51
|
Dzobo K. Epigenomics-Guided Drug Development: Recent Advances in Solving the Cancer Treatment "jigsaw puzzle". OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:70-85. [PMID: 30767728 DOI: 10.1089/omi.2018.0206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human epigenome plays a key role in determining cellular identity and eventually function. Drug discovery undertakings have focused mainly on the role of genomics in carcinogenesis, with the focus turning to the epigenome recently. Drugs targeting DNA and histone modifications are under development with some such as 5-azacytidine, decitabine, vorinostat, and panobinostat already approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This expert review offers a critical analysis of the epigenomics-guided drug discovery and development and the opportunities and challenges for the next decade. Importantly, the coupling of epigenetic editing techniques, such as clustered regularly interspersed short palindromic repeat (CRISPR)-CRISPR-associated protein-9 (Cas9) and APOBEC-coupled epigenetic sequencing (ACE-seq) with epigenetic drug screens, will allow the identification of small-molecule inhibitors or drugs able to reverse epigenetic changes responsible for many diseases. In addition, concrete and sustainable innovation in cancer treatment ought to integrate epigenome targeting drugs with classic therapies such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
52
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
53
|
Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer 2020; 6:580-592. [PMID: 32610068 DOI: 10.1016/j.trecan.2020.02.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms, including DNA methylation, histone post-translational modifications, and chromatin structure regulation, are critical for the interactions between tumor and immune cells. Emerging evidence shows that tumors commonly hijack various epigenetic mechanisms to escape immune restriction. As a result, the pharmaceutical modulation of epigenetic regulators, including 'writers', 'readers', 'erasers', and 'remodelers', is able to normalize the impaired immunosurveillance and/or trigger antitumor immune responses. Thus, epigenetic targeting agents are attractive immunomodulatory drugs and will have major impacts on immuno-oncology. Here, we discuss epigenetic regulators of the cancer-immunity cycle and current advances in developing epigenetic therapies to boost anticancer immune responses, either alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
54
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
55
|
Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther 2020; 9:167-200. [PMID: 33117742 PMCID: PMC7549137 DOI: 10.2147/itt.s273327] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.
Collapse
Affiliation(s)
- Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Troy Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Jeffrey Schlom Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, MD20892, USATel +1 240-858-3463Fax +1 240-541-4558 Email
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
56
|
Dan H, Zhang S, Zhou Y, Guan Q. DNA Methyltransferase Inhibitors: Catalysts For Antitumour Immune Responses. Onco Targets Ther 2019; 12:10903-10916. [PMID: 31849494 PMCID: PMC6913319 DOI: 10.2147/ott.s217767] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is a kind of heritable change that involves the unaltered DNA sequence and can have effects on gene expression. The regulatory mechanism mainly includes DNA methylation, histone modification and non-coding RNA regulation. DNA methylation is currently the most studied aspect of epigenetics. It is widely present in eukaryotic cells and is the most important epigenetic mark in the regulation of gene expression in the cell. DNA methyltransferase inhibitors (DNMTi) have been increasingly recognized in the field of cancer immunotherapy, have been approved for the treatment of acute myeloid leukaemia (AML) and are widely being used in clinical trials of cancer immunotherapies. DNMTi promote the reactivation of tumour suppressor genes, enhance tumour immunogenicity, and stimulate a variety of immune cells to secrete cytokines that exert cytotoxic effects, promote tumour cell death, including macrophages, natural killer (NK) cells and CD8+ T cells, and upregulate major histocompatibility complex (MHC) class I expression levels. Here, we mainly summarize the epigenetics related to DNMTi and their regulation of the antitumour immune response and DNMTi combined with immuno-therapeutics or histone deacetylase inhibitors to demonstrate the great development potential and clinical application value of DNMTi.
Collapse
Affiliation(s)
- Huimin Dan
- Gansu Province Key Laboratory of Gastrointestinal Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Shanshan Zhang
- Gansu Province Key Laboratory of Gastrointestinal Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Yongning Zhou
- Gansu Province Key Laboratory of Gastrointestinal Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Quanlin Guan
- Gansu Province Key Laboratory of Gastrointestinal Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
57
|
Rodriguez CP, Wu Q(V, Voutsinas J, Fromm JR, Jiang X, Pillarisetty VG, Lee SM, Santana-Davila R, Goulart B, Baik CS, Chow LQ, Eaton K, Martins R. A Phase II Trial of Pembrolizumab and Vorinostat in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer. Clin Cancer Res 2019; 26:837-845. [DOI: 10.1158/1078-0432.ccr-19-2214] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
|
58
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
59
|
Wang M, Fang X, Wang X. Emerging role of histone deacetylase inhibitors in the treatment of diffuse large B-cell lymphoma. Leuk Lymphoma 2019; 61:763-775. [PMID: 31766900 DOI: 10.1080/10428194.2019.1691194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although current immunochemotherapy has increased the therapeutic efficacy in diffuse large B-cell lymphoma (DLBCL), there are still some patients who present unfavorable outcomes. Novel effective treatment strategies are needed to improve the prognosis of DLBCL. In this review, we discussed the functional mechanisms and therapeutic applications of histone deacetylases inhibitors (HDIs) in DLBCL from preclinical and clinical studies. The mechanistic rationale of HDIs involved a wide range of effects including the regulation of transcription factors, tumor suppressors, and cell surface molecules. Histone deacetylases inhibitors as monotherapy performed limited activity in the treatment of DLBCL in present clinical trials, but its combination with other regimens has emerged as potential treatment candidates with generally acceptable and manageable adverse effects. Further investigation on the anti-tumor mechanisms of HDIs and ongoing clinical trials will hopefully facilitate the application of HDIs in patients with DLBCL.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
60
|
Histone deacetylase inhibition promotes intratumoral CD8 + T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunol Immunother 2019; 68:2081-2094. [PMID: 31720815 DOI: 10.1007/s00262-019-02430-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors impair tumor cell proliferation and alter gene expression. However, the impact of these changes on anti-tumor immunity is poorly understood. Here, we showed that the class I HDAC inhibitor, entinostat (ENT), promoted the expression of immune-modulatory molecules, including MHCII, costimulatory ligands, and chemokines on murine breast tumor cells in vitro and in vivo. ENT also impaired tumor growth in vivo-an effect that was dependent on both CD8+ T cells and IFNγ. Moreover, ENT promoted intratumoral T-cell clonal expansion and enhanced their functional activity. Importantly, ENT sensitized normally unresponsive tumors to the effects of PD1 blockade, predominantly through increases in T-cell proliferation. Our findings suggest that class I HDAC inhibitors impair tumor growth by enhancing the proliferative and functional capacity of CD8+ T cells and by sensitizing tumor cells to T-cell recognition.
