosin (H&E) images and images from patients at Zhujiang Hospital of Southern Medical University and First People's Hospital of Chenzhou. Kaplan-Meier (KM) analysis was used to compare the overall survival (OS) of patients. The XCell and MCP-Counter algorithms were used to evaluate the immune cell scores of the patients. Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to analyze upregulated and downregulated pathways. In TCGA-CRC, patients with high-adipocytes (high-ADI) CRC had significantly shorter OS times than those with low-ADI CRC. In a validation queue from Zhujiang Hospital of Southern Medical University (Local-CRC1), patients with high-ADI had worse OS than CRC patients with low-ADI. In another validation queue from First People's Hospital of Chenzhou (Local-CRC2), patients with low-ADI CRC had significantly longer OS than patients with high-ADI CRC. We developed a deep convolution network to segment various tissues from pathological H&E images of CRC and automatically quantify ADI. This allowed us to further analyze and predict the survival of CRC patients according to information from their segmented pathological tissue images, such as tissue components and the tumor microenvironment.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Qi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mujiao Li
- College of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Guan
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Wang
- First People's Hospital of Chenzhou City, Chenzhou, China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Qingwen Lyu
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Jian Zhang
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Peng Luo
| |
Collapse
|
68
|
Single-cell characterization of malignant phenotypes and microenvironment alteration in retinoblastoma. Cell Death Dis 2022; 13:438. [PMID: 35523772 PMCID: PMC9076657 DOI: 10.1038/s41419-022-04904-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Retinoblastoma (RB) is the most common primary intraocular malignancy of childhood. It is known that the tumor microenvironment (TME) regulates tumorigenesis and metastasis. However, how the malignant progression in RB is determined by the heterogeneity of tumor cells and TME remains uncharacterized. Here, we conducted integrative single-cell transcriptome and whole-exome sequencing analysis of RB patients with detailed pathological and clinical measurements. By single-cell transcriptomic sequencing, we profiled around 70,000 cells from tumor samples of seven RB patients. We identified that the major cell types in RB were cone precursor-like (CP-like) and MKI67+ cone precursor (MKI67+ CP) cells. By integrating copy number variation (CNV) analysis, we found that RB samples had large clonal heterogeneity, where the malignant MKI67+ CP cells had significantly larger copy number changes. Enrichment analysis revealed that the conversion of CP-like to MKI67+ CP resulted in the loss of photoreceptor function and increased cell proliferation ability. The TME in RB was composed of tumor-associated macrophages (TAMs), astrocyte-like, and cancer-associated fibroblasts (CAFs). Particularly, during the invasion process, TAMs created an immunosuppressive environment, in which the proportion of TAMs decreased, M1-type macrophage was lost, and the TAMs-related immune functions were depressed. Finally, we identified that TAMs regulated tumor cells through GRN and MIF signaling pathways, while TAMs self-regulated through inhibition of CCL and GALECTIN signaling pathways during the invasion process. Altogether, our study creates a detailed transcriptomic map of RB with single-cell characterization of malignant phenotypes and provides novel molecular insights into the occurrence and progression of RB.
Collapse
|
69
|
Immune Subtype Profiling and Establishment of Prognostic Immune-Related lncRNA Pairs in Human Ovarian Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8338137. [PMID: 35578596 PMCID: PMC9107039 DOI: 10.1155/2022/8338137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
This study collected immune-related genes (IRGs) and used gene expression data from TCGA database to construct a molecular subtype of ovarian cancer (OV) based on immune-related lncRNA gene pairs (IRLnc_GPs). The relationships between molecular subtypes and prognosis and clinical characteristics were further explored. IRGs were acquired from the ImmPort database, and round-robin pairing of immune-related lncRNAs was performed. The NMF algorithm was used to identify molecular subtypes, and the immune score of a single sample was calculated through ESTIMATE, TIMER, ssGSEA, MCPcounter, and CIBERSORT. The relationship between molecular subtypes and immune microenvironments was identified. A hypergeometric test was used to test the lncRNA pairs among the OV molecular subtypes (C1 and C2 subtypes). The BH method was used to screen the different lncRNA pairs, and a predictive risk model was constructed and verified. Finally, correlation analysis between the risk model, immune checkpoint genes, and chemotherapy drugs was carried out. Based on IRLnc_GP to classify 373 OV samples of TCGA, the samples were divided into two subtypes, and the prognosis between the subtypes showed significant differences. The C1 subtype with a poor prognosis was more related to the pathways of tumor occurrence and development. We identified 180 differential lncRNA pairs between subtypes and constructed a prognostic risk model based on 8 IRLnc_GPs. In the independent dataset, the distribution of subtypes in functional modules was different and highly repeatable. There were significant differences in the molecular and clinical characteristics of the subtypes and the drug sensitivity of immunotherapy/chemotherapy. In conclusion, the risk model established based on IRLnc_GP can better evaluate the prognosis of OV samples and can also assess the effects of different drug treatments in the high- and low-risk groups, providing new insights and ideas for the treatment of OV.
Collapse
|
70
|
Bae IY, Choi W, Oh SJ, Kim C, Kim S. TIMP-1-expressing breast tumor spheroids for the evaluation of drug penetration and efficacy. Bioeng Transl Med 2022; 7:e10286. [PMID: 35600659 PMCID: PMC9115709 DOI: 10.1002/btm2.10286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Abundance of stromal cells and extracellular matrix (ECM) is observed in breast cancer, acting as a barrier for drug penetration and presenting a key issue for developing efficient therapeutics. In this study, we aimed to develop a three-dimensional (3D) multicellular tumor model comprising cancer and stromal cells that could effectively mimic the drug resistance properties of breast cancer. Three different types of spheroid models were designed by co-culturing breast cancer cells (MDA-MB-231) with three different types of stromal cells: human adipose-derived stromal cells (hASCs), human bone marrow stromal cells, or human dermal fibroblasts. Compared with other models, in the hASC co-culture model, tissue inhibitor of metalloproteinases-1 (TIMP-1) was highly expressed and the activity of matrix metalloproteinases was decreased, resulting in a higher ECM deposition on the spheroid surfaces. This spheroid model showed less drug penetration and treatment efficacy than the other models. TIMP-1 silencing in hASCs reduced ECM protein expression and increased drug penetration and vulnerability. A quantitative structure-activity relationship study using multiple linear regression drew linear relationships between the chemical properties of drugs and experimentally determined permeability values. Drugs that did not match the drug-likeness rules exhibited lower permeability in the 3D tumor model. Taken together, our findings indicate that this 3D multicellular tumor model may be used as a reliable platform for efficiently screening therapeutics agents for solid tumors.
