51
|
Jhilmeet N, Lowe DM, Riou C, Scriba TJ, Coussens A, Goliath R, Wilkinson RJ, Wilkinson KA. The effect of antiretroviral treatment on selected genes in whole blood from HIV-infected adults sensitised by Mycobacterium tuberculosis. PLoS One 2018; 13:e0209516. [PMID: 30589870 PMCID: PMC6307796 DOI: 10.1371/journal.pone.0209516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
HIV-1 co-infection is a leading cause of susceptibility to tuberculosis (TB), with the risk of TB being increased at all stages of HIV-1 infection. Antiretroviral treatment (ART) is the most effective way to reduce the risk of TB in HIV-1 co-infected people. Studying protective, ART-induced, immune restoration in HIV-1 infected individuals sensitised by Mycobacterium tuberculosis (Mtb) can thus help identify mechanisms of protection against TB. In order to understand ART-mediated prevention of TB in HIV-1 infected adults, we investigated the expression of 30 genes in whole blood from HIV-1 infected patients during the first 6 months of ART-induced immune reconstitution. The 30 selected genes were previously described to be differentially expressed between sorted Mtb specific central and effector memory CD4 T cells. HIV-1 infected persons sensitised by Mtb were recruited in Khayelitsha, South Africa, when initiating ART. RNA was extracted from whole blood at initiation and 1, 3 and 6 months of ART. qRT-PCR was used to determine gene expression and three reference ‘housekeeping’ genes were used to calculate the fold change in the expression of each gene relative to day 0 of ART. Results were assessed longitudinally. We observed a decrease in the expression of a number of genes at 6 months of ART, reflecting a decrease in immune activation. However, following correction for multiple comparisons and increasing CD4 counts, only the decrease in CD27 gene expression remained statistically significant. While not statistically significant, a number of genes also showed increased expression at various timepoints, illustrating the broad regeneration of the T cell pool in HIV-1 infected adults on ART. Our findings generate hypotheses underlying ART- induced protective immune reconstitution and may pave the way for future studies to evaluate ART mediated prevention of TB in HIV-1 infected persons.
Collapse
Affiliation(s)
- Nishtha Jhilmeet
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - David M. Lowe
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anna Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Katalin Andrea Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Thakur A, Rodríguez-Rodríguez C, Saatchi K, Rose F, Esposito T, Nosrati Z, Andersen P, Christensen D, Häfeli UO, Foged C. Dual-Isotope SPECT/CT Imaging of the Tuberculosis Subunit Vaccine H56/CAF01: Induction of Strong Systemic and Mucosal IgA and T-Cell Responses in Mice Upon Subcutaneous Prime and Intrapulmonary Boost Immunization. Front Immunol 2018; 9:2825. [PMID: 30555488 PMCID: PMC6284049 DOI: 10.3389/fimmu.2018.02825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains a global pandemic, despite the widespread use of the parenteral live attenuated Bacillus Calmette–Guérin (BCG) vaccine during the past decades. Mucosal administration of next generation TB vaccines has great potential, but developing a safe and efficacious mucosal vaccine is challenging. Hence, understanding the in vivo biodistribution and pharmacokinetics of mucosal vaccines is essential for shaping the desired immune response and for optimal spatiotemporal targeting of the appropriate effector cells in the lungs. A subunit vaccine consisting of the fusion antigen H56 (Ag85B-ESAT-6-Rv2660) and the liposome-based cationic adjuvant formulation (CAF01) confers efficient protection in preclinical animal models. In this study, we devise a novel immunization strategy for the H56/CAF01 vaccine, which comply with the intrapulmonary (i.pulmon.) route of immunization. We also describe a novel dual-isotope (111In/67Ga) radiolabeling approach, which enables simultaneous non-invasive and longitudinal SPECT/CT imaging and quantification of H56 and CAF01 upon parenteral prime and/or i.pulmon. boost immunization. Our results demonstrate that the vaccine is distributed evenly in the lungs, and there are pronounced differences in the pharmacokinetics of H56 and CAF01. We provide convincing evidence that the H56/CAF01 vaccine is not only well-tolerated when administered to the respiratory tract, but it also induces strong lung mucosal and systemic IgA and polyfunctional Th1 and Th17 responses after parenteral prime and i.pulmon. boost immunization. The study furthermore evaluate the application of SPECT/CT imaging for the investigation of vaccine biodistribution after parenteral and i.pulmon. immunization of mice.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Fabrice Rose
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tullio Esposito
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
|
54
|
Kim WS, Kim JS, Kim HM, Kwon KW, Eum SY, Shin SJ. Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis. Sci Rep 2018; 8:14411. [PMID: 30258084 PMCID: PMC6158166 DOI: 10.1038/s41598-018-32799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Antigens (Ags) in Mycobacterium tuberculosis (Mtb) that are constitutively expressed, overexpressed during growth, essential for survival, and highly conserved may be good vaccine targets if they induce the appropriate anti-Mtb Th1 immune response. In this context, stress response-related antigens of Mtb might serve as attractive targets for vaccine development as they are rapidly expressed and are up-regulated during Mtb infection in vivo. Our group recently demonstrated that GrpE, encoded by rv0351 as a cofactor of heat-shock protein 70 (HSP70) in the DnaK operon, is a novel immune activator that interacts with DCs to generate Th1-biased memory T cells in an antigen-specific manner. In this study, GrpE was evaluated as a subunit vaccine in comparison with the well-known HSP70 against the hyper-virulent Mtb Beijing K-strain. Both HSP70- and GrpE-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 in the lung and spleen of Mtb-infected mice, but GrpE only produced a similar level of IFN-γ to that produced by ESAT-6 stimulation during the late phase and the early phase of Mtb K infection, indicating that GrpE is highly-well recognised by the host immune system as a T cell antigen. Mice immunised with the GrpE subunit vaccine displayed enhanced antigen-specific IFN-γ and serum IgG2c responses along with antigen-specific effector/memory T cell expansion in the lungs. In addition, GrpE-immunisation markedly induced multifunctional Th1-type CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs of Mtb K-infected mice, whereas HSP70-immunisation induced mixed Th1/Th2 immune responses. GrpE-immunisation conferred a more significant protective effect than that of HSP70-immunisation in terms of bacterial reduction and improved inflammation, accompanied by the remarkable persistence of GrpE-specific multifunctional CD4+ T cells. These results suggest that GrpE is an excellent vaccine antigen component for the development of a multi-antigenic Mtb subunit vaccine by generating Th1-biased memory T cells with multifunctional capacity, and confers durable protection against the highly virulent Mtb K.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
55
|
Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 + T Cells That Enhance Protective Immunity in Tuberculosis. Infect Immun 2018; 86:IAI.00009-18. [PMID: 29891545 DOI: 10.1128/iai.00009-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by M. tuberculosis We previously reported that the mycobacterial ribosome is a major target of CD4+ T cells in mice immunized with a genetically modified Mycobacterium smegmatis strain (IKEPLUS) but not in mice immunized with Mycobacterium bovis BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of M. tuberculosis, but the breadth of the CD4+ T cell response to M. tuberculosis ribosomes was not determined. In the present study, a library of M. tuberculosis ribosomal proteins and in silico-predicted peptide libraries were used to screen CD4+ T cell responses in IKEPLUS-immunized mice. This identified 24 out of 57 M. tuberculosis ribosomal proteins distributed over both large and small ribosome subunits as specific CD4+ T cell targets. Although BCG did not induce detectable responses against ribosomal proteins or peptide epitopes, the M. tuberculosis ribosomal protein RplJ produced a robust and multifunctional Th1-like CD4+ T cell population when administered as a booster vaccine to previously BCG-primed mice. Boosting of BCG-primed immunity with the M. tuberculosis RplJ protein led to significantly reduced lung pathology compared to that in BCG-immunized animals and reductions in the bacterial burdens in the mediastinal lymph node compared to those in naive and standard BCG-vaccinated mice. These results identify the mycobacterial ribosome as a potential source of cryptic or subdominant antigenic targets of protective CD4+ T cell responses and suggest that supplementing BCG with ribosomal antigens may enhance protective vaccination against M. tuberculosis.