Collapse
|
61
|
Wang X, Waschke BC, Woolaver RA, Chen Z, Zhang G, Piscopio AD, Liu X, Wang JH. Histone Deacetylase Inhibition Sensitizes PD1 Blockade-Resistant B-cell Lymphomas. Cancer Immunol Res 2019; 7:1318-1331. [PMID: 31235619 PMCID: PMC6679731 DOI: 10.1158/2326-6066.cir-18-0875] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
PD1 blockade is effective in a subset of patients with B-cell lymphoma (e.g., classical-Hodgkin lymphomas); however, most patients do not respond to anti-PD1 therapy. To study PD1 resistance, we used an isoform-selective histone deacetylase inhibitor (HDACi; OKI-179), and a mouse mature B-cell lymphoma, G1XP lymphoma, immunosuppressive features of which resemble those of human B-cell lymphomas, including downregulation of MHC class I and II, exhaustion of CD8+ and CD4+ tumor-infiltrating lymphocytes (TIL), and PD1-blockade resistance. Using two lymphoma models, we show that treatment of B-cell lymphomas refractory to PD1 blockade with both OKI-179 and anti-PD1 inhibited growth; furthermore, sensitivity to single or combined treatment required tumor-derived MHC class I, and positively correlated with MHC class II expression level. We conclude that OKI-179 sensitizes lymphomas to PD1-blockade by enhancing tumor immunogenicity. In addition, we found that different HDACis exhibited distinct effects on tumors and T cells, yet the same HDACi could differentially affect HLA expression on different human B-cell lymphomas. Our study highlights the immunologic effects of HDACis on antitumor responses and suggests that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers (e.g., MHCs) and the individual profiles of HDACi.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gan Zhang
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
- OnKure Inc., Boulder, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
62
|
Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. HDAC3 Inhibition Upregulates PD-L1 Expression in B-Cell Lymphomas and Augments the Efficacy of Anti-PD-L1 Therapy. Mol Cancer Ther 2019; 18:900-908. [PMID: 30824609 DOI: 10.1158/1535-7163.mct-18-1068] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Programmed cell-death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway blockade is a promising therapy for the treatment of advanced cancers, including B-cell lymphoma. The clinical response to PD-1/PD-L1 immunotherapy correlates with PD-L1 levels on tumor cells and other cells in the tumor microenvironment. Hence, it is important to understand the molecular mechanisms that regulate PD-L1 expression. Here, we report that histone deacetylase 3 (HDAC3) is a crucial repressor of PD-L1 transcription in B-cell lymphoma. Pan-HDACs or selective HDAC3 inhibitors could rapidly increase histone acetylation and recruitment of bromodomain protein BRD4 at the promoter region of PD-L1 gene, leading to activation of its transcription. Mechanically, HDAC3 and its putative associated corepressor SMRT were recruited to the PD-L1 promoter by the transcriptional repressor BCL6. In addition, HDAC3 inhibition reduced DNA methyltransferase 1 protein levels to indirectly activate PD-L1 transcription. Finally, HDAC3 inhibition increased PD-L1 expression on dendritic cells in the tumor microenvironment. Combining selective HDAC3 inhibitor with anti-PD-L1 immunotherapy enhanced tumor regression in syngeneic murine lymphoma model. Our findings identify HDAC3 as an important epigenetic regulator of PD-L1 expression and implicate combination of HDAC3 inhibition with PD-1/PD-L1 blockade in the treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Siyu Deng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
63
|
Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. JOURNAL OF ONCOLOGY 2019; 2019:5245034. [PMID: 30853982 PMCID: PMC6377965 DOI: 10.1155/2019/5245034] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies. In this review, we discuss the therapeutic potential of novel regimens combining immune checkpoint inhibitors with therapeutic interventions that (1) increase tumor immunogenicity such as chemotherapy, radiotherapy, and epigenetic therapy; (2) reverse tumor immunosuppression such as TAMs, MDSCs, and Tregs targeted therapy; and (3) reduce tumor burden and increase the immune effector response with rationally designed dual or triple inhibitory chemotypes.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Donald L. Durden
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
- SignalRx Pharmaceuticals, Inc., San Diego, CA, USA
| |
Collapse
|
64
|
Kartikasari AER, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, Plebanski M. Therapeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Front Immunol 2019; 9:3109. [PMID: 30740111 PMCID: PMC6357987 DOI: 10.3389/fimmu.2018.03109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
There is great interest in developing efficient therapeutic cancer vaccines, as this type of therapy allows targeted killing of tumor cells as well as long-lasting immune protection. High levels of tumor-infiltrating CD8+ T cells are associated with better prognosis in many cancers, and it is expected that new generation vaccines will induce effective production of these cells. Epigenetic mechanisms can promote changes in host immune responses, as well as mediate immune evasion by cancer cells. Here, we focus on epigenetic modifications involved in both vaccine-adjuvant-generated T cell immunity and cancer immune escape mechanisms. We propose that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic modifications and discuss how epigenetic interventions could improve vaccine-based therapies. Additionally, we speculate on how, given the unique nature of individual epigenetic landscapes, epigenetic mapping of cancer progression and specific subsequent immune responses, could be harnessed to tailor therapeutic vaccines to each patient.
Collapse
Affiliation(s)
- Apriliana E R Kartikasari
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Monica D Prakash
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Momodou Cox
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Kirsty Wilson
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jennifer A Cauchi
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
65
|
Merino VF, Cho S, Nguyen N, Sadik H, Narayan A, Talbot C, Cope L, Zhou XC, Zhang Z, Győrffy B, Sukumar S. Induction of cell cycle arrest and inflammatory genes by combined treatment with epigenetic, differentiating, and chemotherapeutic agents in triple-negative breast cancer. Breast Cancer Res 2018; 20:145. [PMID: 30486871 PMCID: PMC6263070 DOI: 10.1186/s13058-018-1068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background A combination of entinostat, all-trans retinoic acid, and doxorubicin (EAD) induces cell death and differentiation and causes significant regression of xenografts of triple-negative breast cancer (TNBC). Methods We investigated the mechanisms underlying the antitumor effects of each component of the EAD combination therapy by high-throughput gene expression profiling of drug-treated cells. Results Microarray analysis showed that entinostat and doxorubicin (ED) altered expression of genes related to growth arrest, inflammation, and differentiation. ED downregulated MYC, E2F, and G2M cell cycle genes. Accordingly, entinostat sensitized the cells to doxorubicin-induced growth arrest at G2. ED induced interferon genes, which correlated with breast tumors containing a higher proportion of tumor-infiltrating lymphocytes. ED also increased the expression of immune checkpoint agonists and cancer testis antigens. Analysis of TNBC xenografts showed that EAD enhanced the inflammation score in nude mice. Among the genes differentially regulated between the EAD and ED groups, an all-trans retinoic acid (ATRA)-regulated gene, DHRS3, was induced in EAD-treated xenografts. DHRS3 was expressed at lower levels in human TNBC metastases compared to normal breast or primary tumors. High expression of ED-induced growth arrest and inflammatory genes was associated with better prognosis in TNBC patients. Conclusions Entinostat potentiated doxorubicin-mediated cell death and the combination induced inflammatory signatures. The ED-induced immunomodulation may improve immunotherapy. Addition of ATRA to ED may potentiate inflammation and contribute to TNBC regression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1068-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa F Merino
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Soonweng Cho
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nguyen Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover Talbot
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xian C Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
66
|
Arenas-Ramirez N, Sahin D, Boyman O. Epigenetic mechanisms of tumor resistance to immunotherapy. Cell Mol Life Sci 2018; 75:4163-4176. [PMID: 30140960 PMCID: PMC11105392 DOI: 10.1007/s00018-018-2908-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
The recent impact of cancer immunotherapies has firmly established the ability and importance of the immune system to fight malignancies. However, the intimate interaction between the highly dynamic tumor and immune cells leads to a selection process driven by genetic and epigenetic processes. As the molecular pathways of cancer resistance mechanisms to immunotherapy become increasingly known, novel therapeutic targets are being tested in combination with immune-stimulating approaches. We here review recent insights into the molecular mechanisms of tumor resistance with particular emphasis on epigenetic processes and place these in the context of previous models.