Collapse
Affiliation(s)
- In Yeong Bae
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Wooshik Choi
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Seung Ja Oh
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| | - Chansoo Kim
- AI Laboratory, Computational Science Center and ESRIKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Sang‐Heon Kim
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
71
|
Wedge ME, Jennings VA, Crupi MJF, Poutou J, Jamieson T, Pelin A, Pugliese G, de Souza CT, Petryk J, Laight BJ, Boileau M, Taha Z, Alluqmani N, McKay HE, Pikor L, Khan ST, Azad T, Rezaei R, Austin B, He X, Mansfield D, Rose E, Brown EEF, Crawford N, Alkayyal A, Surendran A, Singaravelu R, Roy DG, Migneco G, McSweeney B, Cottee ML, Jacobus EJ, Keller BA, Yamaguchi TN, Boutros PC, Geoffrion M, Rayner KJ, Chatterjee A, Auer RC, Diallo JS, Gibbings D, tenOever BR, Melcher A, Bell JC, Ilkow CS. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun 2022; 13:1898. [PMID: 35393414 PMCID: PMC8990073 DOI: 10.1038/s41467-022-29526-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or “cancer-killing” viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy. RNA-based viruses can be engineered to express artificial microRNAs (amiRNAs). Here, the authors identify a candidate amiRNA that confers a replicative advantage to oncolytic viruses, enhancing their anticancer potency, and show that intercellular transfer of extracellular vesicles carrying the amiRNA promotes bystander killing of uninfected cancer cells.
Collapse
Affiliation(s)
- Marie-Eve Wedge
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Victoria A Jennings
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Institute of Cancer Research, London, UK.,Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Joanna Poutou
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Giuseppe Pugliese
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Julia Petryk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brian J Laight
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Meaghan Boileau
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nouf Alluqmani
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hayley E McKay
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sarwat Tahsin Khan
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taha Azad
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bradley Austin
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Xiaohong He
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Elaine Rose
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily E F Brown
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Natalie Crawford
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Almohanad Alkayyal
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abera Surendran
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic G Roy
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gemma Migneco
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Benjamin McSweeney
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mary Lynn Cottee
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Egon J Jacobus
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Oncology, University of Oxford, Oxford, UK
| | - Brian A Keller
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Takafumi N Yamaguchi
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Avijit Chatterjee
- The Ottawa Hospital, Division of Gastroenterology, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
72
|
Song Z, Wang H, Feng X, Yang X, Han P, Zhao J. Consistency Analysis of CTLM Imaging and Mammography in the Diagnosis of Breast Tumor Lesions. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5391636. [PMID: 39290687 PMCID: PMC11407882 DOI: 10.1155/2022/5391636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To analyze the consistency of preoperative CTLM imaging in the diagnosis of breast cancer lesions and postoperative pathological examination. METHODS The clinical data of 225 patients with breast tumor in our breast surgery department were collected. All patients underwent mammography, CTLM, and pathological examination. To analyze the image characteristics of breast CTLM imaging, calculate the diagnostic efficacy of CTLM imaging for breast tumors, and compare the image characteristics of CTLM imaging for benign and malignant tumors. RESULTS (1) Postoperative pathological examination showed that 136 cases (60.44%) of lesions were benign tumors, and 89 cases (39.56%) were malignant tumors. (2) The "spokes distribution" of normal breast CTLM images was interrupted. In the 3D reconstructed images, the morphology of the abnormal angiogenesis area is mostly irregular nonbanded structure, which is manifested as slab structure, spindle structure, spherical structure, diverticulum structure, inverted conical structure, rings structure, branched structure, and dumbbell structure. (3) The detection rate of breast tumor by CTLM imaging was 84.44%. The specificity and coincidence rate of CTLM imaging were higher than that of mammography (P < 0.05). (4) The features of CTLM imaging images of breast malignant tumors are mostly bright white locally, with irregular edges and obvious attenuation of laser signal, and the reconstructed shape of 3D images is mostly like a slab structure. CONCLUSION CTLM imaging can provide related information of neovascularization in breast cancer lesions, which is basically consistent with pathologically confirmed lesions.