Collapse
|
56
|
Hu Z, Gu L, Li CL, Shu T, Lowrie DB, Fan XY. The Profile of T Cell Responses in Bacille Calmette-Guérin-Primed Mice Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine. Front Immunol 2018; 9:1796. [PMID: 30123219 PMCID: PMC6085409 DOI: 10.3389/fimmu.2018.01796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The kinds of vaccine-induced T cell responses that are beneficial for protection against Mycobacterium tuberculosis (Mtb) infection are not adequately defined. We had shown that a novel Sendai virus vectored vaccine, SeV85AB, was able to enhance immune protection induced by bacille Calmette–Guérin (BCG) in a prime-boost model. However, the profile of T cell responses boosted by SeV85AB was not determined. Herein, we show that the antigen-specific CD4+ and CD8+ T cell responses were both enhanced by the SeV85AB boost after BCG. Different profiles of antigen-specific po T cell subsets were induced in the local (lung) and systemic (spleen) sites. In the spleen, the CD4+ T cell responses that were enhanced by the SeV85AB boost were predominately IL-2 responses, whereas in the lung the greater increases were in IFN-γ- and TNF-α-producing CD4+ T cells; in CD8+ T cells, although IFN-γ was enhanced in both the spleen and lung, only IL-2+TNF-α+CD8+ T subset was boosted in the latter. After a challenge Mtb infection, there were significantly higher levels of recall IL-2 responses in T cells. In contrast, IFN-γ-producing cells were barely boosted by SeV85AB. After Mtb challenge a central memory phenotype of responding CD4+ T cells was a prominent feature in SeV85AB-boosted mice. Thus, our data strongly suggest that the enhanced immune protection induced by SeV85AB boosting was associated with establishment of an increased capacity to recall antigen-specific IL-2-mediated T cell responses and confirms this Sendai virus vector system as a promising candidate to be used in a heterologous prime-boost immunization regimen against TB.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chun-Ling Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Abstract
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4+ T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T-cell subsets, including classical and nonclassical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights into effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome, is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common comorbidities such as HIV, helminths and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease.
Collapse
Affiliation(s)
- Susanna Brighenti
- Karolinska Institutet, Department of Medicine, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simone A. Joosten
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, The Netherlands
| |
Collapse
|
58
|
Esmail H, Riou C, Bruyn ED, Lai RPJ, Harley YXR, Meintjes G, Wilkinson KA, Wilkinson RJ. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol 2018; 36:603-638. [PMID: 29490165 DOI: 10.1146/annurev-immunol-042617-053420] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Collapse
Affiliation(s)
- Hanif Esmail
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | | | - Yolande X R Harley
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,The Francis Crick Institute, London NW1 2AT, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
59
|
Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine 2018; 36:3331-3339. [PMID: 29699790 DOI: 10.1016/j.vaccine.2018.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023]
Abstract
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4+ T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine.
Collapse
|
60
|
Bai C, He J, Niu H, Hu L, Luo Y, Liu X, Peng L, Zhu B. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. Tuberculosis (Edinb) 2018; 110:104-111. [PMID: 29779765 DOI: 10.1016/j.tube.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
It is believed that central memory T cells (TCM) provide long-term protection against tuberculosis (TB). However, the effects of TB subunit vaccine immunization schedule, especially the vaccination intervals, on T cell immune memory is still unclear. In this study, mice were immunized with fusion protein ESAT6-Ag85B-MPT64 (190-198)-Mtb8.4-Rv2626c (LT70) based subunit vaccine three times according to the following schedules: ① 0, 3rd and 6th week respectively (0-3-6w), ② 0, 4th and 12th week (0-4-12w), and ③ 0, 4th and 24th week (0-4-24w). We found that both schedules of 0-4-12w and 0-4-24w induced higher level of antigen specific IL-2, IFN-γ and TNF-α than 0-3-6w immunization. Among them, 0-4-12w induced the highest level of IL-2, which is a key cytokine mainly produced by TCM. Moreover, by cultured IFN-γ ELISPOT and cell proliferation assay etc., we found that the vaccination schedule of 0-4-12w elicited higher numbers of TCM like cells, stronger TCM - mediated immune responses and higher protective efficacy against M. bovis BCG challenge than 0-3-6w did. It suggests that prolonging the vaccination interval of TB subunit vaccine to some extent contributes to inducing more abundant TCM like cells and providing stronger immune protection against mycobacteria infection.
Collapse
Affiliation(s)
- Chunxiang Bai
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Juanjuan He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Lina Hu
- Lanzhou Institute of Biological Products, Lanzhou, China.
| | - Yanping Luo
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Xun Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Liang Peng
- School of Life Science, Lanzhou University, Lanzhou, China.
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation &Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
61
|
Protective efficacy of recombinant BCG over-expressing protective, stage-specific antigens of Mycobacterium tuberculosis. Vaccine 2018; 36:2619-2629. [PMID: 29627232 DOI: 10.1016/j.vaccine.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/24/2018] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, yet current control strategies, including the existing BCG vaccine, have had little impact on disease control. CysVac2, a fusion protein comprising stage-specific Mycobacterium tuberculosis antigens, provided superior protective efficacy against chronic M. tuberculosis infection in mice, compared to BCG. To determine if the delivery of CysVac2 in the context of BCG could improve BCG-induced immunity and protection, we generated a recombinant strain of BCG overexpressing CysVac2 (rBCG:CysVac2). Expression of CysVac2 in BCG was facilitated by the M. tuberculosis hspX promoter, which is highly induced inside phagocytic cells and induces strong cellular immune responses to antigens expressed under its regulation. Intradermal vaccination with rBCG:CysVac2 resulted in increased monocyte/macrophage recruitment and enhanced antigen-specific CD4+ T cell priming compared to parental BCG, indicating CysVac2 overexpression had a marked effect on rBCG induced-immunity. Further, rBCG:CysVac2 was a more potent inducer of antigen-specific multifunctional CD4+ T cells (CD4+IFN-γ+TNF+IL-2+) than BCG after vaccination of mice. This improved immunogenicity however did not influence protective efficacy, with both BCG and rBCG:CysVac2 affording comparable level of protection aerosol infection with M. tuberculosis. Boosting either BCG or rBCG:CysVac2 with the CysVac2 fusion protein resulted in a similar improvement in protective efficacy. These results demonstrate that the expression of protective antigens in BCG can augment antigen-specific immunity after vaccination but does not alter protection against infection, further highlighting the challenge of developing effective vaccines to control TB.
