51
|
Bernardo ME, Locatelli F. Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation. Methods Mol Biol 2017; 1416:3-20. [PMID: 27236663 DOI: 10.1007/978-1-4939-3584-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and cultured ex vivo for clinical use. Thanks to their secretion of growth factors, immunomodulatory properties and cell-to-cell interactions, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to prevent/treat graft rejection and to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe; moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials. This chapter focuses on recent advances in MSC therapy by reporting on the most important relevant studies in the field of HSCT.
Collapse
Affiliation(s)
- Maria Ester Bernardo
- Dipartimento di Emato-Oncologia e Medicina Trasfusionale, IRCCS Ospedale Pediatrico Bambino Gesù, P.le S. Onofrio, 00165, Rome, Italy.
| | - Franco Locatelli
- Dipartimento di Emato-Oncologia e Medicina Trasfusionale, IRCCS Ospedale Pediatrico Bambino Gesù, P.le S. Onofrio, 00165, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
52
|
Monguió-Tortajada M, Roura S, Gálvez-Montón C, Franquesa M, Bayes-Genis A, Borràs FE. Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo. Front Immunol 2017; 8:1577. [PMID: 29209319 PMCID: PMC5701925 DOI: 10.3389/fimmu.2017.01577] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022] Open
Abstract
The ectoenzymes CD39 and CD73 regulate the purinergic signaling through the hydrolysis of adenosine triphosphate (ATP)/ADP to AMP and to adenosine (Ado), respectively. This shifts the pro-inflammatory milieu induced by extracellular ATP to the anti-inflammatory regulation by Ado. Mesenchymal stem cells (MSCs) have potent immunomodulatory capabilities, including monocyte modulation toward an anti-inflammatory phenotype aiding tissue repair. In vitro, we observed that human cardiac adipose tissue-derived MSCs (cATMSCs) and umbilical cord MSCs similarly polarize monocytes toward a regulatory M2 phenotype, which maintained the expression of CD39 and induced expression of CD73 in a cell contact dependent fashion, correlating with increased functional activity. In addition, the local treatment with porcine cATMSCs using an engineered bioactive graft promoted the in vivo CD73 expression on host monocytes in a swine model of myocardial infarction. Our results suggest the upregulation of ectonucleotidases on MSC-conditioned monocytes as an effective mechanism to amplify the long-lasting immunomodulatory and healing effects of MSCs delivery.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
53
|
Lu LY, Loi F, Nathan K, Lin TH, Pajarinen J, Gibon E, Nabeshima A, Cordova L, Jämsen E, Yao Z, Goodman. SB. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res 2017; 35:2378-2385. [PMID: 28248001 PMCID: PMC5581298 DOI: 10.1002/jor.23553] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
Abstract
Bone fractures are among the most common orthopaedic problems that affect individuals of all ages. Immediately after injury, activated macrophages dynamically contribute to and regulate an acute inflammatory response that involves other cells at the injury site, including mesenchymal stem cells (MSCs). These macrophages and MSCs work in concert to modulate bone healing. In this study, we co-cultured undifferentiated M0, pro-inflammatory M1, and anti-inflammatory M2 macrophages with primary murine MSCs in vitro to determine the cross-talk between polarized macrophages and MSCs and their effects on osteogenesis. After 4 weeks of co-culture, MSCs grown with macrophages, especially M1 macrophages, had enhanced bone mineralization compared to MSCs grown alone. The level of bone formation after 4 weeks of culture was closely associated with prostaglandin E2 (PGE2) secretion early in osteogenesis. Treatment with celecoxib, a cyclooxygenase-2 (COX-2) selective inhibitor, significantly reduced bone mineralization in all co-cultures but most dramatically in the M1-MSC co-culture. We also found that the presence of macrophages reduced the secretion of osteoprotegerin (OPG), the decoy RANKL receptor, suggesting that macrophages may indirectly modulate osteoclast activity in addition to enhancing bone formation. Taken together, these findings suggest that an initial pro-inflammatory phase modulated by M1 macrophages promotes osteogenesis in MSCs via the COX-2-PGE2 pathway. Understanding the complex interactions between macrophages and MSCs provide opportunities to optimize bone healing and other regenerative processes via modulation of the inflammatory response. This study provides one possible biological mechanism for the adverse effects of non-steroidal anti-inflammatory drugs on fracture healing and bone regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2378-2385, 2017.
Collapse
Affiliation(s)
- Laura Y. Lu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Florence Loi
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Tzu-hua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Emmanuel Gibon
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires - UMR CNRS 7052, Faculté de Médecine - Université Paris7, Paris, France
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Luis Cordova
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA,Department of Oral and Maxillofacial Surgery, University of Chile, Santiago, Chile
| | - Eemeli Jämsen
- Department of Medicine, Clinicum, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - Stuart B. Goodman.
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA,Department of Bioengineering, Stanford University, Stanford, CA
| |
Collapse
|
54
|
Roura S, Gálvez-Montón C, Mirabel C, Vives J, Bayes-Genis A. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Res Ther 2017; 8:238. [PMID: 29078809 PMCID: PMC5658929 DOI: 10.1186/s13287-017-0695-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For years, sufficient progress has been made in treating heart failure following myocardial infarction; however, the social and economic burdens and the costs to world health systems remain high. Moreover, treatment advances have not resolved the underlying problem of functional heart tissue loss. In this field of research, for years we have actively explored innovative biotherapies for cardiac repair. Here, we present a general, critical overview of our experience in using mesenchymal stem cells, derived from cardiac adipose tissue and umbilical cord blood, in a variety of cell therapy and tissue engineering approaches. We also include the latest advances and future challenges, including good manufacturing practice and regulatory issues. Finally, we evaluate whether recent approaches hold potential for reliable translation to clinical trials.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain. .,Center of Regenerative Medicine in Barcelona, Barcelona, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. .,ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain.
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Clémentine Mirabel
- Servei de Teràpia Cel∙lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel∙lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Heart Institute, Hospital Universitari Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
55
|
Lee DK, Song SU. Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cell Immunol 2017; 326:68-76. [PMID: 28919171 DOI: 10.1016/j.cellimm.2017.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/27/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
Abstract
In the recent years, many studies have shown that MSCs must be stimulated by pro-inflammatory cytokines or other immune mediators before they can modulate immune cells in inflamed and damaged tissues. MSCs appear to be involved in inducing several regulatory immune cells, such as Tregs, Bregs, and regulatory NK cells. This new immune milieu created by MSCs may establish a tolerogenic environment that leads to an optimal condition for the treatment of immune diseases. The mechanisms of MSC action to treat immune disorders need to be further investigated in more detail. Since there have been some contradictory outcomes of clinical trials, it is necessary to perform large-scale and randomized clinical studies, such as a phase 3 placebo-controlled double-blind study of a third party MSCs to optimize MSC administration and to prove safety and efficacy of MSC treatment. MSCs offer great therapeutic promise, especially for the treatment of difficult-to-treat immune diseases.