Collapse
Affiliation(s)
- Zhangjun Song
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Huxia Wang
- Department of Breast, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Xiaorui Feng
- Department of Radiation Oncology, Xi'an High-tech Hospital, Xi'an 710000, China
| | - Xiaomin Yang
- Department of Breast, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Pihua Han
- Department of Breast, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Jing Zhao
- Department of Breast, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| |
Collapse
|
73
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
74
|
Ortiz-Bonilla CJ, Uccello TP, Gerber SA, Lord EM, Messing EM, Lee YF. Bladder Cancer Extracellular Vesicles Elicit a CD8 T Cell-Mediated Antitumor Immunity. Int J Mol Sci 2022; 23:ijms23062904. [PMID: 35328324 PMCID: PMC8949613 DOI: 10.3390/ijms23062904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) play crucial roles in mediating immune responses, as they carry and present functional MHC-peptide complexes that enable them to modulate antigen-specific CD8+ T-cell responses. However, the therapeutic potential and immunogenicity of TEV-based therapies against bladder cancer (BC) have not yet been tested. Here, we demonstrated that priming with immunogenic Extracellular Vesicles (EVs) derived from murine MB49 BC cells was sufficient to prevent MB49 tumor growth in mice. Importantly, antibody-mediated CD8+ T-cell depletion diminished the protective effect of MB49 EVs, suggesting that MB49 EVs elicit cytotoxic CD8+ T-cell-mediated protection against MB49 tumor growth. Such antitumor activity may be augmented by TEV-enhanced immune cell infiltration into the tumors. Interestingly, MB49 EV priming was unable to completely prevent, but significantly delayed, unrelated syngeneic murine colon MC-38 tumor growth. Cytokine array analyses revealed that MB49 EVs were enriched with pro-inflammatory factors that might contribute to increasing tumor-infiltrating immune cells in EV-primed MC-38 tumors. These results support the potential application of TEVs in personalized medicine, and open new avenues for the development of adjuvant therapies based on patient-derived EVs aimed at preventing disease progression.
Collapse
Affiliation(s)
- Carlos J. Ortiz-Bonilla
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Taylor P. Uccello
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
| | - Scott A. Gerber
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edith M. Lord
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Edward M. Messing
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence: ; Tel.: +1-(585)-275-9702
| |
Collapse
|
75
|
Engineering T cells to survive and thrive in the hostile tumor microenvironment. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
76
|
Fekry B, Eckel-Mahan K. The Circadian Clock and Cancer: Links between Circadian Disruption and Disease Pathology. J Biochem 2022; 171:477-486. [PMID: 35191986 DOI: 10.1093/jb/mvac017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
There is growing evidence that disruption of our 24-hour clock increases our risk for acquiring several diseases and disorders. One of these diseases is cancer. While the mechanistic links between circadian clock disruption and cancer initiation or progression are an active area of study, significantly more work needs to be done to understand the molecular substrates involved. Of particular complexity remains the functions of the clock in individual cells during the process of transformation (cancer initiation) vs. the functions of the clock in tumor-surrounding stroma in the process of tumor progression or metastasis. Indeed, the nexus of cellular circadian dynamics, metabolism, and carcinogenesis is drawing more attention, and many new studies are now highlighting the critical role of circadian rhythms and clock proteins in cancer prevention. In this brief review, we cover some of the basic mechanisms reported to link circadian disruption and cancer at the level of gene expression and metabolism. We also review some of the human studies addressing circadian disruption and cancer incidence as well as some controlled laboratory studies connecting the two in pre-clinical models. Finally, we discuss the tremendous opportunity to use circadian approaches for future prevention and treatment in the context of cancer in specific organs.
Collapse
Affiliation(s)
- Baharan Fekry
- University of Texas Health Science Center at Houston, Institute of Molecular Medicine. MD Anderson/UTHealth Graduate School for Biomedical Sciences, Houston, Texas 77030 United States
| | - Kristin Eckel-Mahan
- University of Texas Health Science Center at Houston, Institute of Molecular Medicine. MD Anderson/UTHealth Graduate School for Biomedical Sciences, Houston, Texas 77030 United States
| |
Collapse
|
77
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
78
|
Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022; 10:847433. [PMID: 35252155 PMCID: PMC8888840 DOI: 10.3389/fbioe.2022.847433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer is one of the most critical human challenges which endangers many people’s lives every year with enormous direct and indirect costs worldwide. Unfortunately, despite many advanced treatments used in cancer clinics today, the treatments are deficiently encumbered with many side effects often encountered by clinicians while deploying general methods such as chemotherapy, radiotherapy, surgery, or a combination thereof. Due to their low clinical efficacy, numerous side effects, higher economic costs, and relatively poor acceptance by patients, researchers are striving to find better alternatives for treating this life-threatening complication. As a result, Metal nanoparticles (Metal NPs) have been developed for nearly 2 decades due to their important therapeutic properties. Nanoparticles are quite close in size to biological molecules and can easily penetrate into the cell, so one of the goals of nanotechnology is to mount molecules and drugs on nanoparticles and transfer them to the cell. These NPs are effective as multifunctional nanoplatforms for cancer treatment. They have an advantage over routine drugs in delivering anticancer drugs to a specific location. However, targeting cancer sites while performing anti-cancer treatment can be effective in improving the disease and reducing its complications. Among these, the usage of these nanoparticles (NPs) in photodynamic therapy and sonodynamic therapy are notable. Herein, this review is aimed at investigating the effect and appliances of Metal NPs in the modulation tumor microenvironment which bodes well for the utilization of vast and emerging nanomaterial resources.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Moghimi
- Department of Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Foad Tosan
- Semnan University of Medical Sciences Dental Student Research Committee, Semnan, Iran
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Alizadeh
- Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Mohammad Taheri
- Skull Base Research Center, Loghmna Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| |
Collapse
|
79
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Gao M, Liu S, Qi Y, Guo X, Shang X. ImReLnc: Identifying Immune-Related LncRNA Characteristics in Human Cancers Based on Heuristic Correlation Optimization. Front Genet 2022; 12:792541. [PMID: 35082835 PMCID: PMC8784420 DOI: 10.3389/fgene.2021.792541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in cancer through gene expression and immune regulation. Identifying immune-related lncRNA (irlncRNA) characteristics would contribute to dissecting the mechanism of cancer pathogenesis. Some computational methods have been proposed to identify irlncRNA characteristics in human cancers, but most of them are aimed at identifying irlncRNA characteristics in specific cancer. Here, we proposed a new method, ImReLnc, to recognize irlncRNA characteristics for 33 human cancers and predict the pathogenicity levels of these irlncRNAs across cancer types. We first calculated the heuristic correlation coefficient between lncRNAs and mRNAs for immune-related enrichment analysis. Especially, we analyzed the relationship between lncRNAs and 17 immune-related pathways in 33 cancers to recognize the irlncRNA characteristics of each cancer. Then, we calculated the Pscore of the irlncRNA characteristics to evaluate their pathogenicity levels. The results showed that highly pathogenic irlncRNAs appeared in a higher proportion of known disease databases and had a significant prognostic effect on cancer. In addition, it was found that the expression of irlncRNAs in immune cells was higher than that of non-irlncRNAs, and the proportion of irlncRNAs related to the levels of immune infiltration was much higher than that of non-irlncRNAs. Overall, ImReLnc accurately identified the irlncRNA characteristics in multiple cancers based on the heuristic correlation coefficient. More importantly, ImReLnc effectively evaluated the pathogenicity levels of irlncRNAs across cancer types. ImReLnc is freely available at https://github.com/meihonggao/ImReLnc.
