51
|
Ho SK, Xu Z, Thakur A, Fox M, Tan SS, DiGiammarino E, Zhou L, Sho M, Cairns B, Zhao V, Xiong M, Samayoa J, Forsyth CM, Powers DB, Chao DT, Hollenbaugh D, Alvarez HM, Akamatsu Y. Epitope and Fc-Mediated Cross-linking, but Not High Affinity, Are Critical for Antitumor Activity of CD137 Agonist Antibody with Reduced Liver Toxicity. Mol Cancer Ther 2020; 19:1040-1051. [PMID: 31974274 DOI: 10.1158/1535-7163.mct-19-0608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
CD137 (TNFRSF9, 4-1BB) agonist antibodies (mAb) have demonstrated potent antitumor activity with memory response while causing hepatotoxicity in mouse models. In clinical trials, the degrees of liver toxicity of anti-CD137 vary from grade 4 transaminitis (urelumab) to nonexistent (utomilumab). To exploit the antitumor potential of CD137 signaling, we identified a new class of CD137 agonist mAbs with strong antitumor potency without significant transaminitis in vivo compared with CD137 agonists previously reported. These mAbs are cross-reactive to mouse and cynomolgus monkey and showed cross-linking-dependent T-cell costimulation activity in vitro Antitumor efficacy was maintained in Fc gamma receptor (FcγR) III-deficient mice but diminished in FcγRIIB-deficient mice, suggesting the critical role for FcγRIIB to provide cross-linking in vivo Interestingly, a single dose of an affinity-reduced variant was sufficient to control tumor growth, but a higher affinity variant did not improve efficacy. These observations suggest that binding epitope and FcγR interaction, but not necessarily high affinity, are important for antitumor efficacy and reduced liver toxicity of CD137 mAb. Our study suggests the possibility of CD137 agonist therapy with improved safety profile in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Cell Proliferation
- Chemical and Drug Induced Liver Injury/prevention & control
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cross-Linking Reagents/chemistry
- Cross-Linking Reagents/metabolism
- Epitopes/immunology
- Female
- Humans
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgG/physiology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Sun K Ho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Zhenghai Xu
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Melvin Fox
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Siu Sze Tan
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Li Zhou
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | - Mien Sho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Vivian Zhao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Mengli Xiong
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Josue Samayoa
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | - Debra T Chao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | | |
Collapse
|
52
|
Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-Paulete AR, Piulats JM, Matias-Guiu X, Olivera I, Ochoa MC, Labiano S, Garasa S, Rodriguez I, Vidal A, Mancheño U, Hervás-Stubbs S, Azpilikueta A, Otano I, Aznar MA, Sanmamed MF, Inogés S, Berraondo P, Teijeira Á, Melero I. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8 + T Cells. Cancer Cell 2019; 36:613-629.e7. [PMID: 31761658 DOI: 10.1016/j.ccell.2019.10.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Quetglas
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alena Gros
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain
| | - Jara Palomero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alfonso R Sánchez-Paulete
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose María Piulats
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain; Department of Medical Oncology, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Labiano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - August Vidal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - M Angela Aznar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Susana Inogés
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
53
|
Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, Watts TH, Picard C, Bruneau J, Callebaut I, Fischer A, Neven B, Latour S. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 2019; 216:2800-2818. [PMID: 31537641 PMCID: PMC6888974 DOI: 10.1084/jem.20190678] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of biallelic loss-of-function mutations in TNFRSF9 and PIK3CD in a kindred with chronic active Epstein-Barr virus infection of T cells (CAEBV) suggests that CAEBV is the consequence of factors providing growth advantage to EBV-infected T cells combined with defective cell immunity toward EBV-infected cells. Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand–expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137–CD137L pathway, highlighting its critical role in immunity to EBV.
Collapse
Affiliation(s)
- Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kazushi Izawa
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Laboratory of Human Lymphohematopoiesis, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Bénédicte Neven
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France .,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
54
|
Zhang Y, Zhang H, Wei M, Mou T, Shi T, Ma Y, Cai X, Li Y, Dong J, Wei J. Recombinant Adenovirus Expressing a Soluble Fusion Protein PD-1/CD137L Subverts the Suppression of CD8 + T Cells in HCC. Mol Ther 2019; 27:1906-1918. [PMID: 31466933 DOI: 10.1016/j.ymthe.2019.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Oncolytic viruses are an excellent platform for developing effective strategies in cancer immunotherapy. Several challenges remain in the use of viro-immunotherapy for cancer, such as the lack of costimulatory signals and negative regulation of immune checkpoints. In this study, we designed a novel adenovirus expressing a soluble fusion protein, programmed cell death protein 1 (PD-1)/CD137L, which contains the extracellular domains of PD-1 and CD137L at each terminus (Ad5-PC). Ad5-PC preserved the costimulatory activity of CD137L and facilitated the persistence of activated CD8+ T cells. Ad5-PC induced strikingly increased antitumor activity in both ascitic and subcutaneous hepatocellular carcinoma (HCC) tumor models, with 70% and 60% long-term cure rates, respectively. The improved antitumor effect of Ad5-PC was attributed to the sustained high-level lymphocyte activation and interferon (IFN)-γ production in the tumor microenvironment, and was essentially dependent on CD8+ T cells rather than natural killer (NK) cells. Moreover, Ad5-huPC-expressing human soluble PD-1/CD137L fusion protein was effective in suppressing tumor growth and improving survival in a humanized mouse model. We confirmed that Ad5-PC induced tumor-specific and systematic protection against tumor rechallenges at both in situ and distant sites. Thus, Ad5-PC harnesses several distinct functions to efficiently overcome several major hurdles of viro-immunotherapy.