Collapse
Affiliation(s)
- Don K Lee
- SCM Lifesciences Co. Ltd., Incheon 22332 Republic of Korea
| | - Sun U Song
- Dept. of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon 22332 Republic of Korea; SCM Lifesciences Co. Ltd., Incheon 22332 Republic of Korea.
| |
Collapse
|
56
|
Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells. Exp Cell Res 2017; 358:369-376. [DOI: 10.1016/j.yexcr.2017.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
|
57
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
58
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
59
|
Li X, Song Y, Liu F, Liu D, Miao H, Ren J, Xu J, Ding L, Hu Y, Wang Z, Hou Y, Zhao G. Long Non-Coding RNA MALAT1 Promotes Proliferation, Angiogenesis, and Immunosuppressive Properties of Mesenchymal Stem Cells by Inducing VEGF and IDO. J Cell Biochem 2017; 118:2780-2791. [PMID: 28176360 DOI: 10.1002/jcb.25927] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) play an important role in regulating angiogenesis and immune balance. The abnormal MSCs in proliferation and function were reported at maternal fetal interface in patients with pre-eclampsia (PE). Long non-coding RNA MALAT1 was known to regulate the function of trophoblast cells. However, it is not clear whether MALAT1 regulates MSCs to be related to PE. In the present study, we found that the expression of MALAT1 was significantly reduced in both umbilical cord tissues and MSCs in patients with severe PE. MALAT1 did not affect the phenotype and differentiation of MSCs. Of note, transfection with MALAT1 plasmid into MSCs drove the cell cycle into G2/M phase and inhibited cell apoptosis. The supernatants from MALAT1-overexpressed MSCs promoted the migration of MSCs, invasion of HTR-8/SVneo and tube formation of HUVEC, while si-MALAT1 had the opposite effects. Moreover, we found that MALAT1-induced VEGF mediated these effects of MALAT1 on MSCs. Furthermore, we found that MALAT1-overexpressed MSCs promoted M2 macrophage polarization and this effect was mediated by MALAT1-induced IDO expression, suggesting that MALAT1 may enhance the immunosuppressive properties of MSCs in vivo. In addition, we also investigated the factors that inhibit MALAT1 expression in PE and found that peroxide was a cause for MALAT1 downregulation. Taken together, our data demonstrate that MALAT1 is an important endogenous regulator in the proliferation, angiogenesis, and immunosuppressive properties of MSCs, suggesting it may be involved in the pathogenesis of PE. J. Cell. Biochem. 118: 2780-2791, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiujun Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingjing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
60
|
Qiu G, Zheng G, Ge M, Huang L, Tong H, Chen P, Lai D, Hu Y, Cheng B, Shu Q, Xu J. Adipose-derived mesenchymal stem cells modulate CD14 ++CD16 + expression on monocytes from sepsis patients in vitro via prostaglandin E2. Stem Cell Res Ther 2017; 8:97. [PMID: 28446249 PMCID: PMC5406890 DOI: 10.1186/s13287-017-0546-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been shown to reduce sepsis-induced inflammation and improve survival in mouse models of sepsis. CD16+ monocytes are proinflammatory and abundant in inflammatory conditions such as sepsis. The primary objective in this exploratory study was to determine the effects of adipose-derived MSCs (ASCs) on three subsets of monocytes from sepsis patients in vitro and to delineate the underlying mechanism. METHODS This is a prospective cohort study of patients admitted to the medical intensive care unit (ICU) at an academic medical center. The levels of CD14++CD16+, CD14+CD16++, and CD14++CD16- monocytes from 23 patients in the early phase of severe sepsis or septic shock as well as 25 healthy volunteers were determined via flow cytometry after coculture with or without ASCs. To determine the molecular mechanisms, the effects of exogenous prostaglandin E2 (PGE2) and the cyclooxygenase-2 (COX-2) inhibitor NS-398 on monocyte phenotypes and cytokine expression were also examined. RESULTS Basal levels of CD14++CD16+ but not CD14+CD16++ monocytes were significantly elevated in severe sepsis and septic shock. A positive linear relationship existed between the levels of CD14++CD16+ monocytes and the Acute Physiology and Chronic Health Evaluation (APACHE) II score as well as Sequential Organ Failure Assessment (SOFA) score. Coculture of ASCs with monocytes from sepsis patients for 24 h significantly reduced CD14++CD16+ expression while increasing the CD14++CD16- phenotype. The coculture also significantly elevated PGE2, COX-2, and prostaglandin E2 receptor (EP)4 levels generated from monocytes. Functionally, ASCs reduced the tumor necrosis factor (TNF)-α and increased the interleukin (IL)-10 secretion in monocytes of septic patients. Furthermore, the effects of ASCs on the CD14++CD16+ phenotype and cytokine expression were mimicked by exogenous PGE2 and abolished by the COX-2 inhibitor NS-398. Additionally, ASCs also modified levels of monocyte phenotypes in a mouse model of sepsis. CONCLUSIONS Levels of CD14++CD16+ monocytes positively correlate with disease severity scores in the early phase of severe sepsis and septic shock. ASCs switch monocytes of sepsis patients from CD14++CD16+ to CD14++CD16- in vitro and modulate the production of inflammatory cytokines. The immunomodulatory effect of ASCs on monocytes is PGE2-dependent. ASCs may exert their therapeutic effect on sepsis via altering monocyte phenotypes and functions.
Collapse
Affiliation(s)
- Guanguan Qiu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Guoping Zheng
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Menghua Ge
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Lanfang Huang
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Haijiang Tong
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Ping Chen
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Dengming Lai
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China
| | - Yaoqin Hu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China
| | - Baoli Cheng
- The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hanghzou, Zhejiang, 310003, China
| | - Qiang Shu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China
| | - Jianguo Xu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China. .,The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hanghzou, Zhejiang, 310003, China.
| |
Collapse
|
61
|
Ali F, Aziz F, Wajid N. Effect of type 2 diabetic serum on the behavior of Wharton's jelly-derived mesenchymal stem cells in vitro. Chronic Dis Transl Med 2017; 3:105-111. [PMID: 29063063 PMCID: PMC5627692 DOI: 10.1016/j.cdtm.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Objective Wharton jelly-derived mesenchymal stem cells (WJMSCs) exhibit multilineage differentiation potential and can be used to treat multiple organs. However, diabetes affects the repair capability of MSCs. The aim of this study was to evaluate the effect of diabetic patient-derived serum on WJMSC behavior. Methods WJMSCs at passage 3 were treated with serum derived from type 2 diabetic patients. WJMSCs were characterized for surface markers expression by using immunocytochemistry technique. The effects on cell viability, proliferation, cell death rate, and vascular endothelial growth factor level were assessed by crystal violet staining, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase assay, and enzyme-linked immuno-sorbent assay, respectively. Oxidative stress was assessed by the estimation of free radical species malondialdehyde (MDA) and enzymes glutathione (GSH), catalase, and superoxide dismutase (SOD). Results WJMSCs isolated in this study were positive for CD29, CD49, CD73, CD90, CD105, and SSEA4 and negative for CD45 and CD34. Under diabetic stress conditions, WJMSCs showed low viability and high lactate dehydrogenase release. A low level of vascular endothelial growth factor was also observed after diabetic serum treatment. Antioxidant level was also lower in diabetic serum-treated WJMSCs compared to in normal serum-treated WJMSCs. Conclusion The results of the present study suggest that pre-treatment of WJMSCs with type 2 diabetic serum decreases the survival of WJMSCs. The findings of this study provide insight into diabetes-induced harmful effects on WJMSCs.