Collapse
Affiliation(s)
- Meihong Gao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Shuhui Liu
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qi
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinpeng Guo
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
81
|
Karami Fath M, Azargoonjahromi A, Jafari N, Mehdi M, Alavi F, Daraei M, Mohammadkhani N, Mueller AL, Brockmueller A, Shakibaei M, Payandeh Z. Exosome application in tumorigenesis: diagnosis and treatment of melanoma. Med Oncol 2022; 39:19. [PMID: 34982284 DOI: 10.1007/s12032-021-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive of skin cancer derived from genetic mutations in the melanocytes. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. However, the efficiency of these strategies may be decreased due to the development of diverse resistance mechanisms. Here, it has been proven that therapeutic monoclonal antibodies (mAbs) can improve the efficiency of melanoma therapies and also, cancer vaccines are another approach for the treatment of melanoma that has already improved clinical outcomes in these patients. The use of antibodies and gene vaccines provides a new perspective in melanoma treatment. Since the tumor microenvironment is another important factor for cancer progression and metastasis, in recent times, a mechanism has been identified to provide an opportunity for melanoma cells to communicate with remote cells. This mechanism is involved by a novel molecular structure, named extracellular vesicles (EVs). Depending on the functional status of origin cells, exosomes contain various cargos and different compositions. In this review, we presented recent progress of exosome applications in the treatment of melanoma. Different aspects of exosome therapy and ongoing efforts in this field will be discussed too.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mehdi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Daraei
- Pharmacy School, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
82
|
Jokela TA, Todhunter ME, LaBarge MA. High-Throughput Microenvironment Microarray (MEMA) High-Resolution Imaging. Methods Mol Biol 2022; 2394:47-64. [PMID: 35094321 DOI: 10.1007/978-1-0716-1811-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction between cells and their surrounding microenvironment has a crucial role in determining cell fate. In many pathological conditions, the microenvironment drives disease progression as well as therapeutic resistance. A number of challenges arise for researchers examining these cell-microenvironment interactions: (1) Tissue microenvironments are combinatorial and dynamic systems, and in pathological situations like cancer, microenvironments become infamously chaotic and highly heterogeneous. (2) Cells exhibit heterogeneous phenotypes, and even rare cell subpopulations can have a substantial role in tissue homeostasis and disease progression. This chapter discusses technical aspects relevant to dissecting cell-microenvironment interaction using the Microenvironment Microarray (MEMA) platform, which is a cell-based functional high-throughput screening of interactions between cells and combinatorial microenvironments at the single-cell level. MEMA provides insights into how cell phenotype and function is elicited by microenvironmental components. In this chapter, we describe automating a high-throughput and high-resolution imaging pipeline for single-cell-resolution analysis.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| | - Michael E Todhunter
- Department of Population Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
83
|
Hsiao Y, Chi J, Li C, Chen L, Chen Y, Liang H, Lo Y, Hong J, Chuu C, Hung L, Du J, Chang W, Wang J. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med 2022; 12:e724. [PMID: 35090088 PMCID: PMC8797470 DOI: 10.1002/ctm2.724] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the heterogeneity and high frequency of genome mutations in cancer cells, targeting vital protumour factors found in stromal cells in the tumour microenvironment may represent an ideal strategy in cancer therapy. However, the regulation and mechanisms of potential targetable therapeutic candidates need to be investigated. An in vivo study demonstrated that loss of pentraxin 3 (PTX3) in stromal cells significantly decreased the metastasis and growth of cancer cells. Clinically, our results indicate that stromal PTX3 expression correlates with adverse prognostic features and is associated with worse survival outcomes in triple-negative breast cancer (TNBC). We also found that transforming growth factor beta 1 (TGF-β1) induces PTX3 expression by activating the transcription factor CCAAT/enhancer binding protein delta (CEBPD) in stromal fibroblasts. Following PTX3 stimulation, CD44, a PTX3 receptor, activates the downstream ERK1/2, AKT and NF-κB pathways to specifically contribute to the metastasis/invasion and stemness of TNBC MDA-MB-231 cells. Two types of PTX3 inhibitors were developed to disrupt the PTX3/CD44 interaction and they showed a significant effect on attenuating growth and restricting the metastasis/invasion of MDA-MB-231 cells, suggesting that targeting the PTX3/CD44 interaction could be a new strategy for future TNBC therapies.
Collapse
Affiliation(s)
- Yu‐Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jhih‐Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Chien‐Feng Li
- Department of PathologyChi‐Mei Medical CenterTainanTaiwan R. O. C.
| | - Lei‐Yi Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Yi‐Ting Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Hsin‐Yin Liang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Yu‐Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jhen‐Yi Hong
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Chin‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoli CountyTaiwan R. O. C.
| | - Liang‐Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jyun‐Yi Du
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Wen‐Chang Chang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan R. O. C.
| | - Ju‐Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan R. O. C.