Collapse
Affiliation(s)
- Yonghui Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China; Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, Henan 450003, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Mei Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Tao Mou
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Tao Shi
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yanyu Ma
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Xinyu Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yunzheng Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
55
|
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019; 9:10862. [PMID: 31350431 PMCID: PMC6659676 DOI: 10.1038/s41598-019-47333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Combined agonist stimulation of the TNFR costimulatory receptors 4-1BB (CD137) and OX40(CD134) has been shown to generate supereffector CD8 T cells that clonally expand to greater levels, survive longer, and produce a greater quantity of cytokines compared to T cells stimulated with an agonist of either costimulatory receptor individually. In order to understand the mechanisms for this effect, we have created a mathematical model for the activation of the CD8 T cell intracellular signaling network by mono- or dual-costimulation. We show that supereffector status is generated via downstream interacting pathways that are activated upon engagement of both receptors, and in silico simulations of the model are supported by published experimental results. The model can thus be used to identify critical molecular targets of T cell dual-costimulation in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Anna Konstorum
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Reinhard C Laubenbacher
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.,Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
56
|
Zhu H, Wang M, Du Y, Liu X, Weng X, Li C. 4-1BBL has a Possible Role in Mediating Castration-Resistant Conversion of Prostate Cancer via Up-Regulation of Androgen Receptor. J Cancer 2019; 10:2464-2471. [PMID: 31258752 PMCID: PMC6584334 DOI: 10.7150/jca.29648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/05/2019] [Indexed: 11/06/2022] Open
Abstract
4-1BB ligand (4-1BBL) was a transmembrane glycoprotein belonging to the tumor necrosis factor family. It was expressed on activated T lymphocytes and function as a co-stimulatory molecule via cross-linking with 4-1BB (a.k.a, CD137). In addition to its role in immune regulation, 4-1BBL transmitted signals into the cells on which it was expressed (reverse signaling). 4-1BBL represented a promising target for enhancing antitumor immune responses. Recent studies indicated that 4-1BBL also expressed in non-immune cells and possessed different functions in various types of cells. Here, we reported that 4-1BBL didn't express in normal prostate tissues and benign prostatic hyperplasia tissues, but it expressed in prostate cancer (PCa) tissues at moderate level. Expression of 4-1BBL was up-regulated during the transition from PCa to castration resistant prostate cancer (CRPC). Increasing expression of 4-1BBL not only promoted expression of androgen receptor (AR), but also augmented proliferation and invasion ability of prostate cancer cells in androgen deprivation environment. These results were further verified by xenograft tumor experiments. Meanwhile, inhibiting AR signal pathway by chemical antagonist was able to significantly reduce 4-1BBL mediated proliferation and invasion of PCa cells. These novel findings indicated that 4-1BBL might mediate prostate cancer progression to castration-resistant prostate cancer via enhancing expression and function of AR.
Collapse
Affiliation(s)
- Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| |
Collapse
|
57
|
Remedios KA, Meyer L, Zirak B, Pauli ML, Truong HA, Boda D, Rosenblum MD. CD27 Promotes CD4 + Effector T Cell Survival in Response to Tissue Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2019; 203:639-646. [PMID: 31209102 DOI: 10.4049/jimmunol.1900288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Signaling through CD27 plays a role in T cell activation and memory. However, it is currently unknown how this costimulatory receptor influences CD4+ effector T (Teff) cells in inflamed tissues. In the current study, we used a murine model of inducible self-antigen expression in the epidermis to elucidate the functional role of CD27 on autoreactive Teff cells. Expression of CD27 on Ag-specific Teff cells resulted in enhanced skin inflammation when compared with CD27-deficient Teff cells. CD27 signaling promoted the accumulation of IFN-γ and IL-2-producing T cells in skin draining lymph nodes in a cell-intrinsic fashion. Surprisingly, this costimulatory pathway had minimal effect on early T cell activation and proliferation. Instead, signaling through CD27 resulted in the progressive survival of Teff cells during the autoimmune response. Using BH3 profiling to assess mitochondrial cell priming, we found that CD27-deficient cells were equally as sensitive as CD27-sufficient cells to mitochondrial outer membrane polarization upon exposure to either BH3 activator or sensitizer peptides. In contrast, CD27-deficient Teff cells expressed higher levels of active caspase 8. Taken together, these results suggest that CD27 does not promote Teff cell survival by increasing expression of antiapoptotic BCL2 family members but instead acts by preferentially suppressing the cell-extrinsic apoptosis pathway, highlighting a previously unidentified role for CD27 in augmenting autoreactive Teff cell responses.