Collapse
Affiliation(s)
- Fatima Ali
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| | - Fehmina Aziz
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| | - Nadia Wajid
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| |
Collapse
|
62
|
Cagliani J, Grande D, Molmenti EP, Miller EJ, Rilo HL. Immunomodulation by Mesenchymal Stromal Cells and Their Clinical Applications. JOURNAL OF STEM CELL AND REGENERATIVE BIOLOGY 2017; 3:10.15436/2471-0598.17.022. [PMID: 29104965 PMCID: PMC5667922 DOI: 10.15436/2471-0598.17.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that can be isolated and expanded from various sources. MSCs modulate the function of immune cells, including T and B lymphocytes, dendritic cells, and natural killer cells. An understanding of the interaction between MSCs and the inflammatory microenvironment will provide critical information in revealing the precise in vivo mechanisms involved in MSCs-mediated therapeutic effects, and for designing more practical protocols for the clinical use of these cells. In this review we describe the current knowledge of the unique biological properties of MSCs, the immunosuppressive effects on immune-competent cells and the paracrine role of soluble factors. A summary of the participation of MSCs in preclinical and clinical studies in treating autoimmune diseases and other diseases is described. We also discuss the current challenges of their use and their potential roles in cell therapies.
Collapse
Affiliation(s)
- Joaquin Cagliani
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health System, Manhasset, NY, USA
| | - Daniel Grande
- The Feinstein Institute for Medical Research, Orthopedic Research Laboratory, Northwell Health System, Manhasset, N Y, USA
| | - Ernesto P Molmenti
- Transplantation of Surgery, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| | - Edmund J. Miller
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
| | - Horacio L.R. Rilo
- Pancreas Disease Center, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
63
|
Callewaert G, Da Cunha MMCM, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017; 14:373-385. [PMID: 28374792 DOI: 10.1038/nrurol.2017.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With advancing population age, pelvic-floor dysfunction (PFD) will affect an increasing number of women. Many of these women wish to maintain active lifestyles, indicating an urgent need for effective strategies to treat or, preferably, prevent the occurrence of PFD. Childbirth and pregnancy have both long been recognized as crucial contributing factors in the pathophysiology of PFD. Vaginal delivery of a child is a serious traumatic event, causing anatomical and functional changes in the pelvic floor. Similar changes to those experienced during childbirth can be found in symptomatic women, often many years after delivery. Thus, women with such PFD symptoms might have incompletely recovered from the trauma caused by vaginal delivery. This hypothesis creates the possibility that preventive measures can be initiated around the time of delivery. Secondary prevention has been shown to be beneficial in patients with many other chronic conditions. The current general consensus is that clinicians should aim to minimize the extent of damage during delivery, and aim to optimize healing processes after delivery, therefore preventing later dysfunction. A substantial amount of research investigating the potential of stem-cell injections as a therapeutic strategy for achieving this purpose is currently ongoing. Data from small animal models have demonstrated positive effects of mesenchymal stem-cell injections on the healing process following simulated vaginal birth injury.
Collapse
Affiliation(s)
- Geertje Callewaert
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | | | - Nikhil Sindhwani
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maurilio Sampaolesi
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maarten Albersen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Urology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
64
|
Ji L, Zhang L, Li Y, Guo L, Cao N, Bai Z, Song Y, Xu Z, Zhang J, Liu C, Ma X. MiR-136 contributes to pre-eclampsia through its effects on apoptosis and angiogenesis of mesenchymal stem cells. Placenta 2017; 50:102-109. [DOI: 10.1016/j.placenta.2017.01.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/22/2022]
|
65
|
Amati E, Sella S, Perbellini O, Alghisi A, Bernardi M, Chieregato K, Lievore C, Peserico D, Rigno M, Zilio A, Ruggeri M, Rodeghiero F, Astori G. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res Ther 2017; 8:14. [PMID: 28115021 PMCID: PMC5260040 DOI: 10.1186/s13287-016-0465-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increasing evidence suggests the safety and efficacy of mesenchymal stromal cells (MSC) as advanced therapy medicinal products because of their immunomodulatory properties and supportive role in hematopoiesis. Although bone marrow remains the most common source for obtaining off-the-shelf MSC, cord blood (CB) represents an alternative source, which can be collected noninvasively and without major ethical concerns. However, the low estimated frequency and inconsistency of successful isolation represent open challenges for the use of CB-derived MSC in clinical trials. This study explores whether CB may represent a suitable source of MSC for clinical use and analyzes several in vitro parameters useful to better define the quality of CB-derived MSC prior to clinical application. METHODS CB units (n = 50) selected according to quality criteria (CB volume ≥ 20 ml, time from collection ≤ 24 h) were cultured using a standardized procedure for CB-MSC generation. MSC were analyzed for their growth potential and secondary colony-forming capacity. Immunophenotype and multilineage differentiation potential of culture-expanded CB-MSC were assessed to verify MSC identity. The immunomodulatory activity at resting conditions and after inflammatory priming (IFN-γ-1b and TNF-α for 48 hours) was explored to assess the in vitro potency of CB-MSC prior to clinical application. Molecular karyotyping was used to assess the genetic stability after prolonged MSC expansion. RESULTS We were able to isolate MSC colonies from 44% of the processed units. Our results do not support a role of CB volume in determining the outcome of the cultures, in terms of both isolation and proliferative capacity of CB-MSC. Particularly, we have confirmed the existence of two different CB-MSC populations named short- and long-living (SL- and LL-) CBMSC, clearly diverging in their growth capacity and secondary colony-forming efficiency. Only LL-CBMSC were able to expand consistently and to survive for longer periods in vitro, while preserving genetic stability. Therefore, they may represent interesting candidates for therapeutic applications. We have also observed that LL-CBMSC were not equally immunosuppressive, particularly after inflammatory priming and despite upregulating priming-inducible markers. CONCLUSIONS This work supports the use of CB as a potential MSC source for clinical applications, remaining more readily available compared to conventional sources. We have provided evidence that not all LL-CBMSC are equally immunosuppressive in an inflammatory environment, suggesting the need to include the assessment of potency among the release criteria for each CB-MSC batch intended for clinical use, at least for the treatment of immune disorders as GvHD.