- International Research Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Department of Physiology, College of MedicineNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan R. O. C.
| |
Collapse
|
84
|
Yoo K, Kang J, Choi M, Suh Y, Zhao Y, Kim M, Chang JH, Shim J, Yoon S, Kang S, Lee S. Soluble ICAM-1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102768. [PMID: 34813169 PMCID: PMC8805565 DOI: 10.1002/advs.202102768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Ki‐Chun Yoo
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
- Department of Lymphoma and MyelomaDivision of Cancer MedicineCenter for Cancer Immunology ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jae‐Hyeok Kang
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Mi‐Young Choi
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yongjoon Suh
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yi Zhao
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Min‐Jung Kim
- Laboratory of Radiation Exposure & TherapeuticsNational Radiation Emergency Medical CenterKorea Institute of Radiological and Medical SciencesSeoul01812Korea
| | - Jong Hee Chang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Jin‐Kyoung Shim
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seok‐Gu Kang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Su‐Jae Lee
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| |
Collapse
|
85
|
Duitama M, Moreno Y, Santander SP, Casas Z, Sutachan JJ, Torres YP, Albarracín SL. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021; 12:1. [PMID: 35053150 PMCID: PMC8774023 DOI: 10.3390/biom12010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.
Collapse
Affiliation(s)
- Milena Duitama
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yurany Moreno
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Sandra Paola Santander
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111111, Colombia;
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| |
Collapse
|
86
|
D’Aloia A, Arrigoni E, Costa B, Berruti G, Martegani E, Sacco E, Ceriani M. RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment. Cancers (Basel) 2021; 13:cancers13246330. [PMID: 34944949 PMCID: PMC8699646 DOI: 10.3390/cancers13246330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Cell-to-cell communication in the tumor microenvironment is a crucial process to orchestrate the different components of the tumoral infrastructure. Among the mechanisms of cellular interplay in cancer cells, tunneling nanotubes (TNTs) are dynamic connections that play an important role. The mechanism of the formation of TNTs among cells and the molecules involved in the process remain to be elucidated. In this study, we analyze several bladder cancer cell lines, representative of tumors at different stages and grades. We demonstrate that TNTs are formed only by mid or high-stage cell lines that show muscle-invasive properties and that they actively transport mitochondria and proteins. The formation of TNTs is triggered by stressful conditions and starts with the assembly of a specific multimolecular complex. In this study, we characterize some of the protein components of the TNTs complex, as they are potential novel molecular targets for future therapies aimed at counteracting tumor progression. Abstract RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor for RalA GTPase that is involved in several cellular processes, including cytoskeletal organization. Previously, we demonstrated that RalGPS2 also plays a role in the formation of tunneling nanotubes (TNTs) in bladder cancer 5637 cells. In particular, TNTs are a novel mechanism of cell–cell communication in the tumor microenvironment, playing a central role in cancer progression and metastasis formation. However, the molecular mechanisms involved in TNTs formation still need to be fully elucidated. Here we demonstrate that mid and high-stage bladder cancer cell lines have functional TNTs, which can transfer mitochondria. Moreover, using confocal fluorescence time-lapse microscopy, we show in 5637 cells that TNTs mediate the trafficking of RalA protein and transmembrane MHC class III protein leukocyte-specific transcript 1 (LST1). Furthermore, we show that RalGPS2 is essential for nanotubes generation, and stress conditions boost its expression both in 5637 and HEK293 cell lines. Finally, we prove that RalGPS2 interacts with Akt and PDK1, in addition to LST1 and RalA, leading to the formation of a complex that promotes nanotubes formation. In conclusion, our findings suggest that in the tumor microenvironment, RalGPS2 orchestrates the assembly of multimolecular complexes that drive the formation of TNTs.
Collapse
Affiliation(s)
- Alessia D’Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Edoardo Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Barbara Costa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Giovanna Berruti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Correspondence: ; Tel.: +39-0264483544
| |
Collapse
|
87
|
Tang R, Dang M, Zhang X, Tao J, Shi W, Lu W, Yu R, Su X, Tang Y, Teng Z. Disrupting stromal barriers to enhance photothermal-chemo therapy using a halofuginone-loaded Janus mesoporous nanoplatform. J Colloid Interface Sci 2021; 610:313-320. [PMID: 34923269 DOI: 10.1016/j.jcis.2021.11.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
Dense tumor stroma is the physiological barrier in drug delivery that prevents anticancer drugs from entering the tumor, thereby seriously limiting the drugs' therapeutic effect. In this study, a Janus nanoplatform consisting of periodic mesoporous organosilica-coated platinum nanoplatforms (JPMO-Pt) and anti-stroma drug halofuginone (HF) (denoted as JPMO-Pt-HF), was developed to deplete the tumor stroma and synergistically treat breast cancer in BALB/c mice. The prepared JPMO-Pt had a uniform size of 245 nm, a good dispersion, an excellent in vitro and in vivo biocompatibility, and a high loading capacity for HF (up to 50 μg/mg). The antitumor experiments showed that the survival rate of 4 T1 cells exhibited an obvious downward trend when the cells were incubated with the JPMO-Pt-HF and irradiated with 808 nm laser. Moreover, the cell survival rate was only about 10% at 48 h when the HF concentration was 2.0 μg/mL. Notably, JPMO-Pt-HF under irradiation had an excellent synergistic therapeutic effect on tumor cells. In vivo antitumor experiment further showed that the JPMO-Pt-HF, in combination with laser irradiation, could minimize tumor growth, showing significantly better effects than those observed for the case of monotherapy involving photothermal therapy (PTT) (152 vs. 670 mm3, p < 0.0001) and HF (152 vs. 419 mm3, p = 0.0208). In addition, immunohistochemistry of tumor tissues indicated that JPMO-Pt-HF obviously reduced the relative collagen and α-smooth muscle actin (α-SMA) area fraction. Taken together, this research designs a new platform that not only possesses the ability to degrade the tumor matrix but also combines PTT and chemotherapeutic effects, and holds promise for effective tumor treatment.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Xiaojun Zhang
- Department of Medical Imaging, Children's hospital of Nanjing Medical University, 210008 Jiangsu, PR China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Wenhui Shi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Ruifa Yu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, PR China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
88
|
Lee J, Ung A, Kim H, Lee K, Cho HJ, Bandaru P, Ahadian S, Dokmeci MR, Khademhosseini A. Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication 2021; 14. [PMID: 34740205 DOI: 10.1088/1758-5090/ac36de] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs' role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.