Collapse
Affiliation(s)
- Kelly A Remedios
- Department of Dermatology, University of California, San Francisco, CA 94143.,TRex Bio, Burlingame, CA 94010; and
| | - Lauren Meyer
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, CA 94143
| | - Mariela L Pauli
- Department of Dermatology, University of California, San Francisco, CA 94143
| | | | - Devi Boda
- Department of Dermatology, University of California, San Francisco, CA 94143
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, CA 94143;
| |
Collapse
|
58
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
59
|
Chu DT, Bac ND, Nguyen KH, Tien NLB, Thanh VV, Nga VT, Ngoc VTN, Anh Dao DT, Hoan LN, Hung NP, Trung Thu NT, Pham VH, Vu LN, Pham TAV, Thimiri Govinda Raj DB. An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. Int J Mol Sci 2019; 20:ijms20081822. [PMID: 31013788 PMCID: PMC6515339 DOI: 10.3390/ijms20081822] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
The selective expression of CD137 on cells of the immune system (e.g., T and DC cells) and oncogenic cells in several types of cancer leads this molecule to be an attractive target to discover cancer immunotherapy. Therefore, specific antibodies against CD137 are being studied and developed aiming to activate and enhance anti-cancer immune responses as well as suppress oncogenic cells. Accumulating evidence suggests that anti-CD137 antibodies can be used separately to prevent tumor in some cases, while in other cases, these antibodies need to be co-administered with other antibodies or drugs/vaccines/regents for a better performance. Thus, in this work, we aim to update and discuss current knowledge about anti-cancer effects of anti-CD137 antibodies as mono- and combined-immunotherapies.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Institute of Cancer Research, Oslo University Hospital, 0372 Oslo, Norway.
| | - Nguyen Duy Bac
- Department of Education and Training, Vietnam Military Medical University, Hanoi 100000, Vietnam.
| | - Khanh-Hoang Nguyen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Duong Thi Anh Dao
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Le Ngoc Hoan
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Phuc Hung
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Thi Trung Thu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Van-Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Le Nguyen Vu
- Organ Transplantation Center, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Thuy Anh Vu Pham
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam.
| | | |
Collapse
|
60
|
Kim SH, Park SY, Lim MC, Lee ES, Lee EG, Han SE, Kim YH, Kwon BS, Choi BK. Delayed IL-21 treatment preferentially expands peptide-specific CD8 + T cells by reducing bystander activation of T cells. Immunotherapy 2019; 11:497-513. [PMID: 30760061 DOI: 10.2217/imt-2018-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We previously reported a simple and practical procedure to generate peptide-specific CD8+ T cells using peptide and IL-2, which is applied to produce human telomerase reverse transcriptase (hTERT)-specific CD8+ T cells for clinical use. We have modified the procedure to enhance the amplification of peptide-specific CD8+ T cells adding IL-21. MATERIALS & METHODS Using human leukocyte antigen (HLA)-A*0201-restricted cytomegalovirus/pp65-specific CD8+ T cells of healthy volunteers, we optimized the culture conditions by adjusting the dose and timing of IL-21 treatment. RESULTS & CONCLUSION By adding IL-21, we accelerated the expansion rate of cytomegalovirus/pp65-specific CD8+ T cells by reducing bystander activation of T cells. We expect that the procedure including IL-21 would improve the production rate of hTERT- and Wilms tumor 1 (WT1)-specific CD8+ T cells for clinical trials.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea
| | - Sang-Yoon Park
- Common Cancer Branch, Division of Clinical Research, National Cancer Center, Goyang, 10408 Korea.,Center for Uterine Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Myong Cheol Lim
- Center for Uterine Cancer, National Cancer Center, Goyang, 10408 Korea.,Cancer Healthcare Research Branch, Division of Cancer Epidemiology & Management, National Cancer Center, Goyang, 10408 Korea
| | - Eun Sook Lee
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea.,Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Eun Gyeong Lee
- Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Seoung-Eun Han
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea
| | - Young-Ho Kim
- Rare Cancer Branch, Division of Clinical Research, National Cancer Center, Goyang, 10408, Korea
| | - Byoung S Kwon
- Eutilex, Co., Ltd, Suite# 1401 Daeryung Technotown 17 Gasan digital 1-ro 25, Geumcheon-gu, Seoul 08594, Korea.,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Beom K Choi
- Biomedicine Production Branch, National Cancer Center, Goyang, 10408 Korea
| |
Collapse
|
61
|
Giannopoulos K. Targeting Immune Signaling Checkpoints in Acute Myeloid Leukemia. J Clin Med 2019; 8:jcm8020236. [PMID: 30759726 PMCID: PMC6406869 DOI: 10.3390/jcm8020236] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The modest successes of targeted therapies along with the curative effects of allogeneic hematopoietic stem cell transplantation (alloHSCT) in acute myeloid leukemia (AML) stimulate the development of new immunotherapies. One of the promising methods of immunotherapy is the activation of immune response by the targeting of negative control checkpoints. The two best-known inhibitory immune checkpoints are cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed cell death protein 1 receptor (PD-1). In AML, PD-1 expression is observed in T-cell subpopulations, including T regulatory lymphocytes. Increased PD-1 expression on CD8+ T lymphocytes may be one of the factors leading to dysfunction of cytotoxic T cells and inhibition of the immune response during the progressive course of AML. Upregulation of checkpoint molecules was observed after alloHSCT and therapy with hypomethylating agents, pointing to a potential clinical application in these settings. Encouraging results from recent clinical trials (a response rate above 50% in a relapsed setting) justify further clinical use. The most common clinical trials employ two PD-1 inhibitors (nivolumab and pembrolizumab) and two anti-PD-L1 (programmed death-ligand 1) monoclonal antibodies (atezolizumab and durvalumab). Several other inhibitors are under development or in early phases of clinical trials. The results of these clinical trials are awaited with great interest in, as they may allow for the established use of checkpoint inhibitors in the treatment of AML.
Collapse
Affiliation(s)
- Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland.