Collapse
Affiliation(s)
- Eliana Amati
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Omar Perbellini
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | | | - Martina Bernardi
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.,Hematology Project Foundation, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.,Hematology Project Foundation, Vicenza, Italy
| | - Chiara Lievore
- Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Denise Peserico
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Manuela Rigno
- Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Anna Zilio
- Genetics and Molecular Biology, Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Marco Ruggeri
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | | | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.
| |
Collapse
|
66
|
Monguió-Tortajada M, Roura S, Gálvez-Montón C, Pujal JM, Aran G, Sanjurjo L, Franquesa M, Sarrias MR, Bayes-Genis A, Borràs FE. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics 2017; 7:270-284. [PMID: 28042333 PMCID: PMC5197063 DOI: 10.7150/thno.16154] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/18/2016] [Indexed: 12/20/2022] Open
Abstract
Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive effect.
Collapse
|
67
|
Zachar L, Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 2016; 9:231-240. [PMID: 28008279 PMCID: PMC5170601 DOI: 10.2147/jir.s121994] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are considered to be a promising source of cells in regenerative medicine. They have large potential to differentiate into various tissue-specific populations and may be isolated from diverse tissues in desired quantities. As cells of potential autologous origin, they allow recipients to avoid the alloantigen responses. They also have the ability to create immunomodulatory microenvironment, and thus help to minimize organ damage caused by the inflammation and cells activated by the immune system. Our knowledge about the reparative, regenerative, and immunomodulatory properties of MSCs is advancing. At present, there is a very comprehensible idea on how MSCs affect the immune system, particularly in relation to the tissue and organ damage on immunological basis. Hitherto a number of effective mechanisms have been described by which MSCs influence the immune responses. These mechanisms include a secretion of soluble bioactive agents, an induction of regulatory T cells, modulation of tolerogenic dendritic cells, as well as induction of anergy and apoptosis. MSCs are thus able to influence both innate and adaptive immune responses. Soluble factors that are released into local microenvironment with their subsequent paracrine effects are keys to the activation. As a result, activated MSCs contribute to the restoration of damaged tissues or organs through various mechanisms facilitating reparative and regenerative processes as well as through immunomodulation itself and differentiation into the cells of the target tissue.
Collapse
Affiliation(s)
- Lukáš Zachar
- Associated Tissue Bank of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic
| | - Darina Bačenková
- Associated Tissue Bank of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic
| | - Ján Rosocha
- Associated Tissue Bank of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic
| |
Collapse
|
68
|
Girdlestone J. Mesenchymal stromal cells with enhanced therapeutic properties. Immunotherapy 2016; 8:1405-1416. [DOI: 10.2217/imt-2016-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
69
|
Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23:76. [PMID: 27809910 PMCID: PMC5095977 DOI: 10.1186/s12929-016-0289-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are multilineage somatic progenitor/stem cells that have been shown to possess immunomodulatory properties in recent years. Initially met with much skepticism, MSC immunomodulation has now been well reproduced across tissue sources and species to be clinically relevant. This has opened up the use of these versatile cells for application as 3rd party/allogeneic use in cell replacement/tissue regeneration, as well as for immune- and inflammation-mediated disease entities. Most surprisingly, use of MSCs for in immune-/inflammation-mediated diseases appears to yield more efficacy than for regenerative medicine, since engraftment of the exogenous cell does not appear necessary. In this review, we focus on this non-traditional clinical use of a tissue-specific stem cell, and highlight important findings and trends in this exciting area of stem cell therapy.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Chiao-Hsuan Ting
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan
| | - Men-Luh Yen
- Department of Ob/Gyn, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan.,Graduate Institute of Microbiology and Immunology, NDMC, Taipei, Taiwan
| | - Kenneth K Wu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Basic Medical Sciences, China Medical College, Taichung, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.
| |
Collapse
|
70
|
Van Pham P. Stem cell drugs: the next generation of pharmaceutical products. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0047-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
Karaöz E, Çetinalp Demircan P, Erman G, Güngörürler E, Eker Sarıboyacı A. Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal Stem Cells. Turk J Haematol 2016; 34:213-225. [PMID: 27610554 PMCID: PMC5544040 DOI: 10.4274/tjh.2016.0171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: Mesenchymal stem cells (MSCs), which possess immunosuppressive characteristics on induced T-cells, were shown to be applicable in prevention and treatment of graft-versus-host disease. However, knowledge of effective cell sources is still limited. In this study, MSCs from different human tissues, i.e. bone marrow (BM), Wharton’s jelly (WJ), and adipose tissue, were isolated, and the immune suppression of stimulated T cells was analyzed comparatively. Materials and Methods: MSCs were co-cultured with phytohemagglutinin-induced T-cells with co-culture techniques with and without cell-to-cell contact. After co-culture for 24 and 96 h, the proliferation rate of T cells was estimated by carboxyfluorescein succinimidyl ester and apoptosis by annexin V/PI methods. Both T cells and MSCs were analyzed with respect to gene expressions by real-time polymerase chain reaction and their specific protein levels by ELISA. Results: The results showed that all three MSC lines significantly suppressed T-cell proliferation; BM-MSCs were most effective. Similarly, T-cell apoptosis was induced most strongly by BM-MSCs in indirect culture. In T cells, the genes in NFkB and tumor necrosis factor pathways were silenced and the caspase pathway was induced after co-culture. These results were confirmed with the measurement of protein levels, like transforming growth factor β1, IL-6, interferon-γ, interleukin (IL)-2, and tumor necrosis factor-α. Additionally, IL-17A was detected in high levels in WJ-MSC co-cultures. We showed that IL-17A-producing Tregs are the key mediators in the treatment of graft-versus-host disease. Conclusion: BM-MSCs, which have been used in clinical applications for a while, showed the greatest immunosuppressive effect compared to other MSCs. However, a promising cell source could also be WJ, which is also effective in suppression with fewer ethical concerns. We described the molecular mechanism of WJ-MSCs in allogenic transplants for the first time.