Collapse
Affiliation(s)
- Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Aly Ung
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hanjun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
89
|
Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW, Lee DS. Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med 2021; 176:322-334. [PMID: 34637923 DOI: 10.1016/j.freeradbiomed.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Strategies for cancer treatment have traditionally focused on suppressing cancer cell behavior, but many recent studies have demonstrated that regulating the tumor microenvironment (TME) can also inhibit disease progression. Macrophages are major TME components, and the direction of phenotype polarization is known to regulate tumor behavior, with M2-like polarization promoting progression. It is also known that reactive oxygen species (ROS) in macrophages drive M2 polarization, and M2 polarization promote lung cancer progression. Lung cancer patients with lower expression of the antioxidant enzyme peroxiredoxin 5 (Prx5) demonstrate poorer survival. This study revealed that Prx5 deficiency in macrophages induced M2 macrophage polarization by lung cancer. We report that injection of lung cancer cells produced larger tumors in Prx5-deficit mice than wild-type mice independent of cancer cell Prx5 expression. Through co-culture with lung cancer cell lines, Prx5-deficient macrophages exhibited M2 polarization, and reduced expression levels of the M1-associated inflammatory factors iNOS, TNFα, and Il-1β. Moreover, these Prx5-deficient macrophages promoted the proliferation and migration of co-cultured lung cancer cells. Conversely, suppression of ROS generation by N-acetyl cysteine (NAC) inhibited the M2-like polarization of Prx5-deficient macrophages, increased expression levels of inflammatory factors, inhibited the proliferation and migration of co-cultured lung cancer cells, and suppressed tumor growth in mice. These findings suggest that blocking the M2 polarization of macrophages may promote lung cancer regression.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
90
|
Vigier M, Vigier B, Andritsch E, Schwerdtfeger AR. Cancer classification using machine learning and HRV analysis: preliminary evidence from a pilot study. Sci Rep 2021; 11:22292. [PMID: 34785733 PMCID: PMC8595703 DOI: 10.1038/s41598-021-01779-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Most cancer patients exhibit autonomic dysfunction with attenuated heart rate variability (HRV) levels compared to healthy controls. This research aimed to create and evaluate a machine learning (ML) model enabling discrimination between cancer patients and healthy controls based on 5-min-ECG recordings. We selected 12 HRV features based on previous research and compared the results between cancer patients and healthy individuals using Wilcoxon sum-rank test. Recursive Feature Elimination (RFE) identified the top five features, averaged over 5 min and employed them as input to three different ML. Next, we created an ensemble model based on a stacking method that aggregated the predictions from all three base classifiers. All HRV features were significantly different between the two groups. SDNN, RMSSD, pNN50%, HRV triangular index, and SD1 were selected by RFE and used as an input to three different ML. All three base-classifiers performed above chance level, RF being the most efficient with a testing accuracy of 83%. The ensemble model showed a classification accuracy of 86% and an AUC of 0.95. The results obtained by ML algorithms suggest HRV parameters could be a reliable input for differentiating between cancer patients and healthy controls. Results should be interpreted in light of some limitations that call for replication studies with larger sample sizes.
Collapse
Affiliation(s)
- Marta Vigier
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Institute of Psychology, University of Graz, Graz, Austria.
| | | | - Elisabeth Andritsch
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | | |
Collapse
|
91
|
Wang Z, Zhang M, Wu Y, Yu Y, Zheng Q, Li J. CKS2 Overexpression Correlates with Prognosis and Immune Cell Infiltration in Lung Adenocarcinoma: A Comprehensive Study based on Bioinformatics and Experiments. J Cancer 2021; 12:6964-6978. [PMID: 34729099 PMCID: PMC8558665 DOI: 10.7150/jca.63625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Cyclin-dependent kinase regulatory subunit 2 (CKS2) plays a vital role in regulation of the cell cycle and cancer progression. However, the role of CKS2 in lung adenocarcinoma (LUAD) remains unkonwn. Here, we examined the prognostic value and biological functions of CKS2 in LUAD by using omics data of 1,235 LUAD samples from TCGA, GEO, and our own cohort as well as data of in vitro experiments. Methods: Kaplan-Meier was conducted to evaluate the prognostic value of CKS2 expression. The association between CKS2 expression level and tumor immune infiltration was explored using the single-sample Gene Set Enrichment Analysis (ssGSEA) and TIMER database. Functional enrichment analyses were performed to annotate the biological functions of CKS2 in LUAD. Furthermore, a series of in vitro experiments and immunohistochemistry were performed for validation. Results: CKS2 overexpression was correlated with the advanced stage, TP53 status, PD-L1 expression, and DNA hypomethylation. Moreover, patients with LUAD and high CKS2 expression exhibited poor overall survival. Functional enrichment analysis indicated that CKS2 was involved in cell division, cell cycle, DNA replication. Experiments in vitro indicated that CKS2 knockdown decreased the invasion and proliferation of LUAD cells and facilitated their apoptosis. ssGSEA and TIMER analysis revealed a negative correlation between CKS2 expression and the immune cell infiltration. Conclusions: In summary, High CKS2 expression was associated with poor prognosis and low levels of infiltrating immune cells in LUAD as well as with malignant phenotypes. Therefore, CKS2 may be a promising prognostic biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Zhiping Wang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Mengyan Zhang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yahua Wu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yilin Yu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Qunhao Zheng
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jiancheng Li
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
92
|
Porcheri C, Mitsiadis TA. New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215515. [PMID: 34771677 PMCID: PMC8583200 DOI: 10.3390/cancers13215515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of cancer with a lethal outcome in half of the diagnosed cases. Mostly, HNSCC develops in the oral cavity, and its development is associated with tobacco and areca nut/betel quid usage, alcohol consumption, and HPV infection. Oral squamous cell carcinoma, as other head and neck cancers, presents a high degree of intratumor heterogeneity, which makes their treatment difficult, and directly correlates with drug resistance. Since the classical treatments for HNSCC oftentimes do not resolve the clinical picture, there is great need for novel therapeutic approaches, models for drug testing, and new drug delivery systems.