Collapse
Affiliation(s)
| | - Dilara Sahin
- Department of Immunology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, 8006, Zurich, Switzerland.
| |
Collapse
|
67
|
Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, Munshi NC, Anderson KC. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia 2018; 32:1932-1947. [PMID: 29487385 PMCID: PMC6537609 DOI: 10.1038/s41375-018-0062-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDAC) are therapeutic targets in multiple cancers. ACY241, an HDAC6 selective inhibitor, has shown anti-multiple myeloma (MM) activity in combination with immunomodulatory drugs and proteasome inhibitors. Here we show ACY241 significantly reduces the frequency of CD138+ MM cells, CD4+CD25+FoxP3+ regulatory T cells, and HLA-DRLow/-CD11b+CD33+ myeloid-derived suppressor cells; and decreases expression of PD1/PD-L1 on CD8+ T cells and of immune checkpoints in bone marrow cells from myeloma patients. ACY241 increased B7 (CD80, CD86) and MHC (Class I, Class II) expression on tumor and dendritic cells. We further evaluated the effect of ACY241 on antigen-specific cytotoxic T lymphocytes (CTL) generated with heteroclitic XBP1unspliced184-192 (YISPWILAV) and XBP1spliced367-375 (YLFPQLISV) peptides. ACY241 induces co-stimulatory (CD28, 41BB, CD40L, OX40) and activation (CD38) molecule expression in a dose- and time-dependent manner, and anti-tumor activities, evidenced by increased perforin/CD107a expression, IFN-γ/IL-2/TNF-α production, and antigen-specific central memory CTL. These effects of ACY241 on antigen-specific memory T cells were associated with activation of downstream AKT/mTOR/p65 pathways and upregulation of transcription regulators including Bcl-6, Eomes, HIF-1 and T-bet. These studies therefore demonstrate mechanisms whereby ACY241 augments immune response, providing the rationale for its use, alone and in combination, to restore host anti-tumor immunity and improve patient outcome.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/metabolism
- Humans
- Immunologic Memory
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Peptides/immunology
- Signal Transduction/drug effects
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- X-Box Binding Protein 1/chemistry
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/immunology
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Song
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Noopur Raje
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Flint TR, Jones JO, Ferrer M, Colucci F, Janowitz T. A comparative analysis of immune privilege in pregnancy and cancer in the context of checkpoint blockade immunotherapy. Semin Oncol 2018; 45:170-175. [PMID: 30262396 DOI: 10.1053/j.seminoncol.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Despite their abilities to elicit immune responses, both syngeneic tumors and the half-mismatched placenta grow in the host, unlike a tissue allograft that is aggressively rejected. This is because of local and systemic factors that contribute to the immunologic privilege of tumors and the placenta. Checkpoint blockade immunotherapies subvert this privilege, with spectacularly beneficial outcomes in subsets of patients with certain types of cancer. A challenge for the community of scientists and clinicians is to replicate these successes in pregnant patients with cancer, without harm to the placenta. Here we compare and contrast the immunology of cancers and the placenta, and suggest that immunotherapy for pregnant patients with cancer may be a reasonable option, but that this should be explored systematically.
Collapse
Affiliation(s)
- Thomas R Flint
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James O Jones
- Department of Oncology, University of Cambridge, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Addenbrooke's Hospital, Cambridge, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Miriam Ferrer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge and Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Tobias Janowitz
- Department of Oncology, University of Cambridge, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
69
|
Haabeth OAW, Fauskanger M, Manzke M, Lundin KU, Corthay A, Bogen B, Tveita AA. CD4+ T-cell–Mediated Rejection of MHC Class II–Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs. Cancer Res 2018; 78:4573-4585. [DOI: 10.1158/0008-5472.can-17-2426] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
70
|
Turner TB, Meza-Perez S, Londoño A, Katre A, Peabody JE, Smith HJ, Forero A, Norian LA, Straughn JM, Buchsbaum DJ, Randall TD, Arend RC. Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget 2018; 8:44159-44170. [PMID: 28498806 PMCID: PMC5546470 DOI: 10.18632/oncotarget.17395] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Expression of MHC class II pathway proteins in ovarian cancer correlates with prolonged survival. Murine and human ovarian cancer cells were treated with epigenetic modulators - histone deacetylase inhibitors and a DNA methyltransferase inhibitor. mRNA and protein expression of the MHC II pathway were evaluated by qPCR and flow cytometry. Treatment with entinostat and azacytidine of ID8 cells in vitro increased mRNA levels of Cd74, Ciita, and H2-Aa, H2-Eb1. MHC II and CD74 protein expression were increased after treatment with either agent. A dose dependent response in mRNA and protein expression was seen with entinostat. Combination treatment showed higher MHC II protein expression than with single agent treatment. In patient derived xenografts, CIITA, CD74, and MHC II mRNA transcripts were significantly increased after combination treatment. Expression of MHC II on ovarian tumors in MISIIR-Tag mice was increased with both agents relative to control. Combination treatment significantly reduced ID8 tumor growth in immune-competent mice. Epigenetic treatment increases expression of MHC II on ovarian cancer cells and impedes tumor growth. This approach warrants further study in ovarian cancer patients.
Collapse
Affiliation(s)
- Taylor B Turner
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angelina Londoño
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwini Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- NIH Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haller J Smith
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andres Forero
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
71
|
Cheng MA, Farmer E, Huang C, Lin J, Hung CF, Wu TC. Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases. Hum Gene Ther 2018; 29:971-996. [PMID: 29316817 DOI: 10.1089/hum.2017.197] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) has long been recognized as the causative agent of cervical cancer. High-risk HPV types 16 and 18 alone are responsible for over 70% of all cases of cervical cancers. More recently, HPV has been identified as an etiological factor for several other forms of cancers, including oropharyngeal, anogenital, and skin. Thus, the association of HPV with these malignancies creates an opportunity to control these HPV lesions and HPV-associated malignancies through immunization. Strategies to prevent or to therapeutically treat HPV infections have been developed and are still pushing innovative boundaries. Currently, commercial prophylactic HPV vaccines are widely available, but they are not able to control established infections or lesions. As a result, there is an urgent need for the development of therapeutic HPV vaccines, to treat existing infections, and to prevent the development of HPV-associated cancers. In particular, DNA vaccination has emerged as a promising form of therapeutic HPV vaccine. DNA vaccines have great potential for the treatment of HPV infections and HPV-associated cancers due to their safety, stability, simplicity of manufacturability, and ability to induce antigen-specific immunity. This review focuses on the current state of therapeutic HPV DNA vaccines, including results from recent and ongoing clinical trials, and outlines different strategies that have been employed to improve their potencies. The continued progress and improvements made in therapeutic HPV DNA vaccine development holds great potential for innovative ways to effectively treat HPV infections and HPV-associated diseases.