Collapse
|
62
|
Muflihah H, Flórido M, Lin L, Xia Y, Triccas J, Stambas J, Britton W. Sequential pulmonary immunization with heterologous recombinant influenza A virus tuberculosis vaccines protects against murine M. tuberculosis infection. Vaccine 2018; 36:2462-2470. [DOI: 10.1016/j.vaccine.2018.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
63
|
Velasquez LN, Stüve P, Gentilini MV, Swallow M, Bartel J, Lycke NY, Barkan D, Martina M, Lujan HD, Kalay H, van Kooyk Y, Sparwasser TD, Berod L. Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Front Immunol 2018; 9:471. [PMID: 29662482 PMCID: PMC5890140 DOI: 10.3389/fimmu.2018.00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Collapse
Affiliation(s)
- Lis Noelia Velasquez
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Judith Bartel
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Nils Yngve Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariana Martina
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hugo D Lujan
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
64
|
Orme IM, Henao-Tamayo MI. Trying to See the Forest through the Trees: Deciphering the Nature of Memory Immunity to Mycobacterium tuberculosis. Front Immunol 2018; 9:461. [PMID: 29568298 PMCID: PMC5852080 DOI: 10.3389/fimmu.2018.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/21/2018] [Indexed: 01/18/2023] Open
Abstract
The purpose of vaccination against tuberculosis and other diseases is to establish a heightened state of acquired specific resistance in which the memory immune response is capable of mediating an accelerated and magnified expression of protection to the pathogen when this is encountered at a later time. In the earliest studies in mice infected with Mycobacterium tuberculosis, memory immunity and the cells that express this were definable both in terms of kinetics of emergence, and soon thereafter by the levels of expression of markers including CD44, CD62L, and the chemokine receptor CCR7, allowing the identification of effector memory and central memory T cell subsets. Despite these initial advances in knowledge, more recent information has not revealed more clarity, but instead, has created a morass of complications—complications that, if not resolved, could harm correct vaccine design. Here, we discuss two central issues. The first is that we have always assumed that memory is induced in the same way, and consists of the same T cells, regardless of whether that immunity is generated by BCG vaccination, or by exposure to M. tuberculosis followed by effective chemotherapy. This assumption is almost certainly incorrect. Second, a myriad of additional memory subsets have now been described, such as resident, stem cell-like, tissue specific, among others, but as yet we know nothing about the relative importance of each, or whether if a new vaccine needs to induce all of these, or just some, to be fully effective.
Collapse
Affiliation(s)
- Ian M Orme
- Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Marcela I Henao-Tamayo
- Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
65
|
Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, Smit E, Abrahams D, Rozot V, Dintwe O, Hoff ST, Kromann I, Ruhwald M, Bang P, Larson RP, Shafiani S, Ma S, Sherman DR, Sette A, Lindestam Arlehamn CS, McKinney DM, Maecker H, Hanekom WA, Hatherill M, Andersen P, Scriba TJ, Urdahl KB. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host Microbe 2018; 21:695-706.e5. [PMID: 28618268 DOI: 10.1016/j.chom.2017.05.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/03/2017] [Accepted: 05/30/2017] [Indexed: 01/20/2023]
Abstract
CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection.
Collapse
Affiliation(s)
- Albanus O Moguche
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | | | - Helen Mearns
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Deborah Abrahams
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - One Dintwe
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Søren T Hoff
- Statens Serum Institut (SSI), 2300 Copenhagen, Denmark
| | | | | | - Peter Bang
- Statens Serum Institut (SSI), 2300 Copenhagen, Denmark
| | - Ryan P Larson
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA
| | - Shahin Shafiani
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA
| | - Shuyi Ma
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA
| | - David R Sherman
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla 92037, USA
| | | | - Denise M McKinney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla 92037, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, Cape Town 7925, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.
| | - Kevin B Urdahl
- Center for Infectious Disease Research (CIDR), Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
66
|
Nieuwenhuizen NE, Kaufmann SHE. Next-Generation Vaccines Based on Bacille Calmette-Guérin. Front Immunol 2018; 9:121. [PMID: 29459859 PMCID: PMC5807593 DOI: 10.3389/fimmu.2018.00121] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette-Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed.
Collapse
|
67
|
Leem AY, Song JH, Lee EH, Lee H, Sim B, Kim SY, Chung KS, Kim EY, Jung JY, Park MS, Kim YS, Chang J, Kang YA. Changes in cytokine responses to TB antigens ESAT-6, CFP-10 and TB 7.7 and inflammatory markers in peripheral blood during therapy. Sci Rep 2018; 8:1159. [PMID: 29348638 PMCID: PMC5773481 DOI: 10.1038/s41598-018-19523-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Multiple cytokines and inflammatory markers control TB infection. We aimed to investigate the changes in multiple cytokines and inflammatory markers in active TB patients following anti-TB drug therapy. Twenty-nine patients with active TB were recruited prospectively between December 2010 and July 2017. Blood samples were collected before (T0), after 2 months (T2), and at the end of anti-TB treatment (Tend). We measured the levels of Interferon (IFN)-γ, interleukin (IL)-2, IL-12, IL-10, IL-13 and tumor necrosis factor (TNF)-α in supernatants collected from the QuantiFERON-TB Gold In-Tube assay (QFT-GIT), as well as the WBC, neutrophil, platelet count and neutrophil to lymphocyte ratio (NLR) in whole blood. Compared with baseline levels, WBC, neutrophil, and platelet counts were significantly lower following treatment. In addition, the NLR after treatment significantly decreased compared with baseline, whereas the IL-2/IFN-γ ratio increased after treatment. In conclusion, the levels of IL-2/IFN-γ ratios in the supernatant and the NLR might be useful biomarkers to evaluate the effectiveness of drug therapy in active TB patients.
Collapse
Affiliation(s)
- Ah Young Leem
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Joo Han Song
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Eun Hye Lee
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Hyejon Lee
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bora Sim
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Kyung Soo Chung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Joon Chang
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
68
|
Billeskov R, Lindenstrøm T, Woodworth J, Vilaplana C, Cardona PJ, Cassidy JP, Mortensen R, Agger EM, Andersen P. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis. Front Immunol 2018; 8:1973. [PMID: 29379507 PMCID: PMC5775287 DOI: 10.3389/fimmu.2017.01973] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.