Collapse
|
93
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
94
|
Molecular classification of hepatocellular carcinoma: prognostic importance and clinical applications. J Cancer Res Clin Oncol 2021; 148:15-29. [PMID: 34623518 DOI: 10.1007/s00432-021-03826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy with a very low overall and long-term survival rate. Poor prognostic outcomes are predominantly associated with HCC due to a huge landscape of heterogeneity found in the deadliest disease. However, molecular subtyping of HCC has significantly improved the knowledge of the underlying mechanisms that contribute towards the heterogeneity and progression of the disease. In this review, we have extensively summarized the current information available about molecular classification of HCC. This review can be of great significance for providing the insight information needed for development of novel, efficient and personalized therapeutic options for the treatment of HCC patients globally.
Collapse
|
95
|
Leong TKM, Lo WS, Lee WEZ, Tan B, Lee XZ, Lee LWJN, Lee JYJ, Suresh N, Loo LH, Szu E, Yeong J. Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Adv Drug Deliv Rev 2021; 177:113959. [PMID: 34481035 DOI: 10.1016/j.addr.2021.113959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the leading cause of death worldwide. Unfortunately, efforts to understand this disease are confounded by the complex, heterogenous tumor microenvironment (TME). Better understanding of the TME could lead to novel diagnostic, prognostic, and therapeutic discoveries. One way to achieve this involves in vitro tumor models that recapitulate the in vivo TME composition and spatial arrangement. Here, we review the potential of harnessing in vitro tumor models and artificial intelligence to delineate the TME. This includes (i) identification of novel features, (ii) investigation of higher-order relationships, and (iii) analysis and interpretation of multiomics data in a (iv) holistic, objective, reproducible, and efficient manner, which surpasses previous methods of TME analysis. We also discuss limitations of this approach, namely inadequate datasets, indeterminate biological correlations, ethical concerns, and logistical constraints; finally, we speculate on future avenues of research that could overcome these limitations, ultimately translating to improved clinical outcomes.
Collapse
|
96
|
Saponaro C, Scarpi E, Sonnessa M, Cioffi A, Buccino F, Giotta F, Pastena MI, Zito FA, Mangia A. Prognostic Value of NLRP3 Inflammasome and TLR4 Expression in Breast Cancer Patients. Front Oncol 2021; 11:705331. [PMID: 34540671 PMCID: PMC8443770 DOI: 10.3389/fonc.2021.705331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 01/13/2023] Open
Abstract
Inflammasome complexes play a pivotal role in different cancer types. NOD-like receptor protein 3 (NLRP3) inflammasome is one of the most well-studied inflammasomes. Activation of the NLRP3 inflammasome induces abnormal secretion of soluble cytokines, generating advantageous inflammatory surroundings that support tumor growth. The expression levels of the NLRP3, PYCARD and TLR4 were determined by immunohistochemistry in a cohort of primary invasive breast carcinomas (BCs). We observed different NLRP3 and PYCARD expressions in non-tumor vs tumor areas (p<0.0001). All the proteins were associated to more aggressive clinicopathological characteristics (tumor size, grade, tumor proliferative activity etc.). Univariate analyses were carried out and related Kaplan-Meier curves plotted for NLRP3, PYCARD and TLR4 expression. Patients with higher NLRP3 and TLR4 expression had worse 5-year disease-free survival (DFS) compared to patients with lower NLRP3 and TLR4 expression (p =0.021 and p = 0.009, respectively). In multivariate analysis, TLR4 was confirmed as independent prognostic factors for DFS (HR = 2.03, 95% CI 1.16–3.57, p = 0.014), and high NLRP3 expression showed a slight association with DFS (HR = 1.75, 95% CI 0.98–3.15, p = 0.06). In conclusion, we showed TLR4 expression as independent prognostic factors and we highlighted for the first time that high expression of NLRP3 is linked to a poor prognosis in BC patients. These results suggest that NLRP3 and TLR4 could be two new good prognostic factor for BC patients.