Collapse
Affiliation(s)
- Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey
| | | | | | | | | |
Collapse
|
72
|
Zimmermann JA, Hettiaratchi MH, McDevitt TC. Enhanced Immunosuppression of T Cells by Sustained Presentation of Bioactive Interferon-γ Within Three-Dimensional Mesenchymal Stem Cell Constructs. Stem Cells Transl Med 2016; 6:223-237. [PMID: 28170190 PMCID: PMC5442746 DOI: 10.5966/sctm.2016-0044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The immunomodulatory activity of mesenchymal stem/stromal cells (MSCs) to suppress innate and adaptive immune responses offers a potent cell therapy for modulating inflammation and promoting tissue regeneration. However, the inflammatory cytokine milieu plays a critical role in stimulating MSC immunomodulatory activity. In particular, interferon‐γ (IFN‐γ)‐induced expression of indoleamine 2,3‐dioxygenase (IDO) is primarily responsible for MSC suppression of T‐cell proliferation and activation. Although pretreatment with IFN‐γ is commonly used to prime MSCs for immunomodulatory activity prior to transplantation, the transient effects of pretreatment may limit the potential of MSCs to potently modulate immune responses. Therefore, the objective of this study was to investigate whether microparticle‐mediated presentation of bioactive IFN‐γ within three‐dimensional spheroidal MSC aggregates could precisely regulate and induce sustained immunomodulatory activity. Delivery of IFN‐γ via heparin‐microparticles within MSC aggregates induced sustained IDO expression during 1 week of culture, whereas IDO expression by IFN‐γ‐pretreated MSC spheroids rapidly decreased during 2 days. Furthermore, sustained IDO expression induced by IFN‐γ‐loaded microparticles resulted in an increased and sustained suppression of T‐cell activation and proliferation in MSC cocultures with CD3/CD28‐activated peripheral blood mononuclear cells. The increased suppression of T cells by MSC spheroids containing IFN‐γ‐loaded microparticles was dependent on induction of IDO and supported by affecting monocyte secretion from pro‐ to anti‐inflammatory cytokines. Altogether, microparticle delivery of IFN‐γ within MSC spheroids provides a potent means of enhancing and sustaining immunomodulatory activity to control MSC immunomodulation after transplantation and thereby improve the efficacy of MSC‐based therapies aimed at treating inflammatory and immune diseases. Stem Cells Translational Medicine2017;6:223–237
Collapse
Affiliation(s)
- Joshua A. Zimmermann
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Marian H. Hettiaratchi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
73
|
Kim A, Yu HY, Heo J, Song M, Shin JH, Lim J, Yoon SJ, Kim Y, Lee S, Kim SW, Oh W, Choi SJ, Shin DM, Choo MS. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder. Sci Rep 2016; 6:30881. [PMID: 27481042 PMCID: PMC4969614 DOI: 10.1038/srep30881] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022] Open
Abstract
Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10(6)) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy.
Collapse
Affiliation(s)
- Aram Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Miho Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jung-Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Jung Yoon
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - YongHwan Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, 13494, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, 13494, Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| |
Collapse
|
74
|
Zhao G, Miao H, Li X, Chen S, Hu Y, Wang Z, Hou Y. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells. FEBS Lett 2016; 590:1602-13. [PMID: 27149081 DOI: 10.1002/1873-3468.12200] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/15/2023]
Abstract
Abnormal macrophage polarization at the maternal-fetal interface may contribute to the development of Preeclampsia (PE). The reason why macrophage polarization changed in PE is still unclear. Decidual mesenchymal stem cells (dMSCs) could regulate macrophage polarization. However, miRNA in dMSCs of PE were maladjusted. Therefore, we speculated that miRNA may affect dMSC-regulated macrophage polarization. In this study, we found that miR-494-overexpressed dMSCs inhibit M2 macrophage polarization and this inhibitory effect is mediated by miR-494-reduced PGE2 secretion. Furthermore, we proved that miR-494 is induced by TGF-β3. In summary, our findings suggest that the high expression of TGF-β3 in PE decidua stimulates miR-494 in dMSCs and attenuates the regulation of MSC switching the macrophage toward M2 type, contributing to an immune imbalance at maternal-fetal interface.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, China
| | - Xiujun Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China
| | - Shiwen Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
75
|
Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin. Stem Cells Int 2016; 2016:3658798. [PMID: 27239202 PMCID: PMC4863123 DOI: 10.1155/2016/3658798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 01/31/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.
Collapse
|
76
|
Enhancement of the immunoregulatory potency of mesenchymal stromal cells by treatment with immunosuppressive drugs. Cytotherapy 2016; 17:1188-99. [PMID: 26276002 DOI: 10.1016/j.jcyt.2015.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSCs) are distinguished by their ability to differentiate into a number of stromal derivatives of interest for regenerative medicine, but they also have immunoregulatory properties that are being tested in a number of clinical settings. METHODS We show that brief incubations with rapamycin, everolimus, FK506 or cyclosporine A increase the immunosuppressive potency of MSCs and other cell types. RESULTS The treated MSCs are up to 5-fold more potent at inhibiting the induced proliferation of T lymphocytes in vitro. We show that this effect probably is due to adsorption of the drug by the MSCs during pre-treatment, with subsequent diffusion into co-cultures at concentrations sufficient to inhibit T-cell proliferation. MSCs contain measurable amounts of rapamycin after a 15-min exposure, and the potentiating effect is blocked by a neutralizing antibody to the drug. With the use of a pre-clinical model of acute graft-versus-host disease, we demonstrate that a low dose of rapamycin-treated but not untreated umbilical cord-derived MSCs significantly inhibit the onset of disease. CONCLUSIONS The use of treated MSCs may achieve clinical end points not reached with untreated MSCs and allow for infusion of fewer cells to reduce costs and minimize potential side effects.
Collapse
|
77
|
Consentius C, Reinke P, Volk HD. Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 2016; 10:305-15. [PMID: 25933239 DOI: 10.2217/rme.15.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are promising candidates for supporting regeneration and suppressing undesired immune reactivity. Although autologous MSC have been most commonly used for clinical trials, data on application of allogeneic MHC-unmatched MSC were reported. The usage of MSC as an 'off-the-shelf' product would have several advantages; however, it is an immunological challenge. The preclinical studies on the (non)immunogenicity of MSC are contradictory and, unfortunately, solid data from clinical trials are missing. Induction of an alloresponse would be a major limitation for the application of allogeneic MSC. Here we discuss the key elements for the induction of an alloresponse and targets of immunomodulation by MSC as well as preclinical and clinical hints on allo(non)response to MSC.