- Department of Hematology, St John's Cancer Centre, 20-093 Lublin, Poland.
| |
Collapse
|
62
|
Nakajima M, Tamada K. Cancer Immunotherapy Targeting Co-signal Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:313-326. [DOI: 10.1007/978-981-32-9717-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
63
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
64
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
65
|
Vairy S, Garcia JL, Teira P, Bittencourt H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3885-3898. [PMID: 30518999 PMCID: PMC6237143 DOI: 10.2147/dddt.s138765] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decades, survival of patients with acute lymphoblastic leukemia (ALL) has dramatically improved, but the subgroup of patients with relapsed/refractory ALL still continues to have dismal prognosis. As an emerging therapeutic approach, chimeric antigen receptor-modified T-cells (CAR-T) represent one of the few practice-changing therapies for this subgroup of patients. Originally conceived and built in Philadelphia (University of Pennsylvania), CTL019 or tisagenlecleucel, the first CAR-T approved by the US Food and Drug Administration, showed impressive results in refractory/relapsed ALL since the publication on two pediatric patients in 2013. It is in this context that we provide a review of this product in terms of manufacturing, pharmacology, toxicity, and efficacy studies. Evaluation and management of toxicities, particularly cytokine release syndrome and neurotoxicity, is recognized as an essential part of the patient treatment with broader use of IL-6 receptor inhibitor. An under-assessed aspect, the quality of life of patients entering CAR-T cells treatment, will also be reviewed. By their unique nature, CAR-T cells such as tisagenlecleucel operate in a different way than typical drugs, but also provide unique hope for B-cell malignancies.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Julia Lopes Garcia
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Pierre Teira
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| | - Henrique Bittencourt
- Division of Haematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada,
| |
Collapse
|
66
|
Lee HW. Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript. Mol Cells 2018; 41:917-922. [PMID: 30352492 PMCID: PMC6199566 DOI: 10.14348/molcells.2018.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022] Open
Abstract
The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet TCT of human TNSFSF9 in HepG2 cells to TAG to create an amber stop codon. The TCT triplet is the codon for Ser at the 172nd position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the TAG had been re-edited to the wild type triplet TCT, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.
Collapse
Affiliation(s)
- Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
67
|
Manrique-Rincón AJ, de Carvalho AC, Ribeiro de Camargo ME, Franchini KG, Bajgelman MC. Development of a flow cytometry assay which allows to evaluate the efficiency of immunomodulatory vaccines to enhance T cell-mediated antitumor response. J Biotechnol 2018; 284:11-16. [PMID: 30053502 DOI: 10.1016/j.jbiotec.2018.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022]
Abstract
Immunotherapy has revolutionized the treatment of cancer. Since tumor cells exhibit low immunogenicity and can induce several mechanisms of tolerance, the use of monoclonal antibodies or other immunomodulators, targeting costimulation of T cells may mediate the inhibition of immunosuppressive mechanisms, favouring immune surveillance and enhancing the detection and elimination of tumor cells. We developed a new in vitro assay, based on flow cytometry, which allows exploring the therapeutic potential of tumor-derived immunomodulatory lineages, enhancing anti-tumor response. We generated tumor-derived cells that simultaneously co-express eGFP and one immunomodulatory molecule (OX40L, 4-1BBL or GM-CSF). These genetically modified tumor-derived cells are irradiated and then incubated with primary T cells to evaluate the killing activity, which can be estimated by a decrease in the eGFP positive cells. The results have shown correlation with in vivo experiments. This model may contribute to the development of high-throughput assays for the screening of immunomodulators and a reduction in the use of experimental animals.
Collapse
Affiliation(s)
- Andrea J Manrique-Rincón
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas-SP, Brazil; Medical School, University of Campinas, Campinas-SP, Brazil.
| | - Anna C de Carvalho
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas-SP, Brazil.
| | | | - Kleber G Franchini
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas-SP, Brazil; Medical School, University of Campinas, Campinas-SP, Brazil.
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas-SP, Brazil; Medical School, University of Campinas, Campinas-SP, Brazil; Institute of Biology, University of Campinas, Campinas-SP, Brazil.
| |
Collapse
|
68
|
Yossef R, Tran E, Deniger DC, Gros A, Pasetto A, Parkhurst MR, Gartner JJ, Prickett TD, Cafri G, Robbins PF, Rosenberg SA. Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCI Insight 2018; 3:122467. [PMID: 30282837 DOI: 10.1172/jci.insight.122467] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILs) targeting neoantigens can mediate tumor regression in selected patients with metastatic epithelial cancer. However, effectively identifying and harnessing neoantigen-reactive T cells for patient treatment remains a challenge and it is unknown whether current methods to detect neoantigen-reactive T cells are missing potentially clinically relevant neoantigen reactivities. We thus investigated whether the detection of neoantigen-reactive TILs could be enhanced by enriching T cells that express PD-1 and/or T cell activation markers followed by microwell culturing to avoid overgrowth of nonreactive T cells. In 6 patients with metastatic epithelial cancer, this method led to the detection of CD4+ and CD8+ T cells targeting 18 and 1 neoantigens, respectively, compared with 6 and 2 neoantigens recognized by CD4+ and CD8+ T cells, respectively, when using our standard TIL fragment screening approach. In 2 patients, no recognition of mutated peptides was observed using our conventional screen, while our high-throughput approach led to the identification of 5 neoantigen-reactive T cell receptors (TCRs) against 5 different mutations from one patient and a highly potent MHC class II-restricted KRASG12V-reactive TCR from a second patient. In addition, in a metastatic tumor sample from a patient with serous ovarian cancer, we isolated 3 MHC class II-restricted TCRs targeting the TP53G245S hot-spot mutation. In conclusion, this approach provides a highly sensitive platform to isolate clinically relevant neoantigen-reactive T cells or their TCRs for cancer treatment.