Collapse
Affiliation(s)
- Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Antonella Cioffi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesca Buccino
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Maria Irene Pastena
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
97
|
Wang Y, Zhou N, Zhu R, Li X, Sun Z, Gao Y, Liu W, Meng C, Ge Y, Bai C, Li T, Liu H. Circulating activated immune cells as a potential blood biomarkers of non-small cell lung cancer occurrence and progression. BMC Pulm Med 2021; 21:282. [PMID: 34488711 PMCID: PMC8420051 DOI: 10.1186/s12890-021-01636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Treatment for non-small cell lung cancer (NSCLC) has greatly improved in recent years. However, noninvasive early screening for carcinogenesis and progression unclear. The aim of this study was to explore the predictive value of peripheral blood immune cells in untreated NSCLC patients. METHODS We retrospectively enrolled 305 untreated NSCLC patients and 132 healthy participants from February 2016 to August 2019 in Peking Union Medical College Hospital. Immune cell levels were determined by flow cytometry and routine blood tests. RESULTS NSCLC patients had lower levels of T lymphocytes, NK cells, CD8+ T cells, naïve CD4+/CD4+, naïve CD4+ T cells and higher levels of CD4+ T cells, memory CD4+/CD4+ T cells, memory CD4+ T cells, CD4+CD28+/CD4+ T cells, CD4+CD28+ T cells, CD8+CD28+/CD8+ T cells, CD8+HLA-DR+/CD8+ T cells, CD8+HLA-DR+ T cells T cells, CD8+CD38+/CD8+ T cells, CD8+CD38+ T cells and CD4+/CD8+ T cells than those in controls. The percentages of specific lymphocyte subtypes were significantly different in cancer patients versus healthy individuals. For instance, cancer patients had lower levels of B cells, CD4+ T cells, naïve CD4+/CD4+ T cells, naïve CD4+ T cells, CD4+CD28+ T cells, CD8+CD28+ T cells and higher levels of NK cells, white blood cells (WBC), monocytes, neutrophils, eosinophils, basophils, monocytes to lymphocyte ratio (MLR), neutrophils to lymphocyte ratio (NLR), eosinophil to lymphocyte ratio (ELR), basophil to lymphocyte ratio (BLR), and blood platelet to lymphocyte ratio (PLR). CONCLUSIONS Abnormal T cell levels can be used as an independent predictive biomarker for noninvasive early screening in NSCLC occurrence and progression.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhu
- Department of Medical Record, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Intervention Group of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changting Meng
- Institute for Systems Biology, Seattle University, Seattle, WA, 98109, USA
| | - Yuping Ge
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
98
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
99
|
Ohya S, Kajikuri J, Endo K, Kito H, Elboray EE, Suzuki T. Ca 2+ -activated K + channel K Ca 1.1 as a therapeutic target to overcome chemoresistance in three-dimensional sarcoma spheroid models. Cancer Sci 2021; 112:3769-3783. [PMID: 34181803 PMCID: PMC8409426 DOI: 10.1111/cas.15046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The large‐conductance Ca2+‐activated K+ channel KCa1.1 plays a pivotal role in tumor development and progression in several solid cancers. The three‐dimensional (3D) in vitro cell culture system is a powerful tool for cancer spheroid formation, and mimics in vivo solid tumor resistance to chemotherapy in the tumor microenvironment (TME). KCa1.1 is functionally expressed in osteosarcoma and chondrosarcoma cell lines. KCa1.1 activator‐induced hyperpolarizing responses were significantly larger in human osteosarcoma MG‐63 cells isolated from 3D spheroid models compared with in those from adherent 2D monolayer cells. The present study investigated the mechanisms underlying the upregulation of KCa1.1 and its role in chemoresistance using a 3D spheroid model. KCa1.1 protein expression levels were significantly elevated in the lipid‐raft‐enriched compartments of MG‐63 spheroids without changes in its transcriptional level. 3D spheroid formation downregulated the expression of the ubiquitin E3 ligase FBXW7, which is an essential contributor to KCa1.1 protein degradation in breast cancer. The siRNA‐mediated inhibition of FBXW7 in MG‐63 cells from 2D monolayers upregulated KCa1.1 protein expression. Furthermore, a treatment with a potent and selective KCa1.1 inhibitor overcame the chemoresistance of the MG‐63 and human chondrosarcoma SW‐1353 spheroid models to paclitaxel, doxorubicin, and cisplatin. Among several multidrug resistance ATP‐binding cassette transporters, the expression of the multidrug resistance‐associated protein MRP1 was upregulated in both spheroids and restored by the inhibition of KCa1.1. Therefore, the pharmacological inhibition of KCa1.1 may be an attractive new strategy for acquiring resistance to chemotherapeutic drugs in the TME of KCa1.1‐positive sarcomas.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Elghareeb E Elboray
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Faculty of Science, South Valley University, Qena, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
100
|
Morimoto-Kamata R, Tsuji D, Yui S. Cathepsin G-Induced Insulin-Like Growth Factor (IGF) Elevation in MCF-7 Medium Is Caused by Proteolysis of IGF Binding Protein (IGFBP)-2 but Not of IGF-1. Biol Pharm Bull 2021; 43:1678-1686. [PMID: 33132312 DOI: 10.1248/bpb.b20-00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin G (CG), a neutrophil serine protease, induces cell migration and multicellular aggregation of human breast cancer MCF-7 cells. It has been suggested that tumor cell aggregates are associated with tumor embolism, thus CG-induced cell aggregation may promote tumor metastasis. We have revealed that cell aggregation is caused by elevated free insulin-like growth factor (IGF)-1 in the medium, followed by activation of IGF-1 receptor (IGF-1R). However, the molecular mechanism underlying IGF-1 elevation induced by CG remains unclear. Here, we aimed to elucidate the mechanism by examining the degradative effects of CG on IGF-1, and the IGF binding proteins (IGFBPs), which interfere with the binding of IGF-1 to its receptor. CG specifically evoked MCF-7 cell aggregation at less than 1 nM in a dose-dependent manner, however, neutrophil elastase (NE), chymotrypsin, and trypsin did not. Free IGF-1 concentration was continuously elevated in the medium of cells treated with CG, whereas treatments with other serine proteases resulted in only a transient or slight increase. IGFBP-2, the predominant IGFBP in MCF-7 cells, was gradually digested by CG. CG did not cleave IGF-1 for at least 48 h, whereas other proteases completely digested it. Moreover, CG induced continuous phosphorylation of IGF-1R and Akt, whereas NE-induced phosphorylation was transient, possibly due to insulin receptor substrate (IRS)-1 digestion. These results indicated that CG-specific IGF-1 elevation in the medium is caused by digestion of IGFBP-2, not IGF-1. Hence, this study clarifies the molecular mechanism of CG-specific cell aggregation.
Collapse
Affiliation(s)
| | - Daiki Tsuji
- Laboratory of Host Defense, Faculty of Pharma-Science, Teikyo University
| | - Satoru Yui
- Laboratory of Host Defense, Faculty of Pharma-Science, Teikyo University
| |
Collapse
|