Collapse
Affiliation(s)
- Christine Consentius
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
78
|
Doi H, Kitajima Y, Luo L, Yan C, Tateishi S, Ono Y, Urata Y, Goto S, Mori R, Masuzaki H, Shimokawa I, Hirano A, Li TS. Potency of umbilical cord blood- and Wharton's jelly-derived mesenchymal stem cells for scarless wound healing. Sci Rep 2016; 6:18844. [PMID: 26728342 PMCID: PMC4700425 DOI: 10.1038/srep18844] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Postnatally, scars occur as a consequence of cutaneous wound healing. Scarless wound healing is highly desired for patients who have undergone surgery or trauma, especially to exposed areas. Based on the properties of mesenchymal stem cells (MSCs) for tissue repair and immunomodulation, we investigated the potential of MSCs for scarless wound healing. MSCs were expanded from umbilical cord blood (UCB-MSCs) and Wharton’s jelly (WJ-MSCs) from healthy donors who underwent elective full-term pregnancy caesarean sections. UCB-MSCs expressed lower levels of the pre-inflammatory cytokines IL1A and IL1B, but higher levels of the extracellular matrix (ECM)-degradation enzymes MMP1 and PLAU compared with WJ-MSCs, suggesting that UCB-MSCs were more likely to favor scarless wound healing. However, we failed to find significant benefits for stem cell therapy in improving wound healing and reducing collagen deposition following the direct injection of 1.0 × 105 UCB-MSCs and WJ-MSCs into 5 mm full-thickness skin defect sites in nude mice. Interestingly, the implantation of UCB-MSCs tended to increase the expression of MMP2 and PLAU, two proteases involved in degradation of the extracellular matrix in the wound tissues. Based on our data, UCB-MSCs are more likely to be a favorable potential stem cell source for scarless wound healing, although a better experimental model is required for confirmation.
Collapse
Affiliation(s)
- Hanako Doi
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuriko Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lan Luo
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chan Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Seiko Tateishi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Akiyoshi Hirano
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
79
|
Pharmacological Inhibition of Gal-3 in Mesenchymal Stem Cells Enhances Their Capacity to Promote Alternative Activation of Macrophages in Dextran Sulphate Sodium-Induced Colitis. Stem Cells Int 2016; 2016:2640746. [PMID: 27057168 PMCID: PMC4736319 DOI: 10.1155/2016/2640746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) reduces the severity of dextran sulphate sodium- (DSS-) induced colitis. MSCs are able to secrete Galectin-3 (Gal-3), a protein known to affect proliferation, adhesion, and migration of immune cells. We investigate whether newly synthetized inhibitor of Gal-3 (Davanat) will affect production of Gal-3 in MSCs and enhance their potential to attenuate DSS-induced colitis. Pharmacological inhibition of Gal-3 in MSCs enhances their capacity to promote alternative activation of peritoneal macrophages in vitro and in vivo. Injection of MSCs cultured in the presence of Davanat increased concentration of IL-10 in sera of DSS-treated animals and markedly enhanced presence of alternatively activated and IL-10 producing macrophages in the colons of DSS-treated mice. Pharmacological inhibition of Gal-3 in MSCs significantly attenuates concentration of Gal-3 in sera of DSS-treated animals, indicating that MSCs produce Gal-3 in this disease. In conclusion, our findings indicate that Davanat could be used for improvement of MSC-mediated polarization towards immunosuppressive M2 phenotype of macrophages.
Collapse
|
80
|
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett 2015; 168:140-6. [DOI: 10.1016/j.imlet.2015.05.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
|
81
|
Wise AF, Williams TM, Rudd S, Wells CA, Kerr PG, Ricardo SD. Human mesenchymal stem cells alter the gene profile of monocytes from patients with Type 2 diabetes and end-stage renal disease. Regen Med 2015; 11:145-58. [PMID: 26544198 DOI: 10.2217/rme.15.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Macrophage infiltration contributes to the pathogenesis of Type 2 diabetes. Mesenchymal stem cells (MSCs) possess immunomodulatory properties, making them an ideal candidate for therapeutic intervention. This study investigated whether MSCs can modulate the phenotype of monocytes isolated from Type 2 diabetic patients with end-stage renal disease. MATERIALS & METHODS Monocytes from control (n = 4) and Type 2 diabetic patients with end-stage renal disease (n = 5) were assessed using flow cytometry and microarray profiling, following 48 h of co-culture with MSCs. RESULTS Control subjects had a greater proportion of CD14(++)CD16(-) monocytes while diabetic patients had a higher proportion of CD14(++)CD16(+) and CD14(+)CD16(++) monocytes. MSCs promoted the proliferation of monocytes isolated from diabetic patients, reduced HLA-DR expression in both groups and promoted the expression of anti-inflammatory genes. CONCLUSION MSC-derived factors alter the polarization of monocytes isolated from healthy and diabetic subjects toward an M2 phenotype.
Collapse
Affiliation(s)
- Andrea F Wise
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Timothy M Williams
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephen Rudd
- Queensland Facility for Advanced Bioinformatics (QFAB), University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Wells
- The Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia.,Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, G12 8TA, UK
| | - Peter G Kerr
- Department of Medicine, Monash Medical Centre, Clayton, Victoria, 3168, Australia
| | - Sharon D Ricardo
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
82
|
Van Pham P, Tran NY, Phan NLC, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2015; 52:218-27. [DOI: 10.1007/s11626-015-9963-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
83
|
Lee MW, Ryu S, Kim DS, Sung KW, Koo HH, Yoo KH. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:179. [PMID: 26445096 PMCID: PMC4596374 DOI: 10.1186/s13287-015-0178-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases because of their immunosuppressive capacities. However, few clinical trials of MSCs have yielded satisfactory results. A number of clinical trials using MSCs are currently in progress worldwide. Unfortunately, protocols and methods, including optimized culture conditions for the harvest of MSCs, have not been standardized. In this regard, complications in the ex vivo expansion of MSCs and MSC heterogeneity have been implicated in the failure of clinical trials. In this review, potential strategies to obtain MSCs with improved immunosuppressive properties and the potential roles of specific immunomodulatory genes, which are differentially upregulated in certain culture conditions, will be discussed.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Somi Ryu
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| |
Collapse
|
84
|
Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett 2015; 168:215-21. [PMID: 26116911 DOI: 10.1016/j.imlet.2015.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.
Collapse
|
85
|
Damien P, Allan DS. Regenerative Therapy and Immune Modulation Using Umbilical Cord Blood-Derived Cells. Biol Blood Marrow Transplant 2015; 21:1545-54. [PMID: 26079441 DOI: 10.1016/j.bbmt.2015.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
Abstract
Since the first cord blood transplantation in 1988, umbilical cord blood has become an important option as a source of cells for hematopoietic transplantation. Beyond its role in regenerating the blood and immune systems to treat blood diseases and inherited metabolic disorders, the role of nonhematopoietic progenitor cells in cord blood has led to new and emerging uses of umbilical cord blood in regenerative therapy and immune modulation. In this review, we provide an update on the clinical and preclinical studies using cord blood-derived cells such as mesenchymal stromal cells, endothelial-like progenitor cells, and others. We also provide insight on the use of cord blood cells as vehicles for the delivery of therapeutic agents through gene therapy and microvesicle-associated strategies. Moreover, cord blood can provide essential reagents for regenerative applications. Clinical activity using cord blood cells is increasing rapidly and this review aims to provide an important update on the tremendous potential within this fast-moving field.