Collapse
Affiliation(s)
- Rami Yossef
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Eric Tran
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Earle A. Chiles Research Institute and the Providence Portland Medical Center, Portland, Oregon, USA
| | - Drew C Deniger
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alena Gros
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron, Barcelona, Spain
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Maria R Parkhurst
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
69
|
Li G, Boucher JC, Kotani H, Park K, Zhang Y, Shrestha B, Wang X, Guan L, Beatty N, Abate-Daga D, Davila ML. 4-1BB enhancement of CAR T function requires NF-κB and TRAFs. JCI Insight 2018; 3:121322. [PMID: 30232281 PMCID: PMC6237232 DOI: 10.1172/jci.insight.121322] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptors (CARs) have an antigen-binding domain fused to transmembrane, costimulatory, and CD3ζ domains. Two CARs with regulatory approval include a CD28 or 4-1BB costimulatory domain. While both CARs achieve similar clinical outcomes, biologic differences have become apparent but not completely understood. Therefore, in this study we aimed to identify mechanistic differences between 4-1BB and CD28 costimulation that contribute to the biologic differences between the 2 CARs and could be exploited to enhance CAR T cell function. Using CD19-targeted CAR T cells with 4-1BB we determined that enhancement of T cell function is driven by NF-κB. Comparison to CAR T cells with CD28 also revealed that 4-1BB is associated with more antiapoptotic proteins and dependence on persistence for B cell killing. While TNF receptor-associated factor 2 (TRAF2) has been presupposed to be required for 4-1BB costimulation in CAR T cells, we determined that TRAF1 and TRAF3 are also critical. We observed that TRAFs impacted CAR T viability and proliferation, as well as cytotoxicity and/or cytokines, in part by regulating NF-κB. Our study demonstrates how 4-1BB costimulation in CAR T cells impacts antitumor eradication and clinical outcomes and has implications for enhanced CAR design.
Collapse
Affiliation(s)
- Gongbo Li
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin C. Boucher
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hiroshi Kotani
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kyungho Park
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Yongliang Zhang
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bishwas Shrestha
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Lawrence Guan
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Nolan Beatty
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Daniel Abate-Daga
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marco L. Davila
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
70
|
Jang HY, Han BS, Kwon B, Sin JI. Optimized Gemcitabine Therapy in Combination with E7 Peptide Immunization Elicits Tumor Cure by Preventing Ag-Specific CTL Inhibition in Animals with Large Established Tumors. DNA Cell Biol 2018; 37:850-860. [PMID: 30227079 DOI: 10.1089/dna.2018.4319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of chemotherapeutic agents in tumor immunotherapy is still controversial. In this study, we test using a TC-1 tumor model whether gemcitabine plus E7 peptide vaccine regimens (E7 peptides+CpG-ODN+anti-4-1BB Abs) may result in tumor cure in mice with large established tumors, with a focus on their effects on Ag-specific cytotoxic T lymphocyte (CTL) and myeloid-derived suppressor cell levels. Gemcitabine inhibited tumor growth by its direct cytotoxicity to tumor cells in vivo. E7 peptide vaccine regimens enhanced Ag-specific CTL lytic and antitumor therapeutic activity. Initial combination therapy using gemcitabine and E7 peptide vaccine regimens resulted in tumor regression with tumor relapse in animals with large established tumors, which appeared to result from the suppression of Ag-specific CTL activity by gemcitabine treatment. However, optimization of gemcitabine therapy by reducing its dose and frequency led to complete tumor regression without any recurring tumors in all tested mice even after discontinuation of therapy, possibly due to Ag-specific CTL responses. Thus, this study shows that the optimal dose and therapy frequency of gemcitabine are critical for achieving tumor cure in tumor-bearing animals undergoing E7 peptide vaccine regimen therapy, mainly by preventing CTL suppression. These findings may have implications for designing peptide-based therapeutic vaccines in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ho-Young Jang
- 1 Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Baek-Sang Han
- 2 BK21 Plus Graduate Program, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Byungsuk Kwon
- 3 School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong-Im Sin
- 1 Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea.,2 BK21 Plus Graduate Program, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
71
|
Aberrant CD137 ligand expression induced by GATA6 overexpression promotes tumor progression in cutaneous T-cell lymphoma. Blood 2018; 132:1922-1935. [PMID: 30194255 DOI: 10.1182/blood-2018-04-845834] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
CD137 and its ligand, CD137L, are expressed on activated T cells and antigen-presenting cells, respectively. Recent studies have shown that CD137L and CD137 are aberrantly expressed by tumor cells, especially in some hematopoietic malignancies, and interactions between these molecules on tumor cells promote tumor growth. In this study, we investigated the roles of CD137L and CD137 in cutaneous T-cell lymphoma (CTCL), represented by mycosis fungoides and Sézary syndrome. Flow cytometric analysis showed that primary Sézary cells and CTCL cell lines (Hut78, MyLa, HH, SeAx, and MJ) aberrantly expressed CD137L. CD137L expression by tumor cells in CTCL was also confirmed by immunohistochemistry. Anti-CD137L-neutralizing antibody inhibited proliferation, survival, CXCR4-mediated migration, and in vivo growth in CTCL cell lines through inhibition of phosphorylation of AKT, extracellular signal-regulated kinase 1/2, p38 MAPK, and JNK. Moreover, suppression of CD137L signaling decreased antiapoptotic proteins Bcl-2 and phosphorylated Bad. We also explored the transcription factor regulating CD137L expression. Because GATA6 has been proposed as an oncogene in many types of tumors with aberrant CD137L expression, we examined GATA6 expression and the involvement of GATA6 in CD137L expression in CTCL. DNA hypomethylation and histone acetylation induced GATA6 overexpression in CTCL cells. Furthermore, chromatin immunoprecipitation, luciferase reporter assay, and knockdown by short hairpin RNA showed that GATA6 directly upregulated CD137L expression. Inhibition of GATA6 resulted in decreased survival and in vivo growth in CTCL cells. Collectively, our findings prompt a novel therapeutic approach to CTCL based on the discovery that the GATA6/CD137L axis plays an important role in the tumorigenesis of CTCL.