Collapse
Affiliation(s)
- Max A Cheng
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Emily Farmer
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Claire Huang
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - John Lin
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Chien-Fu Hung
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,2 Department of Oncology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - T-C Wu
- 1 Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,2 Department of Oncology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,3 Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions , Baltimore, Maryland.,4 Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| |
Collapse
|
72
|
A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma. Oncotarget 2018; 8:32918-32929. [PMID: 28415633 PMCID: PMC5464838 DOI: 10.18632/oncotarget.16464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Vorinostat is a histone deacetylase inhibitor (HDACi). Based on a confirmed partial response (PR) in an adenoid cystic carcinoma (ACC) patient treated with vorinostat in a prior phase 1 trial, we initiated this phase 2 trial. Methods: Vorinostat was administered orally 400 mg daily, 28 day cycles. The primary objective was to evaluate response rate (RR). Exploratory studies included whole exome sequencing (WES) of selected patients. Results Thirty patients were enrolled. Median age of patients was 53 years (range 21–73). Median number of cycles was 5 (range 1-66). Lymphopenia (n = 5), hypertension (n = 3), oral pain (n = 2), thromboembolic events (n = 2) and fatigue (n = 2) were the only grade 3 adverse events (AEs) that occurred in more than 1 patient. Eleven patients were dose reduced secondary to drug-related AEs. Two patients had a partial response (PR), with response durations of 53 and 7.2 months. One patient had a minor response with a decrease in ascites (for 19 cycles). Stable disease was the best response in 27 patients. Targeted and WES of 8 patients in this trial identified mutations in chromatin remodeling genes highlighting the role of the epigenome in ACC. Conclusion: Vorinostat demonstrated efficacy in patients with ACC supporting the inclusion of HDACi in future studies to treat ACC.
Collapse
|
73
|
Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS, Christensen JG. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018; 67:381-392. [PMID: 29124315 PMCID: PMC11028326 DOI: 10.1007/s00262-017-2091-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Checkpoint inhibitor therapy has led to major treatment advances for several cancers including non-small cell lung cancer (NSCLC). Despite this, a significant percentage of patients do not respond or develop resistance. Potential mechanisms of resistance include lack of expression of programmed death ligand 1 (PD-L1), decreased capacity to present tumor antigens, and the presence of an immunosuppressive tumor microenvironment. Mocetinostat is a spectrum-selective inhibitor of class I/IV histone deacetylases (HDACs), a family of proteins implicated in epigenetic silencing of immune regulatory genes in tumor and immune cells. Mocetinostat upregulated PD-L1 and antigen presentation genes including class I and II human leukocyte antigen (HLA) family members in a panel of NSCLC cell lines in vitro. Mocetinostat target gene promoters were occupied by a class I HDAC and exhibited increased active histone marks after mocetinostat treatment. Mocetinostat synergized with interferon γ (IFN-γ) in regulating class II transactivator (CIITA), a master regulator of class II HLA gene expression. In a syngeneic tumor model, mocetinostat decreased intratumoral T-regulatory cells (Tregs) and potentially myeloid-derived suppressor cell (MDSC) populations and increased intratumoral CD8+ populations. In ex vivo assays, patient-derived, mocetinostat-treated Tregs also showed significant down regulation of FOXP3 and HELIOS. The combination of mocetinostat and a murine PD-L1 antibody antagonist demonstrated increased anti-tumor activity compared to either therapy alone in two syngeneic tumor models. Together, these data provide evidence that mocetinostat modulates immune-related genes in tumor cells as well as immune cell types in the tumor microenvironment and enhances checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- David Briere
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Niranjan Sudhakar
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - David M Woods
- NYU Langone Medical Center, New York, NY, 10016, USA
| | - Jill Hallin
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Lars D Engstrom
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Ruth Aranda
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Harrah Chiang
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - Peter Olson
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - James G Christensen
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
74
|
Tveita A, Fauskanger M, Bogen B, Haabeth OAW. Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display. Oncotarget 2018; 7:67175-67182. [PMID: 27626487 PMCID: PMC5341866 DOI: 10.18632/oncotarget.11946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
CD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported. To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9. Our results demonstrate that ablation of the relevant MHC II (I-Ed) in multiple myeloma cells (MOPC315) does not hinder rejection by tumor-specific CD4+ T cells. These findings provide conclusive evidence that CD4+ T cells specific for tumor antigens can eliminate malignant cells in the absence of endogenous MHC class II expression on the tumor cells. This occurs through antigen uptake and indirect presentation on tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Anders Tveita
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marte Fauskanger
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Audun Werner Haabeth
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
75
|
Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). Int J Oncol 2018; 52:1041-1056. [PMID: 29484440 PMCID: PMC5843403 DOI: 10.3892/ijo.2018.4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
On the basis of immunological results, it is not in doubt that the immune system is able to recognize and eliminate transformed cells. A plethora of studies have investigated the immune system of patients with cancer and how it is prone to immunosuppression, due in part to the decrease in lymphocyte proliferation and cytotoxic activity. The series of experiments published following the demonstration by Dr Allison's group of the potential effect of anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) paved the way for a new perception in cancer immunotherapy: Immune checkpoints. Several T cell-co-stimulatory molecules including cluster of differentiation (CD)28, inducible T cell co-stimulatory, 4-1BB, OX40, glucocorticoid-induced tumor necrosis factor receptor-related gene and CD27, and inhibitory molecules including T cell immunoglobulin and mucin domain-containing-3, programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), V-domain immunoglobulin suppressor of T cells activation, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, and B and T lymphocyte attenuator have been described in regulating T cell functions, and have been demonstrated to be essential targets in immunotherapy. In preclinical studies, glioblastoma multiforme, a high-grade glioma, the monotherapy targeting PD-1/PD-L1 and CTLA-4 resulted in increased survival times. An improved understanding of the pharmacodynamics and immune monitoring on glioma cancers, particularly in diffuse intrinsic pontine glioma (DIPG), an orphan type of cancer, is expected to have a major contribution to the development of novel therapeutic approaches. On the basis of the recent preclinical and clinical studies of glioma, but not of DIPG, the present review makes a claim for the importance of investigating the tumor microenvironment, the immune response and the use of immune checkpoints (agonists or antagonists) in preclinical/clinical DIPG samples by immune monitoring approaches and high-dimensional analysis. Evaluating the potential predictive and correlative biomarkers in preclinical and clinical studies may assist in answering certain crucial questions that may be useful to improve the clinical response in patients with DIPG.