Collapse
Affiliation(s)
- Pauline Damien
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; Regenerative Medicine Program, Ottawa Hospital Research Unit, Ottawa, Ontario, Canada; Department of Medicine (Hematology), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
86
|
Preclinical evaluation of the immunomodulatory properties of cardiac adipose tissue progenitor cells using umbilical cord blood mesenchymal stem cells: a direct comparative study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:439808. [PMID: 25861626 PMCID: PMC4377370 DOI: 10.1155/2015/439808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.
Collapse
|
87
|
Guan LX, Guan H, Li HB, Ren CA, Liu L, Chu JJ, Dai LJ. Therapeutic efficacy of umbilical cord-derived mesenchymal stem cells in patients with type 2 diabetes. Exp Ther Med 2015; 9:1623-1630. [PMID: 26136869 DOI: 10.3892/etm.2015.2339] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by progressive and inexorable β-cell dysfunction, leading to insulin deficiency. Novel strategies to preserve the remaining β-cells and restore β-cell function for the treatment of diabetes are urgently required. Mesenchymal stem cells (MSCs) have been exploited in a variety of clinical trials aimed at reducing the burden of immune-mediated disease. The aim of the present clinical trial was to assess the safety and efficacy of umbilical cord-derived MSC (UCMSC) transplantation for patients with T2D. The safety and efficacy of UCMSC application were evaluated in six patients with T2D during a minimum of a 24-month follow-up period. Following transplantation, the levels of fasting C-peptide, the peak value and the area under the C-peptide release curve increased significantly within one month and remained high during the follow-up period (P<0.05). Three of the six patients became insulin free for varying lengths of time between 25 and 43 months, while the additional three patients continued to require insulin injections, although with a reduced insulin requirement. Fasting plasma glucose and 2-h postprandial blood glucose levels were relatively stable in all the patients following transplantation. There was no immediate or delayed toxicity associated with the cell administration within the follow-up period. Therefore, the results indicated that transplantation of allogeneic UCMSCs may be an approach to improve islet function in patients with T2D. There were no safety issues observed during infusion and the long-term monitoring period.
Collapse
Affiliation(s)
- Li-Xue Guan
- Central Laboratory, Weifang People's Hospital, Weifang Medical College, Weifang, Shandong 261042, P.R. China
| | - Hui Guan
- College of Management, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hai-Bo Li
- Central Laboratory, Weifang People's Hospital, Weifang Medical College, Weifang, Shandong 261042, P.R. China
| | - Cui-Ai Ren
- Department of Hematology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Lin Liu
- Department of Endocrinology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Jin-Jin Chu
- Central Laboratory, Weifang People's Hospital, Weifang Medical College, Weifang, Shandong 261042, P.R. China
| | - Long-Jun Dai
- Central Laboratory, Weifang People's Hospital, Weifang Medical College, Weifang, Shandong 261042, P.R. China ; Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| |
Collapse
|
88
|
Chen S, Zhao G, Miao H, Tang R, Song Y, Hu Y, Wang Z, Hou Y. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett 2015; 589:710-7. [DOI: 10.1016/j.febslet.2015.01.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
|
89
|
Human Menstrual Blood-Derived Stem Cell Transplantation for Acute Hind Limb Ischemia Treatment in Mouse Models. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
90
|
Abstract
In addition to their stem/progenitor properties, mesenchymal stromal cells (MSCs) possess broad immunoregulatory properties that are being investigated for potential clinical application in treating immune-based disorders. An informed view of the scope of this clinical potential will require a clear understanding of the dynamic interplay between MSCs and the innate and adaptive immune systems. In this Review, we outline current insights into the ways in which MSCs sense and control inflammation, highlighting the central role of macrophage polarization. We also draw attention to functional differences seen between vivo and in vitro contexts and between species. Finally, we discuss progress toward clinical application of MSCs, focusing on GvHD as a case study.
Collapse
Affiliation(s)
- Maria Ester Bernardo
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy
| | | |
Collapse
|
91
|
Duffy MM, McNicholas BA, Monaghan DA, Hanley SA, McMahon JM, Pindjakova J, Alagesan S, Fearnhead HO, Griffin MD. Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the related inflammatory response in the kidney. Am J Physiol Renal Physiol 2014; 307:F1412-26. [DOI: 10.1152/ajprenal.00024.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) suppress T helper (Th)17 cell differentiation and are being clinically pursued for conditions associated with aberrant Th17 responses. Whether such immunomodulatory effects are enhanced by coadministration of MSCs with other agents is not well known. In the present study, individual and combined effects of MSCs and the vitamin D receptor (VDR) agonist paricalcitol on Th17 induction were investigated in vitro and in a mouse model of sterile kidney inflammation (unilateral ureteral obstruction). In vitro, MSCs and paricalcitol additively suppressed Th17 differentiation, although only MSCs suppressed expression of Th17-associated transcriptions factors. Combined administration of MSCs and paricalcitol resulted in an early ( day 3) reduction of intrarenal CD4+ and CD8+ T cells, CD11b+/lymphocyte antigen 6G+ neutrophils, and inflammatory (lymphocyte antigen 6Chi) monocytes as well as reduced transcript for IL-17 compared with untreated animals. Later ( day 8), obstructed kidneys of MSC/paricalcitol double-treated mice, but not mice treated with either intervention alone, had reduced tubular injury and interstitial fibrosis as well as lower numbers of neutrophils and inflammatory monocytes and an increase in the ratio between M2 (CD206+) and M1 (CD206−) macrophages compared with control mice. Adjunctive therapy with VDR agonists may enhance the immunosuppressive properties of MSCs in the setting of pathogenic Th17-type immune responses and related inflammatory responses.
Collapse
Affiliation(s)
- Michelle M. Duffy
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - David A. Monaghan
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Shirley A. Hanley
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jill M. McMahon
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Jana Pindjakova
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Howard O. Fearnhead
- National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
92
|
Effect of DiD Carbocyanine Dye Labeling on Immunoregulatory Function and Differentiation of Mice Mesenchymal Stem Cells. Stem Cells Int 2014; 2014:457614. [PMID: 25580134 PMCID: PMC4279147 DOI: 10.1155/2014/457614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/18/2014] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used to treat a variety of degenerative disorders. Labeling of MSCs with an appropriate tracer is vital to demonstrate the in vivo engraftment and differentiation of transplanted MSCs. DiD is a lipophilic fluorescent dye with near infrared emission spectra that makes it suitable for in vivo tracing. Therefore, in the present study the consequences of DiD labeling on induction of oxidative stress and apoptosis as well as inhibition of biological functions of mesenchymal stem cells (MSCs) were investigated. DiD labeling did not provoke the production of ROS, induction of apoptosis, or inhibition of production of immunosuppressive factors (PGE2 and IL-10) by MSCs. In addition, there were no statistical differences between DiD-labeled and unlabeled MSCs in suppression of proliferation and cytokine production (IFN-γ and IL-17) by in vitro stimulated splenocytes or improvement of clinical score in EAE after in vivo administration. In addition, DiD labeling did not alter the differentiation capacity of MSCs. Taken together, DiD can be considered as a safe dye for in vivo tracking of MSCs.