Collapse
|
72
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
73
|
Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest 2018; 128:3209-3218. [PMID: 30067248 DOI: 10.1172/jci120775] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current immune checkpoint-modulating agents have demonstrated clinical efficacy in certain tumor types, particularly those with a high burden of tumor-specific neoantigens, high tumor-mutational burden, and abundant tumor-infiltrating T cells. However, these tumors often stop responding, with signs of T cells exhaustion, decreased T cell effector function, and upregulated inhibitory checkpoints. To enhance antitumor immunity and rescue exhausted T cells, newer inhibitory and stimulatory checkpoint modulators are being tested as monotherapy or in combination with approved checkpoint inhibitors. In contrast, tumors with low tumor-mutational burden, low neoantigen burden, and a paucity of T cells are immunologically "cold," and therefore first require the addition of agents to facilitate the induction of T cells into tumors. Cold tumors also often recruit immunosuppressive cell subsets, including regulatory T cells, myeloid-derived suppressor cells, and macrophages, and secrete immunosuppressive soluble cytokines, chemokines, and metabolites. To unleash an optimal antitumor immune response, combinatorial therapeutics that combine immune checkpoints with other modalities, such as vaccines, are being developed. From current preclinical data, it appears that combinatorial strategies will provide robust and durable responses in patients with immunologically cold cancers.
Collapse
|
74
|
Dahlén E, Veitonmäki N, Norlén P. Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 2018; 6:3-17. [PMID: 29998217 DOI: 10.1177/2515135518763280] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
Following the clinical success of immune checkpoint antibodies targeting CTLA-4, PD-1 or PD-L1 in cancer treatment, bispecific antibodies are now emerging as a growing class of immunotherapies with potential to further improve clinical efficacy and safety. We describe three classes of immunotherapeutic bispecific antibodies: (a) cytotoxic effector cell redirectors; (b) tumor-targeted immunomodulators; and (c) dual immunomodulators. Cytotoxic effector cell redirectors are dominated by T-cell redirecting compounds, bispecific compounds engaging a tumor-associated antigen and the T-cell receptor/CD3 complex, thereby redirecting T-cell cytotoxicity to malignant cells. This is the most established class of bispecific immunotherapies, with two compounds having reached the market and numerous compounds in clinical development. Tumor-targeted immunomodulators are bispecific compounds binding to a tumor-associated antigen and an immunomodulating receptor, such as CD40 or 4-1BB. Such compounds are usually designed to be inactive until binding the tumor antigen, thereby localizing immune stimulation to the tumor environment, while minimizing immune activation elsewhere. This is expected to induce powerful activation of tumor-specific T cells with reduced risk of immune-related adverse events. Finally, dual immunomodulators are bispecific compounds that bind two distinct immunomodulating targets, often combining targeting of PD-1 or PD-L1 with that of LAG-3 or TIM-3. The rationale is to induce superior tumor immunity compared to monospecific antibodies to the same targets. In this review, we describe each of these classes of bispecific antibodies, and present examples of compounds in development.
Collapse
Affiliation(s)
- Eva Dahlén
- Alligator Bioscience, 22381 Lund, Sweden
| | | | - Per Norlén
- Alligator Bioscience, 22381 Lund, Sweden
| |
Collapse
|
75
|
Immune Monitoring of Patients Treated With a Whole-Cell Melanoma Vaccine Engineered to Express 4-1BBL. J Immunother 2018; 39:321-8. [PMID: 27564312 DOI: 10.1097/cji.0000000000000138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CD8 lymphocytes are mandatory mediators of tumor regression. To enhance their specific antitumor activity, we aimed to improve a melanoma cell-based vaccine by transfecting it with 4-1BB ligand, a costimulatory and immune modulatory molecule. Thirty-four American Joint Committee on Cancer (AJCC) stage IIB-IV patients were vaccinated with a melanoma antigen-rich cell line engineered to express HLA-A2 and 4-1BBL (M20/A2/BBL). Twelve serially recruited patients were monitored for interferon γ expression and CD107a mobilization before and after vaccination. Thirty-three patients remained alive, with an estimated mean overall survival of 26.2 months. No grade 3-4 adverse events were encountered. Immune monitoring detected an increase in circulating antimelanoma CD8 T cells in 9 of 12 patients, which were significantly stimulated by the parental melanoma, reflecting a relevant antitumor response. The results from this study show that the costimulatory 4-1BB ligand fortifies an antigen-rich melanoma cell line with enhanced antigen-specific stimulation of CD8 T cells. The use of a costimulatory molecule as part of a vaccine confers a selective increase of T-cell subsets with antimelanoma reactivity, which in some cases were characterized for their epitope specificity.