Collapse
|
76
|
The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 2018; 7:28849-67. [PMID: 26700624 PMCID: PMC5045361 DOI: 10.18632/oncotarget.6680] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.
Collapse
|
77
|
Florea ID, Karaoulani C. Epigenetic Changes of the Immune System with Role in Tumor Development. Methods Mol Biol 2018; 1856:203-218. [PMID: 30178253 DOI: 10.1007/978-1-4939-8751-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor development is closely related to chronic inflammation and to evasion of immune defense mechanisms by neoplastic cells. The mediators of the inflammatory process as well as proteins involved in immune response or immune response evasion can be subject to various epigenetic changes such as methylation, acetylation, or phosphorylation. Some of these, such as cytokine suppressors, are undergoing repression through epigenetic changes, and others such as cytokines or chemokines are undergoing activation through epigenetic changes, both modifications having as a result tumor progression. The activating changes can affect the receptor molecules involved in immune response and these promote inflammation and subsequently tumor development while the inactivating changes seem to be related to the tumor regression process. The proteins involved in antigen presentation, and, therefore in immune response escape, such as classical HLA proteins and related APM (antigen presentation machinery) with their epigenetic changes contribute to the tumor development process, either to tumor progression or regression, depending on the immune effector cells that are in play.
Collapse
|
78
|
Selinger E, Reiniš M. Epigenetic View on Interferon γ Signalling in Tumour Cells. Folia Biol (Praha) 2018; 64:125-136. [PMID: 30724158 DOI: 10.14712/fb2018064040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IFN-γ is a pleiotropic cytokine crucial for both innate and adaptive immunity, which also plays a critical role in immunological surveillance of cancer. Genetic defects or gene silencing in the IFN-γ signal transduction pathways as well as in the expression of IFN-γ-regulated genes represent frequent mechanisms by which tumour cells can escape from immune responses. Epigenetic control of the IFN-γ signalling pathway activation associated with epigenetic changes in the corresponding regulatory gene regions, such as chromatin remodelling, histone acetylation and methylation, and DNA demethylation is frequently dysregulated in tumour cells. Epigenetic silencing of the IFN-γ regulatory pathway components, as well as of the IFN-γ-regulated genes crucial for tumour cell recognition or induction of anti-tumour immune responses, has been documented in various cancer models. Expression of both IFN-γ signalling pathway components and selected IFN-γ-regulated genes can be influenced by epigenetic modifiers, namely DNA methyltransferase and histone deacetylase inhibitors. These agents thus can mimic, restore, or boost the immunomodulatory effects of IFN-γ in tumour cells, which can contribute to their anti-tumour therapeutic efficacies and justifies their potential use in combined epigenetic therapy with immunotherapeutic approaches.
Collapse
Affiliation(s)
- E Selinger
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - M Reiniš
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| |
Collapse
|
79
|
Vancurova I, Uddin MM, Zou Y, Vancura A. Combination Therapies Targeting HDAC and IKK in Solid Tumors. Trends Pharmacol Sci 2017; 39:295-306. [PMID: 29233541 DOI: 10.1016/j.tips.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
The rationale for developing histone deacetylase (HDAC) inhibitors (HDACi) as anticancer agents was based on their ability to induce apoptosis and cell cycle arrest in cancer cells. However, while HDACi have been remarkably effective in the treatment of hematological malignancies, clinical studies with HDACi as single agents in solid cancers have been disappointing. Recent studies have shown that, in addition to inducing apoptosis in cancer cells, class I HDACi induce IκB kinase (IKK)-dependent expression of proinflammatory chemokines, such as interleukin-8 (IL8; CXCL8), resulting in the increased proliferation of tumor cells, and limiting the effectiveness of HDACi in solid tumors. Here, we discuss the mechanisms responsible for HDACi-induced CXCL8 expression, and opportunities for combination therapies targeting HDACs and IKK in solid tumors.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St John's University, New York, NY 11439, USA.
| | - Mohammad M Uddin
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| |
Collapse
|
80
|
McCaw TR, Randall TD, Forero A, Buchsbaum DJ. Modulation of antitumor immunity with histone deacetylase inhibitors. Immunotherapy 2017; 9:1359-1372. [PMID: 29185390 PMCID: PMC6077764 DOI: 10.2217/imt-2017-0134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylase inhibitors possess a broad array of antitumor activities; however, their net impact on the evolving antitumor immune response is highly dependent on the inhibitors used and the histone deacetylases they target. Herein, we sequentially focus on each stage of the antitumor immune response - from dendritic cell activation and migration, antigen uptake and presentation, T-cell activation and differentiation and the enactment of antitumor effector functions within the tumor microenvironment. In particular, we will discuss how various inhibitors have different effects depending on cellular activation, experimental design and specific histone deacetylases being targeted - and how these changes impact the outcome of an antitumor immune response. At last, we consider the impact these inhibitors may have on T-cell exhaustion and implications for combination with other immunomodulating therapies.
Collapse
Affiliation(s)
- Tyler R McCaw
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Andres Forero
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| |
Collapse
|
81
|
Liu X, Zhou Q, Xu Y, Chen M, Zhao J, Wang M. Harness the synergy between targeted therapy and immunotherapy: what have we learned and where are we headed? Oncotarget 2017; 8:86969-86984. [PMID: 29156850 PMCID: PMC5689740 DOI: 10.18632/oncotarget.21160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022] Open
Abstract
Since the introduction of imatinib for the treatment of chronic myelogenous leukemia, several oncogenic mutations have been identified in various malignancies that can serve as targets for therapy. More recently, a deeper insight into the mechanism of antitumor immunity and tumor immunoevasion have facilitated the development of novel immunotherapy agents. Certain targeted agents have the ability of inhibiting tumor growth without causing severe lymphocytopenia and amplifying antitumor immune response by increasing tumor antigenicity, enhancing intratumoral T cell infiltration, and altering the tumor immune microenvironment, which provides a rationale for combining targeted therapy with immunotherapy. Targeted therapy can elicit dramatic responses in selected patients by interfering with the tumor-intrinsic driver mutations. But in most cases, resistance will occur over a relatively short period of time. In contrast, immunotherapy can yield durable, albeit generally mild, responses in several tumor types via unleashing host antitumor immunity. Thus, combination approaches might be able to induce a rapid tumor regression and a prolonged duration of response. We examine the available evidence regarding immune effects of targeted therapy, and review preclinical and clinical studies on the combination of targeted therapy and immunotherapy for cancer treatment. Furthermore, we discuss challenges of the combined therapy and highlight the need for continued translational research.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qing Zhou
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yan Xu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Minjiang Chen
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Zhao
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Mengzhao Wang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
82
|
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: The promise of immune priming with epigenetic agents. Oncoimmunology 2017; 6:e1315486. [PMID: 29123948 PMCID: PMC5665084 DOI: 10.1080/2162402x.2017.1315486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).