Collapse
Affiliation(s)
- Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Institut per a la Investigació en Ciències de la Salut Germans Trias I Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut per a la Investigació en Ciències de la Salut Germans Trias I Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Joseph P Cassidy
- Veterinary Sciences Centre, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
69
|
Platteel ACM, Nieuwenhuizen NE, Domaszewska T, Schürer S, Zedler U, Brinkmann V, Sijts AJAM, Kaufmann SHE. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model. Front Immunol 2017; 8:1744. [PMID: 29312295 PMCID: PMC5732355 DOI: 10.3389/fimmu.2017.01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette–Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8+ T cell responses in vivo. As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4+ and CD8+ T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4+ T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4+ and CD8+ T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4+ T cells responding to Ag85B- and ESAT-6-derived epitopes were predominantly IFN-γ+TNF-α+ and TNF-α+IL-2+, respectively. In conclusion, despite inducing appreciable immune responses to Ag85B and ESAT-6, intradermal H56 cDNA tattoo immunization did not substantially enhance the protective effect of BCG under the conditions tested.
Collapse
Affiliation(s)
- Anouk C M Platteel
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Teresa Domaszewska
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefanie Schürer
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
70
|
Olsen AW, Lorenzen EK, Rosenkrands I, Follmann F, Andersen P. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis. Front Immunol 2017; 8:1652. [PMID: 29312283 PMCID: PMC5732375 DOI: 10.3389/fimmu.2017.01652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023] Open
Abstract
There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D–F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4’s from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines.
Collapse
Affiliation(s)
- Anja Weinreich Olsen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Emma Kathrine Lorenzen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
71
|
Lindenstrøm T, Moguche A, Damborg M, Agger EM, Urdahl K, Andersen P. T Cells Primed by Live Mycobacteria Versus a Tuberculosis Subunit Vaccine Exhibit Distinct Functional Properties. EBioMedicine 2017; 27:27-39. [PMID: 29249639 PMCID: PMC5828549 DOI: 10.1016/j.ebiom.2017.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
Despite inducing strong T cell responses, Mycobacterium tuberculosis (Mtb) infection fails to elicit protective immune memory. As such latently infected or successfully treated Tuberculosis (TB) patients are not protected against recurrent disease. Here, using a mouse model of aerosol Mtb infection, we show that memory immunity to H56/CAF01 subunit vaccination conferred sustained protection in contrast to the transient natural immunity conferred by Mtb infection. Loss of protection to re-infection in natural Mtb memory was temporally linked to an accelerated differentiation of ESAT-6- and to a lesser extent, Ag85B-specific CD4 T cells in both the lung parenchyma and vasculature. This phenotype was characterized by high KLRG1 expression and low, dual production of IFN-γ and TNF. In contrast, H56/CAF01 vaccination elicited cells that expressed low levels of KLRG1 with copious expression of IL-2 and IL-17A. Co-adoptive transfer studies revealed that H56/CAF01 induced memory CD4 T cells efficiently homed into the lung parenchyma of mice chronically infected with Mtb. In comparison, natural Mtb infection- and BCG vaccine-induced memory CD4 T cells exhibited a poor ability to home into the lung parenchyma. These studies suggest that impaired lung migratory capacity is an inherent trait of the terminally differentiated memory responses primed by mycobacteria/mycobacterial vectors. Differentiation state of M. tuberculosis (Mtb)-specific CD4 memory T cells differ depending on their initial priming Live mycobacteria prime fully differentiated CD4 memory T cells with lower lung homing capacity than subunit vaccination Lung parenchymal Mtb memory CD4 T cells produce fewer & less cytokines, express more KLRG1 and cannot sustain protection
People latently infected with M. tuberculosis or successfully treated for Tuberculosis are not protected against recurrent disease, even in the presence of strong T cell responses. Here, using a well-established mouse model, we show that in contrast to subunit vaccination, live mycobacteria prime CD4 T cells that are highly differentiated, have an inferior lung homing capacity and show impaired function once in the parenchyma leading to lack of sustained protection against challenge. This indicates a central shortcoming of natural immunity that needs to be addressed in order to develop improved vaccines against TB.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark.
| | | | - Mie Damborg
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Kevin Urdahl
- Center for Infectious Disease Research, Seattle, USA
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| |
Collapse
|
72
|
Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis. Cell Rep 2017; 18:3091-3104. [PMID: 28355562 DOI: 10.1016/j.celrep.2017.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022] Open
Abstract
Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis.
Collapse
Affiliation(s)
- Michelle A Sallin
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shunsuke Sakai
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keith D Kauffman
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Lewinsohn DA, Lewinsohn DM, Scriba TJ. Polyfunctional CD4 + T Cells As Targets for Tuberculosis Vaccination. Front Immunol 2017; 8:1262. [PMID: 29051764 PMCID: PMC5633696 DOI: 10.3389/fimmu.2017.01262] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG). Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in the immune response against Mtb.
Collapse
Affiliation(s)
- Deborah A Lewinsohn
- Division of Infectious Disease, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States.,Department of Medicine, VA Portland Health Care System, Portland, OR, United States
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
74
|
Circulating Mycobacterium tuberculosis DosR latency antigen-specific, polyfunctional, regulatory IL10 + Th17 CD4 T-cells differentiate latent from active tuberculosis. Sci Rep 2017; 7:11948. [PMID: 28931830 PMCID: PMC5607261 DOI: 10.1038/s41598-017-10773-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022] Open
Abstract
The functional heterogeneity of T cell responses to diverse antigens expressed at different stages of Mycobacterium tuberculosis (Mtb) infection, in particular early secreted versus dormancy related latency antigens expressed later, that distinguish subjects with latent (LTBI), pulmonary (PTB) or extrapulmonary (EPTB) tuberculosis remains unclear. Here we show blood central memory CD4 T-cell responses specific to Mtb dormancy related (DosR) latency, but not classical immunodominant secretory antigens, to clearly differentiate LTBI from EPTB and PTB. The polyfunctionality score integrating up to 31 DosR-specific CD4 T-cell functional profiles was significantly higher in LTBI than EPTB or PTB subjects. Further analysis of 256 DosR-specific T-cell functional profiles identified regulatory IL10 + Th17 cells (IL10+IL17A+IL17F+IL22+) to be significantly enriched in LTBI; in contrast to pro-inflammatory Th17 cells (IFNγ+IL17A+/IL10-) in the blood and lung of EPTB and PTB subjects respectively. A blood polyfunctional, Mtb DosR latency antigen specific, regulatory, central memory response is therefore a novel functional component of T-cell immunity in latent TB and potential correlate of protection.