Collapse
|
76
|
Zhan Y, Carrington EM, Zhang Y, Heinzel S, Lew AM. Life and Death of Activated T Cells: How Are They Different from Naïve T Cells? Front Immunol 2017; 8:1809. [PMID: 29326701 PMCID: PMC5733345 DOI: 10.3389/fimmu.2017.01809] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023] Open
Abstract
T cells are pivotal in immunity and immunopathology. After activation, T cells undergo a clonal expansion and differentiation followed by a contraction phase, once the pathogen has been cleared. Cell survival and cell death are critical for controlling the numbers of naïve T cells, effector, and memory T cells. While naïve T cell survival has been studied for a long time, more effort has gone into understanding the survival and death of activated T cells. Despite this effort, there is still much to be learnt about T cell survival, as T cells transition from naïve to effector to memory. One key advance is the development of inhibitors that may allow the temporal study of survival mechanisms operating in these distinct cell states. Naïve T cells were highly reliant on BCL-2 and sensitive to BCL-2 inhibition. Activated T cells are remarkably different in their regulation of apoptosis by pro- and antiapoptotic members of the BCL-2 family, rendering them differentially sensitive to antagonists blocking the function of one or more members of this family. Recent progress in understanding other programmed cell death mechanisms, especially necroptosis, suggests a unique role for alternative pathways in regulating death of activated T cells. Furthermore, we highlight a mechanism of epigenetic regulation of cell survival unique to activated T cells. Together, we present an update of our current understanding of the survival requirement of activated T cells.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
77
|
Aznar MA, Labiano S, Diaz-Lagares A, Molina C, Garasa S, Azpilikueta A, Etxeberria I, Sanchez-Paulete AR, Korman AJ, Esteller M, Sandoval J, Melero I. CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8+ T Cell–Relevant Genes. Cancer Immunol Res 2017; 6:69-78. [DOI: 10.1158/2326-6066.cir-17-0159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022]
|
78
|
Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2017; 131:49-57. [PMID: 29118009 DOI: 10.1182/blood-2017-06-741041] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
4-1BB (CD137, tumor necrosis factor receptor superfamily 9) is an inducible costimulatory receptor expressed on activated T and natural killer (NK) cells. 4-1BB ligation on T cells triggers a signaling cascade that results in upregulation of antiapoptotic molecules, cytokine secretion, and enhanced effector function. In dysfunctional T cells that have a decreased cytotoxic capacity, 4-1BB ligation demonstrates a potent ability to restore effector functions. On NK cells, 4-1BB signaling can increase antibody-dependent cell-mediated cytotoxicity. Agonistic monoclonal antibodies targeting 4-1BB have been developed to harness 4-1BB signaling for cancer immunotherapy. Preclinical results in a variety of induced and spontaneous tumor models suggest that targeting 4-1BB with agonist antibodies can lead to tumor clearance and durable antitumor immunity. Clinical trials of 2 agonist antibodies, urelumab and utomilumab, are ongoing. Despite initial signs of efficacy, clinical development of urelumab has been hampered by inflammatory liver toxicity at doses >1 mg/kg. Utomilumab has a superior safety profile, but is a less potent 4-1BB agonist relative to urelumab. Both antibodies have demonstrated promising results in patients with lymphoma and are being tested in combination therapy trials with other immunomodulatory agents. In an effort to optimally leverage 4-1BB-mediated immune activation, the next generation of 4-1BB targeting strategies attempts to decouple the observed antitumor efficacy from the on-target liver toxicity. Multiple therapeutics that attempt to restrict 4-1BB agonism to the tumor microenvironment and minimize systemic exposure have emerged. 4-1BB is a compelling target for cancer immunotherapy and future agents show great promise for achieving potent immune activation while avoiding limiting immune-related adverse events.
Collapse
|
79
|
Mbanwi AN, Lin GH, Wang KC, Watts TH. Constitutive interaction between 4-1BB and 4-1BBL on murine LPS-activated bone marrow dendritic cells masks detection of 4-1BBL by TKS-1 but not 19H3 antibody. J Immunol Methods 2017; 450:81-89. [DOI: 10.1016/j.jim.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/16/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
80
|
Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediators Inflamm 2017; 2017:1852517. [PMID: 29089667 PMCID: PMC5635476 DOI: 10.1155/2017/1852517] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is typically exemplified by a desynchronized cytokine system with increased levels of inflammatory cytokines. We focused on the contrast between inflammatory and anti-inflammatory systems by assessing the role of cytokines and their influence on MM. The aim of this review is to summarize the available information to date concerning this equilibrium to provide an overview of the research exploring the roles of serum cytokines in MM. However, the association between MM and inflammatory cytokines appears to be inadequate, and other functions, such as pro-proliferative or antiproliferative effects, can assume the role of cytokines in the genesis and progression of MM. It is possible that inflammation, when guided by cancer-specific Th1 cells, may inhibit tumour onset and progression. In a Th1 microenvironment, proinflammatory cytokines (e.g., IL-6 and IL-1) may contribute to tumour eradication by attracting leucocytes from the circulation and by increasing CD4 + T cell activity. Hence, caution should be used when considering therapies that target factors with pro- or anti-inflammatory activity. Drugs that may reduce the tumour-suppressive Th1-driven inflammatory immune response should be avoided. A better understanding of the relationship between inflammation and myeloma will ensure more effective therapeutic interventions.