Collapse
Affiliation(s)
- Corey A Carter
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | - Joseph Roswarski
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | | | | | - Harry Lybeck
- University of Helsinki, Department of Physiology, Helsinki, Finland
| | - Michelle M Kim
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, USA
| | | | - Tony R Reid
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
83
|
Abstract
The therapy of different advanced-stage malignancies with monoclonal antibodies blocking programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) signaling has had an impressive long-lasting effect in a portion of patients, but in most cases, this therapy was not successful, or a secondary resistance developed. To enhance its efficacy in treated patients, predictive biomarkers are searched for and various combination treatments are intensively investigated. As the downregulation of major histocompatibility complex (MHC) class I molecules is one of the most frequent mechanisms of tumor escape from the host’s immunity, it should be considered in PD-1/PD-L1 checkpoint inhibition. The potential for the use of a PD-1/PD-L1 blockade in the treatment of tumors with aberrant MHC class I expression is discussed, and some strategies of combination therapy are suggested.
Collapse
|
84
|
Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics 2017; 9:59. [PMID: 28572863 PMCID: PMC5450222 DOI: 10.1186/s13148-017-0358-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint factors, such as programmed cell death protein-1/2 (PD-1, PD-2) or cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptors, are targets for monoclonal antibodies (MAbs) developed for cancer immunotherapy. Indeed, modulating immune inhibitory pathways has been considered an important breakthrough in cancer treatment. Although immune checkpoint blockade therapy used to treat malignant diseases has provided promising results, both solid and haematological malignancies develop mechanisms that enable themselves to evade the host immune system. To overcome some major limitations and ensure safety in patients, recent strategies have shown that combining epigenetic modulators, such as inhibitors of histone deacetylases (HDACi) or DNA methyltransferases (DNMTi), with immunotherapeutics can be useful. Preclinical data generated using mouse models strongly support the feasibility and effectiveness of the proposed approaches. Indeed, co-treatment with pan- or class I-selective HDACi or DNMTi improved beneficial outcomes in both in vitro and in vivo studies. Based on the evidence of a pivotal role for HDACi and DNMTi in modulating various components belonging to the immune system, recent clinical trials have shown that both HDACi and DNMTi strongly augmented response to anti-PD-1 immunotherapy in different tumour types. This review describes the current strategies to increase immunotherapy responses, the effects of HDACi and DNMTi on immune modulation, and the advantages of combinatorial therapy over single-drug treatment.
Collapse
Affiliation(s)
- Roberta Mazzone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
85
|
Ritter C, Fan K, Paschen A, Reker Hardrup S, Ferrone S, Nghiem P, Ugurel S, Schrama D, Becker JC. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci Rep 2017; 7:2290. [PMID: 28536458 PMCID: PMC5442125 DOI: 10.1038/s41598-017-02608-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive, yet highly immunogenic skin cancer. The latter is due to its viral or UV-associated carcinogenesis. For tumor progression MCC has to escape the host’s immuno-surveillance, e.g. by loss of HLA class-I expression. Indeed, a reduced HLA class-I expression was observed in MCC tumor tissues and MCC cell lines. This reduced HLA class-I surface expression is caused by an impaired expression of key components of the antigen processing machinery (APM), including LMP2 and LMP7 as well as TAP1 and TAP2. Notably, experimental provisions of HLA class-I binding peptides restored HLA class-I surface expression on MCC cells. Silencing of the HLA class-I APM is due to histone deacetylation as inhibition of histone deacetylases (HDACs) not only induced acetylation of histones in the respective promoter regions but also re-expression of APM components. Thus, HDAC inhibition restored HLA class-I surface expression in vitro and in a mouse xenotransplantation model. In contrast to re-induction of HLA class-I by interferons, HDAC inhibitors did not interfere with the expression of immuno-dominant viral proteins. In summary, restoration of HLA class-I expression on MCC cells by epigenetic priming is an attractive approach to enhance therapies boosting adaptive immune responses.
Collapse
Affiliation(s)
- Cathrin Ritter
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Essen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaiji Fan
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany.,Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Sine Reker Hardrup
- Department of Immunology and Vaccinology, Technical University of Denmark, Frederiksberg, Denmark
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Essen, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Dermatology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
86
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
87
|
Dunn J, Rao S. Epigenetics and immunotherapy: The current state of play. Mol Immunol 2017; 87:227-239. [PMID: 28511092 DOI: 10.1016/j.molimm.2017.04.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/14/2017] [Accepted: 04/22/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells employ a number of mechanisms to escape immunosurveillance and facilitate tumour progression. The recent explosion of interest in immunotherapy, especially immune checkpoint blockade, is a result of discoveries about the fundamental ligand-receptor interactions that occur between immune and cancer cells within the tumour microenvironment. Distinct ligands expressed by cancer cells engage with cell surface receptors on immune cells, triggering inhibitory pathways (such as PD-1/PD-L1) that render immune cells immunologically tolerant. Importantly, recent studies on the role of epigenetics in immune evasion have exposed a key role for epigenetic modulators in augmenting the tumour microenvironment and restoring immune recognition and immunogenicity. Epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can reverse immune suppression via several mechanisms such as enhancing expression of tumour-associated antigens, components of the antigen processing and presenting machinery pathways, immune checkpoint inhibitors, chemokines, and other immune-related genes. These discoveries have established a highly promising basis for studies using combined epigenetic and immunotherapeutic agents as anti-cancer therapies. In this review, we discuss the exciting role of epigenetic immunomodulation in tumour immune escape, emphasising its significance in priming and sensitising the host immune system to immunotherapies through mechanisms such as the activation of the viral defence pathway. With this background in mind, we highlight the promise of combined epigenetic therapy and immunotherapy, focusing on immune checkpoint blockade, to improve outcomes for patients with many different cancer types.
Collapse
Affiliation(s)
- Jennifer Dunn
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| | - Sudha Rao
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| |
Collapse
|
88
|
Adeegbe DO, Liu Y, Lizotte PH, Kamihara Y, Aref AR, Almonte C, Dries R, Li Y, Liu S, Wang X, Warner-Hatten T, Castrillon J, Yuan GC, Poudel-Neupane N, Zhang H, Guerriero JL, Han S, Awad MM, Barbie DA, Ritz J, Jones SS, Hammerman PS, Bradner J, Quayle SN, Wong KK. Synergistic Immunostimulatory Effects and Therapeutic Benefit of Combined Histone Deacetylase and Bromodomain Inhibition in Non-Small Cell Lung Cancer. Cancer Discov 2017; 7:852-867. [PMID: 28408401 DOI: 10.1158/2159-8290.cd-16-1020] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Abstract
Effective therapies for non-small cell lung cancer (NSCLC) remain challenging despite an increasingly comprehensive understanding of somatically altered oncogenic pathways. It is now clear that therapeutic agents with potential to impact the tumor immune microenvironment potentiate immune-orchestrated therapeutic benefit. Herein, we evaluated the immunoregulatory properties of histone deacetylase (HDAC) and bromodomain inhibitors, two classes of drugs that modulate the epigenome, with a focus on key cell subsets that are engaged in an immune response. By evaluating human peripheral blood and NSCLC tumors, we show that the selective HDAC6 inhibitor ricolinostat promotes phenotypic changes that support enhanced T-cell activation and improved function of antigen-presenting cells. The bromodomain inhibitor JQ1 attenuated CD4+FOXP3+ T regulatory cell suppressive function and synergized with ricolinostat to facilitate immune-mediated tumor growth arrest, leading to prolonged survival of mice with lung adenocarcinomas. Collectively, our findings highlight the immunomodulatory effects of two epigenetic modifiers that, together, promote T cell-mediated antitumor immunity and demonstrate their therapeutic potential for treatment of NSCLC.Significance: Selective inhibition of HDACs and bromodomain proteins modulates tumor-associated immune cells in a manner that favors improved T-cell function and reduced inhibitory cellular mechanisms. These effects facilitated robust antitumor responses in tumor-bearing mice, demonstrating the therapeutic potential of combining these epigenetic modulators for the treatment of NSCLC. Cancer Discov; 7(8); 852-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Yusuke Kamihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Christina Almonte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ruben Dries
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuyang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaoen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jessica Castrillon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guo-Cheng Yuan
- Harvard Chan School of Public Health, Boston, Massachusetts
| | | | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shiwei Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Simon S Jones
- Acetylon Pharmaceuticals, Inc., Boston, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York.