Collapse
|
75
|
Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SHE. The Recombinant Bacille Calmette-Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front Immunol 2017; 8:1147. [PMID: 28974949 PMCID: PMC5610719 DOI: 10.3389/fimmu.2017.01147] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
The only licensed vaccine against tuberculosis (TB), bacille Calmette-Guérin (BCG), protects against severe extrapulmonary forms of TB but is virtually ineffective against the most prevalent form of the disease, pulmonary TB. BCG was genetically modified at the Max Planck Institute for Infection Biology to improve its immunogenicity by replacing the urease C encoding gene with the listeriolysin encoding gene from Listeria monocytogenes. Listeriolysin perturbates the phagosomal membrane at acidic pH. Urease C is involved in neutralization of the phagosome harboring BCG. Its depletion allows for rapid phagosome acidification and promotes phagolysosome fusion. As a result, BCGΔureC::hly (VPM1002) promotes apoptosis and autophagy and facilitates release of mycobacterial antigens into the cytosol. In preclinical studies, VPM1002 has been far more efficacious and safer than BCG. The vaccine was licensed to Vakzine Projekt Management and later sublicensed to the Serum Institute of India Pvt. Ltd., the largest vaccine producer in the world. The vaccine has passed phase I clinical trials in Germany and South Africa, demonstrating its safety and immunogenicity in young adults. It was also successfully tested in a phase IIa randomized clinical trial in healthy South African newborns and is currently undergoing a phase IIb study in HIV exposed and unexposed newborns. A phase II/III clinical trial will commence in India in 2017 to assess efficacy against recurrence of TB. The target indications for VPM1002 are newborn immunization to prevent TB as well as post-exposure immunization in adults to prevent TB recurrence. In addition, a Phase I trial in non-muscle invasive bladder cancer patients has been completed, and phase II trials are ongoing. This review describes the development of VPM1002 from the drawing board to its clinical assessment.
Collapse
Affiliation(s)
| | | | | | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland.,Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Bernd Eisele
- Vakzine Projekt Management GmbH, Hannover, Germany
| | | | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
76
|
Yao Y, Lai R, Afkhami S, Haddadi S, Zganiacz A, Vahedi F, Ashkar AA, Kaushic C, Jeyanathan M, Xing Z. Enhancement of Antituberculosis Immunity in a Humanized Model System by a Novel Virus-Vectored Respiratory Mucosal Vaccine. J Infect Dis 2017; 216:135-145. [PMID: 28531291 DOI: 10.1093/infdis/jix252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background The translation of preclinically promising novel tuberculosis vaccines to ultimate human applications has been challenged by the lack of animal models with an immune system equivalent to the human immune system in its genetic diversity and level of susceptibility to tuberculosis. Methods We have developed a humanized mice (Hu-mice) tuberculosis model system to investigate the clinical relevance of a novel virus-vectored (VV) tuberculosis vaccine administered via respiratory mucosal or parenteral route. Results We find that VV vaccine activates T cells in Hu-mice as it does in human vaccinees. The respiratory mucosal route for delivery of VV vaccine in Hu-mice, but not the parenteral route, significantly reduces the humanlike lung tuberculosis outcomes in a human T-cell-dependent manner. Conclusions Our results suggest that the Hu-mouse can be used to predict the protective efficacy of novel tuberculosis vaccines/strategies before they proceed to large, expensive human trials. This new vaccine testing system will facilitate the global pace of clinical tuberculosis vaccine development.
Collapse
Affiliation(s)
- Yushi Yao
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Siamak Haddadi
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
77
|
Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12:e0184563. [PMID: 28886145 PMCID: PMC5590973 DOI: 10.1371/journal.pone.0184563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings.
Collapse
|
78
|
Shah JA, Musvosvi M, Shey M, Horne DJ, Wells RD, Peterson GJ, Cox JS, Daya M, Hoal EG, Lin L, Gottardo R, Hanekom WA, Scriba TJ, Hatherill M, Hawn TR. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis. Am J Respir Crit Care Med 2017; 196:502-511. [PMID: 28463648 DOI: 10.1164/rccm.201611-2346oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RATIONALE The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. OBJECTIVES To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. METHODS We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. MEASUREMENTS AND MAIN RESULTS We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2+ CD4+ T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. CONCLUSIONS TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.
Collapse
Affiliation(s)
- Javeed A Shah
- 1 University of Washington School of Medicine, Seattle, Washington.,2 Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - Muki Shey
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - David J Horne
- 1 University of Washington School of Medicine, Seattle, Washington
| | - Richard D Wells
- 1 University of Washington School of Medicine, Seattle, Washington
| | | | - Jeffery S Cox
- 5 University of California Berkeley, Berkeley, California
| | - Michelle Daya
- 6 Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Eileen G Hoal
- 6 Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Lin Lin
- 7 Department of Statistics, Pennsylvania State University, University Park, Pennsylvania; and
| | | | - Willem A Hanekom
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- 3 South African Tuberculosis Vaccine Initiative and.,4 Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas R Hawn
- 1 University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
79
|
Voss K, Larsen SE, Snow AL. Metabolic reprogramming and apoptosis sensitivity: Defining the contours of a T cell response. Cancer Lett 2017; 408:190-196. [PMID: 28866092 DOI: 10.1016/j.canlet.2017.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
An effective adaptive immune response hinges on the rapid clonal expansion of T cells in response to antigen. The sensitivity of these T cells to programmed cell death (i.e. apoptosis) is carefully calibrated at various stages to ensure a robust yet measured reaction that resolves without inflicting unintended damage to host tissues. To meet bioenergetic demands associated with vigorous proliferation, acquisition of effector functions, and memory formation, T cells also undergo dynamic changes in their metabolism at every stage of this response. In this review, we focus on relatively recent studies that illuminate intimate links between metabolic programs and apoptosis sensitivity in T cells. We then examine how these connections ultimately influence T cell survival and function within the metabolically taxing environs of the tumor microenvironment.
Collapse
Affiliation(s)
- Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sasha E Larsen
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Infectious Disease Research Institute, Seattle, WA, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
80
|
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4 + T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7:8582. [PMID: 28819247 PMCID: PMC5561132 DOI: 10.1038/s41598-017-09119-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has entered human trials to protect against viral pathogens. In this report we determined if Advax displays broad applicability against important human pathogens by assessing protective immunity against infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further preclinical evaluation for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Rachel Pinto
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Warwick J Britton
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia.
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia.
| |
Collapse
|
81
|
Abstract
Bacille Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine in clinical practice, has limitations in efficacy, immunogenicity and safety. Much current TB vaccine research focuses on engineering live mycobacteria to interfere with phagosome biology and host intracellular pathways including apoptosis and autophagy, with candidates such as BCG Δzmp1, BCG ΔureC::hly, BCG::ESX-1Mmar, Mtb ΔphoP ΔfadD26, Mtb ΔRD1 ΔpanCD and M. smegmatis Δesx-3::esx-3(Mtb) in the development pipeline. Correlates of protection in preclinical studies include increased central memory CD4+ T cells and recruitment of antigen-specific T cells to the lungs, with mucosal vaccination found to be superior to parenteral vaccination. Finally, recent studies suggest beneficial non-specific effects of BCG on immunity, which should be taken into account when considering these vaccines for BCG replacement.