Collapse
|
93
|
|
94
|
Donders R, Vanheusden M, Bogie JFJ, Ravanidis S, Thewissen K, Stinissen P, Gyselaers W, Hendriks JJA, Hellings N. Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis. Cell Transplant 2014; 24:2077-98. [PMID: 25310756 DOI: 10.3727/096368914x685104] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.
Collapse
Affiliation(s)
- Raf Donders
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Li J, McDonald CA, Fahey MC, Jenkin G, Miller SL. Could cord blood cell therapy reduce preterm brain injury? Front Neurol 2014; 5:200. [PMID: 25346720 PMCID: PMC4191167 DOI: 10.3389/fneur.2014.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022] Open
Abstract
Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.
Collapse
Affiliation(s)
- Jingang Li
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia
| | | | - Michael C Fahey
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Paediatrics, Monash University , Clayton, VIC , Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| | - Suzanne L Miller
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| |
Collapse
|
96
|
Cuerquis J, Romieu-Mourez R, François M, Routy JP, Young YK, Zhao J, Eliopoulos N. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation. Cytotherapy 2014; 16:191-202. [PMID: 24438900 DOI: 10.1016/j.jcyt.2013.11.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/12/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. METHODS MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. RESULTS Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. CONCLUSIONS Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo.
Collapse
Affiliation(s)
- Jessica Cuerquis
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Raphaëlle Romieu-Mourez
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Moïra François
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Yoon Kow Young
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada; Department of Surgery, Division of Surgical Research, McGill University, Montreal, Quebec, Canada; Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
97
|
Zhao G, Zhou X, Chen S, Miao H, Fan H, Wang Z, Hu Y, Hou Y. Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia. J Biomed Sci 2014; 21:81. [PMID: 25135655 PMCID: PMC4237795 DOI: 10.1186/s12929-014-0081-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) at maternal-fetal interface are considered to play an important role in the pathogenesis of pre-eclampsia (PE). microRNAs (miRNAs) also have an important influence on differentiation, maturation, and functions of MSCs. Our aim in this study was to determine the differential expression of miRNAs in decidua-derived MSCs (dMSCs) from severe PE and normal pregnancies. RESULTS miRNA expression profiles in dMSCs from five patients with severe PE and five healthy pregnant women were screened using microarray. Then, bioinformatic analysis of the microarray results was performed. Out of 179 differentially expressed miRNAs, 49 miRNAs had significant (p < 0.05) differential expression of ≥ 2.0-fold changes, including 21 up-regulated and 28 down-regulated. miRNA-Gene-network and miRNA-Gene ontology (GO) -network analyses were performed. Overall, 21 up-regulated and 15 down-regulated miRNAs showed high degrees in these analyses. Moreover, the significantly enriched signaling pathways and GOs were identified. The analyses revealed that pathways associated with cell proliferation, angiogenesis, and immune functions were highly regulated by the differentially expressed miRNAs, including Wnt signaling pathway, mitogen-activated protein kinase signaling pathway, transforming growth factor beta signaling pathway, T-cell receptor signaling pathway, and B cell receptor signaling pathway. Four miRNA predicted target genes, vascular endothelial growth factor A (VEGFA), indoleamine 2,3-dioxygenase, suppression of cytokine signaling 3, and serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A) were all decreased in dMSCs from patients with PE. Furthermore, the physiological roles of miR-16 and miR-136 in the down-regulation of VEGFA and PPP2R2A, respectively, were confirmed through reporter assays. CONCLUSIONS These findings suggest that miRNAs in dMSCs may be important regulatory molecules in the development of PE.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Xue Zhou
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Shiwen Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Huishuang Miao
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Hongye Fan
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
98
|
Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediators Inflamm 2014; 2014:565369. [PMID: 25147438 PMCID: PMC4132341 DOI: 10.1155/2014/565369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/12/2014] [Indexed: 12/30/2022] Open
Abstract
The recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) to damaged tissues and sites of inflammation is an essential step for clinical therapy. However, the signals regulating the motility of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is known to have a variety of biological effects on various cells. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in migration of human BMSCs. We found that S1P exerted a powerful migratory action on human BMSCs. Moreover, by employing RNA interference technology and pharmacological tools, we demonstrated that S1PR1 and S1PR3 are responsible for S1P-induced migration of human BMSCs. In contrast, S1PR2 mediates the inhibition of migration. Additionally, we explored the downstream signaling pathway of the S1P/S1PRs axis and found that activation of S1PR1 or S1PR3 increased migration of human BMSCs through a G i /extracellular regulated protein kinases 1/2- (ERK1/2-) dependent pathway, whereas activation of S1PR2 decreased migration through the Rho/Rho-associated protein kinase (ROCK) pathway. In conclusion, we reveal that the S1P/S1PRs signaling axis regulates the migration of human BMSCs via a dual-directional mechanism. Thus, selective modulation of S1PR's activity on human BMSCs may provide an effective approach to immunotherapy or tissue regeneration.
Collapse
|
99
|
Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. Haematologica 2014; 98:e121-2. [PMID: 24006414 DOI: 10.3324/haematol.2013.093864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
100
|
Moon SH, Kim JM, Hong KS, Shin JM, Kim J, Chung HM. Differentiation of hESCs into Mesodermal Subtypes: Vascular-, Hematopoietic- and Mesenchymal-lineage Cells. Int J Stem Cells 2014; 4:24-34. [PMID: 24298331 DOI: 10.15283/ijsc.2011.4.1.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 12/30/2022] Open
Abstract
To date, studies on the application of mesodermally derived mesenchymal-, hematopoietic- and vascular-lineage cells for cell therapy have provided either poor or insufficient data. The results are equivocal with regard to therapeutic efficiency and yield. Since the establishment of human embryonic stem cells (hESCs) in 1998, the capacity of hESCs to differentiate into various mesodermal lineages has sparked considerable interest in the regenerative medicine community, a group interested in generating specialized cells to treat patients suffering from degenerative diseases. Even though hESCs are sensitive, effective methods for guiding the differentiation of hESCs into specific mesodermal cell types are still being developed. In addition, to understand the functional properties of hESC derivatives, numerous animal model studies have been performed by many research groups over the last decade. In this review, we describe and summarize the protocols currently used for differentiation of hESCs into multiple mesodermal lineages and their therapeutic efficiency in different animal models. Furthermore, we discuss the technical hurdles associated with each protocol and the safety of hESC derivatives for therapeutic applications. Technical improvement of the methods used to produce hESC derivatives for therapeutic use in patients with degenerative diseases should remain an objective of future studies, as should the development of effective and stable induction systems.
Collapse
|