| |
Collapse
|
89
|
Abstract
In the past few years, it has become clear that mutations in epigenetic regulatory genes are common in human cancers. Therapeutic strategies are now being developed to target cancers with mutations in these genes using specific chemical inhibitors. In addition, a complementary approach based on the concept of synthetic lethality, which allows exploitation of loss-of-function mutations in cancers that are not targetable by conventional methods, has gained traction. Both of these approaches are now being tested in several clinical trials. In this Review, we present recent advances in epigenetic drug discovery and development, and suggest possible future avenues of investigation to drive progress in this area.
Collapse
|
90
|
Abou El Hassan M, Huang K, Eswara MBK, Xu Z, Yu T, Aubry A, Ni Z, Livne-Bar I, Sangwan M, Ahmad M, Bremner R. Properties of STAT1 and IRF1 enhancers and the influence of SNPs. BMC Mol Biol 2017; 18:6. [PMID: 28274199 PMCID: PMC5343312 DOI: 10.1186/s12867-017-0084-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND STAT1 and IRF1 collaborate to induce interferon-γ (IFNγ) stimulated genes (ISGs), but the extent to which they act alone or together is unclear. The effect of single nucleotide polymorphisms (SNPs) on in vivo binding is also largely unknown. RESULTS We show that IRF1 binds at proximal or distant ISG sites twice as often as STAT1, increasing to sixfold at the MHC class I locus. STAT1 almost always bound with IRF1, while most IRF1 binding events were isolated. Dual binding sites at remote or proximal enhancers distinguished ISGs that were responsive to IFNγ versus cell-specific resistant ISGs, which showed fewer and mainly single binding events. Surprisingly, inducibility in one cell type predicted ISG-responsiveness in other cells. Several dbSNPs overlapped with STAT1 and IRF1 binding motifs, and we developed methodology to rapidly assess their effects. We show that in silico prediction of SNP effects accurately reflects altered binding both in vitro and in vivo. CONCLUSIONS These data reveal broad cooperation between STAT1 and IRF1, explain cell type specific differences in ISG-responsiveness, and identify genetic variants that may participate in the pathogenesis of immune disorders.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Clinical Chemistry Division, Provincial Laboratory Services, Queen Elizabeth Hospital, Charlottetown, PE, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Manoja B K Eswara
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zhaodong Xu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zuyao Ni
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Izzy Livne-Bar
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Monika Sangwan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Mohamad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada. .,Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
91
|
Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol 2017; 13:1137-1148. [PMID: 28326839 DOI: 10.2217/fon-2016-0526] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Entinostat is a synthetic benzamide derivative histone deacetylase (HDAC) inhibitor, which potently and selectively inhibits class I and IV HDAC enzymes. This action promotes histone hyperacetylation and transcriptional activation of specific genes, with subsequent inhibition of cell proliferation, terminal differentiation and apoptosis. This oral HDAC inhibitor has been evaluated in Phase I and II trials in patients with advanced malignancies, and is in general well tolerated. Entinostat does not currently have regulatory approval for clinical use; however promising preclinical and clinical data exist in hormone-resistant breast cancer. An ECOG-ACRIN Phase III registration study is ongoing in advanced breast cancer (E2112, NCT02115282) and aims to confirm the overall survival advantage observed with the combination of exemestane and entinostat/placebo in the Phase II setting (ENCORE301 trial). This article provides an overview of the chemistry, pharmacokinetics/pharmacodynamics and available clinical data for entinostat with a focus on advanced breast cancer.
Collapse
Affiliation(s)
- Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
92
|
Wang HF, Ning F, Liu ZC, Wu L, Li ZQ, Qi YF, Zhang G, Wang HS, Cai SH, Du J. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro. Cancer Immunol Immunother 2017; 66:355-366. [PMID: 27915371 PMCID: PMC11028551 DOI: 10.1007/s00262-016-1935-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 11/19/2016] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) have been identified as a population of immature myeloid cells that suppress anti-tumor immunity. MDSC are increased in tumor-bearing hosts; thus, depletion of MDSC may enhance anti-tumor immunity. Histone deacetylase inhibitors (HDACi) are chemical agents that are primarily used against hematologic malignancies. The ability of these agents to modulate anticancer immunity has recently been extensively studied. However, the effect of HDACi on MDSC has remained largely unexplored. In the present study, we provide the first demonstration that HDACi treatment decreases MDSC accumulation in the spleen, blood and tumor bed but increases the proportion of T cells (particularly the frequency of IFN-γ- or perforin-producing CD8+ T cells) in BALB/C mice with 4T1 mammary tumors. In addition, HDACi exposure of bone marrow (BM) cells significantly eliminated the MDSC population induced by GM-CSF or the tumor burden in vitro, which was further demonstrated as functionally important to relieve the inhibitory effect of MDSC-enriched BM cells on T cell proliferation. Mechanistically, HDACi increased the apoptosis of Gr-1+ cells (almost MDSC) compared with that of Gr-1- cells, which was abrogated by the ROS scavenger N-acetylcysteine, suggesting that the HDACi-induced increase in MDSC apoptosis due to increased intracellular ROS might partially account for the observed depletion of MDSC. These findings suggest that the elimination of MDSC using an HDACi may contribute to the overall anti-tumor properties of these agents, highlighting a novel property of HDACi as potent MDSC-targeting agents, which may be used to enhance the efficacy of immunotherapeutic regimens.