Collapse
|
82
|
Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A, Lillebaek T, Sherman DR, Andersen PL, Aagaard C. An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep 2017; 7:46666. [PMID: 28436493 PMCID: PMC5402389 DOI: 10.1038/srep46666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 12/24/2022] Open
Abstract
Although Mycobacterium tuberculosis (M.tb) DK9897 is an attenuated strain, it was isolated from a patient with extrapulmonary tuberculosis and vaccination with a subunit vaccine (H56) induced poor protection against it. Both attenuation and lack of protection are because M.tb DK9897 cannot secrete the EsxA virulence factor nor induce a host response against it. Genome sequencing identified a frameshift mutation in the eccCa1 gene. Since the encoded EccCa1 protein provides energy for ESX-1 secretion, it suggested a defect in the ESX-1 type VII secretion system. Genetic complementation with a plasmid carrying the M.tb H37Rv sequence of eccCa1-eccCb1-pe35 re-established EsxA secretion, host specific EsxA T-cell responses, and increased strain virulence. The ESX-1 secretion defect prevents several virulence factors from being functional during infection and therefore attenuates M.tb. It precludes specific T-cell responses against strong antigens and we found very little in vivo cytokine production, gross pathology or granuloma formation in lungs from M.tb DK9897 infected animals. This coincides with M.tb DK9897 being unable to disrupt the phagosome membrane and make contact to the cytosol.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Niels Peter Hell Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Jessica Winkler
- Center for Infectious Disease Research, Seattle, Washington, 98109, USA
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Ahmad Ahmad
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, Washington, 98109, USA
| | - Peter Lawætz Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| |
Collapse
|
83
|
Vaccination for Mycobacterium tuberculosis infection: reprogramming CD4 T-cell homing into the lung. Mucosal Immunol 2017; 10:318-321. [PMID: 27966550 DOI: 10.1038/mi.2016.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of effective tuberculosis vaccines is hampered by insufficient understanding of protective immunity. Here, Woodworth et al.1 show secondary effector CD4 T cells generated after Mtb challenge of H56/CAF01 vaccinated mice display superior lung homing compared with primary effectors. Vaccination generates large populations of parenchymal lung effector cells by inducing CXCR3+KLRG1- cells that continuously migrate from lymph nodes to lung, and limiting the generation of non-protective CX3CR1+KLRG1+ intravascular effectors, providing insight vaccine-mediated protection against tuberculosis.
Collapse
|
84
|
Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung. Mucosal Immunol 2017; 10:555-564. [PMID: 27554293 PMCID: PMC5325828 DOI: 10.1038/mi.2016.70] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/15/2016] [Indexed: 02/04/2023]
Abstract
The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1- CXCR3+ cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.
Collapse
|
85
|
Abstract
ABSTRACT
Immunological memory is a central feature of the adaptive immune system and a prerequisite for generating effective vaccines. Understanding long-term memory responses to
Mycobacterium tuberculosis
will thus provide us with valuable insights that can guide us in the search for a novel vaccine against tuberculosis (TB). For many years, triggering CD4 T cells and, in particular, those secreting interferon-γ has been the goal of most TB vaccine research, and numerous data from animals and humans support the key role of this subset in protective immunity. More recently, we have learned that the memory response required for effective control of
M. tuberculosis
is much more complex, probably involving several phenotypically different CD4 T cell subsets as well as other cell types that are yet to be defined. Herein, we describe recent insights into memory immunity to TB in the context of both animal models and the human infection. With the increasing amount of data generated from clinical testing of novel TB vaccines, we also summarize recent knowledge of vaccine-induced memory immunity.
Collapse
|
86
|
Heterologous boosting with recombinant VSV-846 in BCG-primed mice confers improved protection against Mycobacterium infection. Hum Vaccin Immunother 2016; 13:816-822. [PMID: 27960596 DOI: 10.1080/21645515.2016.1261229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide, and the development of effective vaccines is urgently needed. Vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) as primer and modified vaccinia virus Ankara strain expressing the mycobacterial antigen Ag85A (MVA85A) as booster may increase the protective efficacy of BCG. In addition, vaccination with the recombinant viral vaccine vesicular stomatitis virus (VSV)-846 (Rv3615c, Mtb10.4, and Rv2660c) can elicit a remarkable T-cell-mediated immune response and provide an effective long-term protection after the BCG challenge. In this study, we used VSV-846 to boost BCG and evaluated its immunogenicity in BALB/c mice. In this prime-boost approach, boosting with VSV-846 significantly enhanced IFN-γ CD4 T cell responses, which are crucial for anti-TB immune responses. Moreover, VSV-846 boosting significantly reduced pathology compared with mock vaccination, and decreased the bacterial loads in lung tissues compared with BCG or VSV-846 vaccination alone. The analysis of vaccine-induced immunity identified that polyfunctional T cells might contribute to the enhanced protection by VSV-846 boosting. This study proved that viral booster VSV-846 in mice improved the protection against mycobacteria infection, which could be helpful in designing an efficient vaccination strategy against TB in humans.
Collapse
|
87
|
Triccas JA, Counoupas C. Novel vaccination approaches to prevent tuberculosis in children. Pneumonia (Nathan) 2016; 8:18. [PMID: 28702297 PMCID: PMC5471729 DOI: 10.1186/s41479-016-0020-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Pediatric tuberculosis (TB) is an underappreciated problem and accounts for 10 % of all TB deaths worldwide. Children are highly susceptible to infection with Mycobacterium tuberculosis and interrupting TB spread would require the development of effective strategies to control TB transmission in pediatric populations. The current vaccine for TB, M. bovis Bacille Calmette-Guérin (BCG), can afford some level of protection against TB meningitis and severe forms of disseminated TB in children; however, its efficacy against pulmonary TB is variable and the vaccine does not afford life-long protective immunity. For these reasons there is considerable interest in the development of new vaccines to control TB in children. Multiple vaccine strategies are being assessed and include recombinant forms of the existing BCG vaccine, protein or viral candidates designed to boost BCG-induced immunity, or live attenuated forms of M. tuberculosis. A number of these candidates have entered clinical trials; however, no vaccine has shown improved protective efficacy compared to BCG in humans. The current challenge is to identify the most suitable candidates to progress from early to late stage clinical trials, in order to deliver a vaccine that can control and hopefully eliminate the global threat of TB.
Collapse
Affiliation(s)
- James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Level 5, Charles Perkins Centre D17, Sydney, NSW 2006 Australia.,Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW Australia.,Sydney Medical School and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Level 5, Charles Perkins Centre D17, Sydney, NSW 2006 Australia.,Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
88
|
H1:IC31 vaccination is safe and induces long-lived TNF-α +IL-2 +CD4 T cell responses in M. tuberculosis infected and uninfected adolescents: A randomized trial. Vaccine 2016; 35:132-141. [PMID: 27866772 DOI: 10.1016/j.vaccine.2016.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Control of the tuberculosis epidemic requires a novel vaccine that is effective in preventing tuberculosis in adolescents, a key target population for vaccination against TB. METHODS Healthy adolescents, stratified by M. tuberculosis-infection status, were enrolled into this observer-blinded phase II clinical trial of the protein-subunit vaccine candidate, H1:IC31, comprising a fusion protein (H1) of Ag85B and ESAT-6, formulated with the IC31 adjuvant. Local and systemic adverse events and induced T cell responses were measured after one or two administrations of either 15μg or 50μg of the H1 protein. RESULTS Two hundred and forty participants were recruited and followed up for 224days. No notable safety events were observed regardless of H1 dose or vaccination schedule. H1:IC31 vaccination induced antigen-specific CD4 T cells, co-expressing IFN-γ, TNF-α and/or IL-2. H1:IC31 vaccination of M.tb-uninfected individuals preferentially drove the emergence of Ag85B and ESAT-6 specific TNF-α+IL-2+CD4 T cells, while H1:IC31 vaccination of M.tb-infected individuals resulted in the expansion of Ag85B-specific but not ESAT-6-specific TNF-α+IL-2+CD4 T cells. CONCLUSIONS H1:IC31 was safe and immunogenic in uninfected and M.tb-infected adolescents. Two administrations of the 15μg H1:IC31 dose induced the greatest magnitude immune response, and was considered optimal (South African National Clinical Trials Register, DoH-27-0612-3947; Pan African Clinical Trial Registry, PACTR201403000464306).
Collapse
|
89
|
Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis. Immunol Res 2016; 64:64-72. [PMID: 26111521 DOI: 10.1007/s12026-015-8674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.
Collapse
|
90
|
Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol 2016; 43:133-141. [DOI: 10.1080/1040841x.2016.1185603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nargis Khan
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Aurobind Vidyarthi
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Mohammed Amir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Khurram Mushtaq
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
91
|
Maggioli MF, Palmer MV, Thacker TC, Vordermeier HM, McGill JL, Whelan AO, Larsen MH, Jacobs WR, Waters WR. Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Front Immunol 2016; 7:421. [PMID: 27799930 PMCID: PMC5066095 DOI: 10.3389/fimmu.2016.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Central memory T cell (Tcm) and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector/memory populations from bacille Calmette–Guerin (BCG) vaccinated and non-vaccinated calves by flow cytometry prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves, only differing in magnitude (i.e., infected > vaccinated). BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (3 weeks post-infection), non-vaccinates had greater antigen-specific interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α) and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains) were detected in memory subsets, as well as in effector cells, as early as 3 weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden, while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.
Collapse
Affiliation(s)
- Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA; Imbio, Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | - Tyler C Thacker
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | | | - Jodi L McGill
- Department of Diagnostic Medicine and Pathology, College of Veterinary Medicine, Kansas State University , Manhattan, KS , USA
| | - Adam O Whelan
- Defense Science and Technology Laboratory, Porton Down , Wiltshire , UK
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| |
Collapse
|
92
|
Testing the H56 Vaccine Delivered in 4 Different Adjuvants as a BCG-Booster in a Non-Human Primate Model of Tuberculosis. PLoS One 2016; 11:e0161217. [PMID: 27525651 PMCID: PMC4985151 DOI: 10.1371/journal.pone.0161217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
The search for new and improved tuberculosis (TB) vaccines has focused on IFN-γ both for selecting antigens and for evaluating vaccine delivery strategies. The essential role of IFN-γ in endogenous host protection is well established, but it is still uncertain whether this also holds true for vaccine protection. Here we evaluate the H56 fusion protein vaccine as a BCG booster in a non-human primate (NHP) model of TB that closely recapitulates human TB pathogenesis. To date, only a handful of novel adjuvants have been tested in the NHP model of TB, and therefore we administered H56 in 3 novel cationic liposome adjuvants of increasing immunogenicity (CAF01, CAF04, CAF05) and compared them to H56 in the IC31® adjuvant previously reported to promote protection in this model. The individual clinical parameters monitored during infection (weight, ESR, X-ray) all correlated with survival, and boosting BCG with H56 in all adjuvants resulted in better survival rates compared to BCG alone. The adjuvants promoted IFN-γ-responses of increasing intensity as measured by ELISPOT in the peripheral blood, but the level of vaccine-specific IFN-γ production did not correlate with or predict disease outcome. This study’s main outcome underscores the importance of the choice of adjuvant for TB subunit vaccines, and secondly it highlights the need for better correlates of protection in preclinical models of TB.
Collapse
|
93
|
Metcalfe HJ, Steinbach S, Jones GJ, Connelley T, Morrison WI, Vordermeier M, Villarreal-Ramos B. Protection associated with a TB vaccine is linked to increased frequency of Ag85A-specific CD4(+) T cells but no increase in avidity for Ag85A. Vaccine 2016; 34:4520-4525. [PMID: 27498622 PMCID: PMC5009893 DOI: 10.1016/j.vaccine.2016.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/27/2022]
Abstract
There is a need to improve the efficacy of Bacille Calmette-Guérin (BCG) vaccination against tuberculosis in humans and cattle. Previously, we found boosting BCG-primed cows with recombinant human type 5 adenovirus expressing antigen 85A (Ad5-85A) increased protection against Mycobacterium bovis infection compared to BCG vaccination alone. The aim of this study was to decipher aspects of the immune response associated with this enhanced protection. We compared BCG-primed Ad5-85A-boosted cattle with BCG-vaccinated cattle. Polyclonal CD4(+) T cell libraries were generated from pre-boost and post-boost peripheral blood mononuclear cells - using a method adapted from Geiger et al. (2009) - and screened for antigen 85A (Ag85A) specificity. Ag85A-specific CD4(+) T cell lines were analysed for their avidity for Ag85A and their Ag85A epitope specificity was defined. Boosting BCG with Ad5-85A increased the frequencies of post-boost Ag85A-specific CD4(+) T cells which correlated with protection (reduced pathology). Boosting Ag85A-specific CD4(+) T cell responses did not increase their avidity. The epitope specificity was variable between animals and we found no clear evidence for a post-boost epitope spreading. In conclusion, the protection associated with boosting BCG with Ad5-85A is linked with increased frequencies of Ag85A-specific CD4(+) T cells without increasing avidity or widening of the Ag85A-specific CD4(+) T cell repertoire.
Collapse
Affiliation(s)
- Hannah J Metcalfe
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK; Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Sabine Steinbach
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Gareth J Jones
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Tim Connelley
- Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - W Ivan Morrison
- Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK.
| |
Collapse
|
94
|
Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016; 102:73-82. [PMID: 26596558 DOI: 10.1016/j.addr.2015.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
There is an urgent need for a new and improved vaccine against tuberculosis for controlling this disease that continues to pose a global health threat. The current research strategy is to replace the present BCG vaccine or boost BCG-immunity with subunit vaccines such as viral vectored- or protein-based vaccines. The use of recombinant proteins holds a number of production advantages including ease of scalability, but requires an adjuvant inducing cell-mediated immune responses. A number of promising novel adjuvant formulations have recently been designed and show evidence of induction of cellular immune responses in humans. A common trait of effective TB adjuvants including those already in current clinical testing is a two-component approach combining a delivery system with an appropriate immunomodulator. This review summarizes the status of current TB adjuvant research with a focus on the division of labor between delivery systems and immunomodulators.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
95
|
Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Sci Rep 2016; 6:25837. [PMID: 27173443 PMCID: PMC4865829 DOI: 10.1038/srep25837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022] Open
Abstract
Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.