Collapse
Affiliation(s)
- Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zong-Cai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Long Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Zi-Qian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China
| | - Yi-Fei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China
| | - Shao-Hui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan East Road, University Town, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
93
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
94
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
95
|
Deutsch E, Moyal ECJ, Gregorc V, Zucali PA, Menard J, Soria JC, Kloos I, Hsu J, Luan Y, Liu E, Vezan R, Graef T, Rivera S. A phase 1 dose-escalation study of the oral histone deacetylase inhibitor abexinostat in combination with standard hypofractionated radiotherapy in advanced solid tumors. Oncotarget 2016; 8:56199-56209. [PMID: 28915584 PMCID: PMC5593555 DOI: 10.18632/oncotarget.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
Current treatments for advanced solid tumors tend to be only palliative. Although radiotherapy is administered with a curative intent, radioresistance and dose-limiting toxicities pose limitations to treatment. Abexinostat, an oral pan-histone deacetylase inhibitor, demonstrated enhanced sensitivity to radiation in various solid tumor cell lines. We conducted an exploratory, phase 1, dose-escalation study of abexinostat in combination with standard hypofractionated radiotherapy in patients with advanced solid tumors treated in a palliative setting. Among 58 treated patients, the median age was 61.5 years (range, 20-82); 47% of the patients had M1 stage disease, and 95% had received previous chemotherapy alone or chemotherapy in combination with surgery and/or radiotherapy. The recommended phase 2 dose was determined to be 90 mg/m2 (140 mg). Of the 51 patients evaluable for response, best overall response was 8% (1 complete response [CR], 3 partial responses [PRs]), and best loco-regional response was 12% (1 CR and 5 PRs) at a median follow-up of 16 weeks. Of note, patients with target or non-target brain lesions showed encouraging responses, with 1 patient achieving a best loco-regional response of CR. Treatment-emergent grade ≥3 adverse events (AEs) were few, with most common being thrombocytopenia (17%), lymphopenia (12%), and hypokalemia (7%). Six patients (10%) discontinued treatment due to AEs. No grade ≥3 prolongation of the QTc interval was observed, with no treatment discontinuations due to this AE. Oral abexinostat combined with radiotherapy was well tolerated in patients with advanced solid tumors. The combination may have potential for treatment of patients with brain lesions.
Collapse
Affiliation(s)
- Eric Deutsch
- Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Vanesa Gregorc
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale San Raffaele, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Haematology, Humanitas Cancer Center, IRCCS, Rozzano, Italy
| | - Jean Menard
- Department of Radiation Oncology, Hopital Saint-Louis, Paris, France
| | - Jean-Charles Soria
- DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ioana Kloos
- Institut de Recherches Internationales Servier, Clinical Pharmacokinetics, Suresnes, France
| | - Jeff Hsu
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Ying Luan
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Emily Liu
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Remus Vezan
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Thorsten Graef
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Sofia Rivera
- Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France.,INSERM 1030 Molecular Radiotherapy, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
96
|
Hoffend NC, Magner WJ, Tomasi TB. The epigenetic regulation of Dicer and microRNA biogenesis by Panobinostat. Epigenetics 2016; 12:105-112. [PMID: 27935420 DOI: 10.1080/15592294.2016.1267886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
microRNAs (miRs) are small noncoding RNAs that regulate/fine tune many cellular protein networks by targeting mRNAs for either degradation or translational inhibition. Dicer, a type III endoribonuclease, is a critical component in miR biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. Recent reports have demonstrated that epigenetic agents, including histone deacetylase inhibitors (HDACi), may regulate Dicer and miR expression. HDACi are a class of epigenetic agents used to treat cancer, viral infections, and inflammatory disorders. However, little is known regarding the epigenetic regulation of miR biogenesis and function. We therefore investigated whether clinically successful HDACi modulated Dicer expression and found that Panobinostat, a clinically approved HDACi, enhanced Dicer expression via posttranscriptional mechanisms. Studies using proteasome inhibitors suggested that Panobinostat regulated the proteasomal degradation of Dicer. Further studies demonstrated that Panobinostat, despite increasing Dicer protein expression, decreased Dicer activity. This suggests that Dicer protein levels do not necessarily correlate with Dicer activity and mature miR levels. Taken together, we present evidence here that Panobinostat posttranscriptionally regulates Dicer/miR biogenesis and suggest Dicer as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Nicholas C Hoffend
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - William J Magner
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA.,b Department of Microbiology & Immunology , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA
| | - Thomas B Tomasi
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA.,b Department of Microbiology & Immunology , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA.,c Department of Medicine , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA
| |
Collapse
|
97
|
Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 2016; 241:10-24. [PMID: 27770445 DOI: 10.1002/path.4832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The tumour microenvironment plays an instrumental role in cancer development, progression and treatment response/resistance. Accumulating evidence is underscoring the fundamental importance of epigenetic regulation in tumour immune evasion. Following many pioneering discoveries demonstrating malignant transformation through epigenetic anomalies ('epimutations'), there is also a growing emphasis on elucidating aberrant epigenetic mechanisms that reprogramme the milieu of tumour-associated immune and stromal cells towards an immunosuppressive state. Pharmacological inhibition of DNA methylation and histone modifications can augment the efficiency of immune checkpoint blockage, and unleash anti-tumour T-cell responses. However, these non-specific agents also represent a 'double-edged sword', as they can also reactivate gene transcription of checkpoint molecules, interrupting immune surveillance programmes. By understanding the impact of epigenetic control on the tumour microenvironment, rational combinatorial epigenetic and checkpoint blockage therapies have the potential to harness the immune system for the treatment of cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Jingying Zhou
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
98
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
99
|
Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, Tsiaras A, Gjini E, Fisher DE, Hodi FS. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med 2016; 5:3041-3050. [PMID: 27748045 PMCID: PMC5119958 DOI: 10.1002/cam4.862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 01/20/2023] Open
Abstract
Epigenetic alterations by histone/protein deacetylases (HDACs) are one of the many mechanisms that cancer cells use to alter gene expression and promote growth. HDAC inhibitors have proven to be effective in the treatment of specific malignancies, particularly in combination with other anticancer agents. We conducted a phase I trial of panobinostat in patients with unresectable stage III or IV melanoma. Patients were treated with oral panobinostat at a dose of 30 mg daily on Mondays, Wednesdays, and Fridays (Arm A). Three of the six patients on this dose experienced clinically significant thrombocytopenia requiring dose interruption. Due to this, a second treatment arm was opened and the dose was changed to 30 mg oral panobinostat three times a week every other week (Arm B). Six patients were treated on Arm A and 10 patients were enrolled to Arm B with nine patients treated. In nine patients treated on Arm B, the response rate was 0% (90% confidence interval [CI]: 0–28%) and the disease‐control rate was 22% (90% CI: 4–55%). Among all 15 patients treated, the overall response rate was 0% (90% CI: 0–17%) and the disease‐control rate was 27% (90% CI: 10–51%). There was a high rate of toxicity associated with treatment. Correlative studies suggest the presence of immune modifications after HDAC inhibition. Panobinostat is not active as a single agent in the treatment of melanoma. Further exploration of this agent in combination with other therapies may be warranted.
Collapse
Affiliation(s)
- Nageatte Ibrahim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Currently at Merck & Co.,, Kenilworth, New Jersey
| | | | - Scott R Granter
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carla Becerra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Argyro Tsiaras
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Evisa Gjini
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
100
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|