Collapse
|
96
|
Pinto R, Nambiar JK, Leotta L, Counoupas C, Britton WJ, Triccas JA. Influence of phthiocerol dimycocerosate on CD4(+) T cell priming and persistence during Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2016; 99:25-30. [PMID: 27450001 DOI: 10.1016/j.tube.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/01/2016] [Indexed: 11/27/2022]
Abstract
The characterisation of mycobacterial factors that influence or modulate the host immune response may aid the development of more efficacious TB vaccines. We have previously reported that Mycobacterium tuberculosis deficient in export of Phthiocerol Dimycocerosates (DIM) (MT103(ΔdrrC)) is more attenuated than wild type M. tuberculosis and provides sustained protective immunity compared to the existing BCG vaccine. Here we sought to define the correlates of immunity associated with DIM deficiency by assessing the impact of MT103(ΔdrrC) delivery on antigen presenting cell (APC) function and the generation of CD4(+) T cell antigen-specific immunity. MT103(ΔdrrC) was a potent activator of bone marrow derived dendritic cells, inducing significantly greater expression of CD86 and IL-12p40 compared to BCG or the MT103 parental strain. This translated to an increased ability to initiate early in vivo priming of antigen-specific CD4(+) T cells compared to BCG with enhanced release of IFN-γ and TNF upon antigen-restimulation. The heightened immunity induced by MT103(ΔdrrC) correlated with greater persistence within the spleen compared to BCG, however both MT103(ΔdrrC) and BCG were undetectable in the lung at 70 days post-vaccination. In immunodeficient RAG (-/-) mice, MT103(ΔdrrC) was less virulent than the parental MT103 strain, yet MT103(ΔdrrC) infected mice succumbed more rapidly compared to BCG-infected animals. These results suggest that DIM translocation plays a role in APC stimulation and CD4(+) T cell activation during M. tuberculosis infection and highlights the potential of DIM-deficient strains as novel TB vaccine candidates.
Collapse
Affiliation(s)
- Rachel Pinto
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, University of Sydney, NSW, Australia; Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia
| | - Jonathan K Nambiar
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, University of Sydney, NSW, Australia; Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia
| | - Lisa Leotta
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, University of Sydney, NSW, Australia; Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, University of Sydney, NSW, Australia; Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia
| | - Warwick J Britton
- Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia; Discipline of Medicine, Central Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, University of Sydney, NSW, Australia; Mycobacterial Research Program, Centenary Institute, Newtown, NSW, Australia.
| |
Collapse
|
97
|
Knudsen NPH, Olsen A, Buonsanti C, Follmann F, Zhang Y, Coler RN, Fox CB, Meinke A, D'Oro U, Casini D, Bonci A, Billeskov R, De Gregorio E, Rappuoli R, Harandi AM, Andersen P, Agger EM. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 2016; 6:19570. [PMID: 26791076 PMCID: PMC4726129 DOI: 10.1038/srep19570] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use.
Collapse
Affiliation(s)
- Niels Peter H Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cecilia Buonsanti
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Yuan Zhang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | - Ugo D'Oro
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Daniele Casini
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Alessandra Bonci
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ennio De Gregorio
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
98
|
Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathog 2016; 12:e1005380. [PMID: 26745507 PMCID: PMC4706326 DOI: 10.1371/journal.ppat.1005380] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. CD8+ T cells are important for enforcing latency of tuberculosis, and for Mtb control in patients with HIV and low CD4 counts. While vaccines that primarily elicit CD4+ T cell responses have had difficulty preventing active pulmonary TB, a TB vaccine that elicits a potent memory CD8+ T cells is a logical alternative strategy. Memory T cells are thought to respond more rapidly than the primary (naïve) response. However, by directly comparing naïve and memory TCR retrogenic CD8+ T cells specific for the TB10.4 antigen during infection, we observe memory-derived T cells to be less fit than naïve-derived T cells. We relate the reduced fitness of memory CD8+ T cells to their lower sensitivity to antigen and show that fitness can be improved by increasing TCR affinity. Using a novel method for tracking CD8+ T cells elicited by vaccination during the response to Mtb aerosol challenge in intact mice, we observe the robust expansion of a new primary response as well as clonal selection of the secondary response, likely driven by TCR affinity. We propose that generating memory T cells with high affinities should be a goal of vaccination against TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Matthew G. Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| |
Collapse
|
99
|
Woodworth JS, Andersen P. Reprogramming the T Cell Response to Tuberculosis. Trends Immunol 2016; 37:81-83. [PMID: 26777728 DOI: 10.1016/j.it.2015.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Coscolla, Copin et al. recently used comparative genomics of M. tuberculosis (Mtb) strains to show that most human T cell-recognized epitopes are hyperconserved, but bona fide variable epitopes also exist. This identification of two sets of antigens implies opposing evolutionary processes and will have an important impact on tuberculosis (TB) vaccine strategy and design.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
100
|
Boer MC, van Meijgaarden KE, Goletti D, Vanini V, Prins C, Ottenhoff THM, Joosten SA. KLRG1 and PD-1 expression are increased on T-cells following tuberculosis-treatment and identify cells with different proliferative capacities in BCG-vaccinated adults. Tuberculosis (Edinb) 2015; 97:163-71. [PMID: 26750180 DOI: 10.1016/j.tube.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
In cancer and chronic infectious diseases, immune checkpoint-blockade of inhibitory receptors can enhance T-cell immunity. In tuberculosis (TB), a chronic infectious disease, prolonged antigen exposure can potentially drive terminal T-cell differentiation towards functional 'exhaustion': in human TB T-cells express PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein-4). However, in murine TB not PD-1 but rather killer cell lectin-like receptor subfamily-G1 (KLRG1) was a superior indicator of terminal T-cell differentiation. We therefore compared expression of KLRG1, PD-1 and CTLA-4 on T-cells in different stages of human TB, and also analysed their induction following BCG-vaccination. KLRG1, PD-1 and CTLA-4-expression were highest on in vitro BCG-stimulated CD4(+) T-cells following recent TB-treatment; KLRG1 and PD-1-expression on CD4(+) T-cells in active--but not latent--TB were only slightly increased compared to healthy donors. BCG-vaccination induced KLRG1-expression on BCG-stimulated CD8(+) but not CD4(+) T-cells, while neither PD-1 nor CTLA-4-expression increased. KLRG1-expressing CD8(+) T-cells exhibited markedly decreased proliferation, whereas PD-1(+) T-cells proliferated after in vitro BCG-stimulation. Thus, we demonstrate the presence of increased KLRG1-expressing T-cells in TB-treated individuals, and present KLRG1 as a marker of decreased human T-cell proliferation following BCG-vaccination. These results expand our understanding of cell-mediated immune control of mycobacterial infections.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Delia Goletti
- Istituto Nazionale per le Malattie Infettive "L. Spallanzani", Via Portuense 292, Rome 00149, Italy
| | - Valentina Vanini
- Istituto Nazionale per le Malattie Infettive "L. Spallanzani", Via Portuense 292, Rome 00149, Italy
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|