Collapse
|
81
|
Zhang Y, Mu W, Wang H. Gene editing in T cell therapy. J Genet Genomics 2017; 44:415-422. [DOI: 10.1016/j.jgg.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
|
82
|
Zhou AC, Wagar LE, Wortzman ME, Watts TH. Intrinsic 4-1BB signals are indispensable for the establishment of an influenza-specific tissue-resident memory CD8 T-cell population in the lung. Mucosal Immunol 2017; 10:1294-1309. [PMID: 28051085 DOI: 10.1038/mi.2016.124] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023]
Abstract
The induction of long-lived heterotypic T-cell protection against influenza virus remains elusive, despite the conservation of T-cell epitopes. T-cell protection against influenza is critically dependent on lung-resident memory T cells (Trm). Here we show that intranasal administration of 4-1BBL along with influenza nucleoprotein in a replication-defective adenovirus vector to influenza pre-immune mice induces a remarkably stable circulating effector memory CD8 T-cell population characterized by higher IL-7Rα expression than control-boosted T cells, as well as a substantial lung parenchymal CD69+ CD8 Trm population, including both CD103+ and CD103- cells. These T-cell responses persist to greater than 200 days post-boost and protect against lethal influenza challenge in aged (year old) mice. The expansion of the nucleoprotein-specific CD8 Trm population during boosting involves recruitment of circulating antigen-specific cells and is critically dependent on local rather than systemic administration of 4-1BBL as well as on 4-1BB on the CD8 T cells. Moreover, during primary influenza infection of mixed bone marrow chimeras, 4-1BB-deficient T cells fail to contribute to the lung-resident Trm population. These findings establish both endogenous and supraphysiological 4-1BBL as a critical regulator of lung-resident memory CD8 T cells during influenza infection.
Collapse
Affiliation(s)
- A C Zhou
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - L E Wagar
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M E Wortzman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - T H Watts
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
83
|
Abstract
The recent demonstration of the antitumor efficacy of checkpoint protein inhibition has resulted in the approval of blocking antibodies against the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway in multiple different histologic findings. Therapeutic successes with PD-1/PD-L1 antibodies in melanoma and lung cancer have been followed by approvals in bladder, renal, and head and neck cancers and Hodgkin lymphoma, with others undoubtedly to come. However, PD-1 is only one of many checkpoints and agonistic regulatory molecules expressed on T cells by which maintenance of the balance between costimulatory and coinhibitory signaling pathways is perturbed in cancer. The manipulation of many of these molecules in cancer patients might be associated with clinical benefit. The majority of the T-cell cosignaling receptors belong to either the immunoglobulin superfamily or the tumor necrosis factor receptor superfamily. A total of 29 immunoglobulin superfamily and 26 tumor necrosis factor receptor superfamily cosignaling receptors have been identified that are expressed on T cells, providing fertile ground for development of inhibitory or agonistic antibodies and small molecules as cancer therapeutics. In the current work, we focus on some of the most promising new checkpoints and agonistic or cosignaling molecules that are in early clinical development as single agents or in combinations with PD-1/PD-L1, cytotoxic T-lymphocyte-associated protein 4 blockade, or chemotherapy with an emphasis on those that have reached the clinic and on important targets that are in late preclinical development.
Collapse
|
84
|
Yan ZH, Zheng XF, Yi L, Wang J, Wang XJ, Wei PJ, Jia HY, Zhou LJ, Zhao YL, Zhang HT. CD137 is a Useful Marker for Identifying CD4 + T Cell Responses to Mycobacterium tuberculosis. Scand J Immunol 2017; 85:372-380. [PMID: 28218958 DOI: 10.1111/sji.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
Upregulation of CD137 on recently activated CD8+ T cells has been used to identify rare viral and tumour antigen-specific T cells from the peripheral blood. We aimed to evaluate the accuracy of CD137 for identifying Mycobacterium tuberculosis (Mtb)-reactive CD4+ T cells in the peripheral blood of infected individuals by flow cytometry and to investigate the characteristics of these CD137+ CD4+ T cells. We initially enrolled 31 active tuberculosis (TB) patients, 31 individuals with latent TB infection (LTBI) and 25 healthy donors. The intracellular CD137 and interferon-γ (IFN-γ) production by CD4+ T cells was simultaneously detected under unstimulated and CFP10-stimulated (culture filtrate protein 10, a Mtb-specific antigen) conditions. In unstimulated CD4+ T cells, we found that the CD137 expression in the TB group was significantly higher than that in the LTBI group. Stimulation with CFP10 largely increased the CD4+ T cell CD137 expression in both the TB and LTBI groups. After CFP10 stimulation, the frequency of CD137+ CD4+ T cells was higher than that of IFN-γ+ CD4+ T cells in both the TB and LTBI groups. Most of the CFP10-activated IFN-γ-secreting cells were CD137-positive, but only a small fraction of the CD137-positive cells expressed IFN-γ. An additional 20 patients with TB were enrolled to characterize the CD45RO+ CCR7+ , CD45RO+ CCR7- and CD45RO- subsets in the CD137+ CD4+ T cell populations. The Mtb-specific CD137+ CD4+ T cells were mainly identified as having an effector memory phenotype. In conclusion, CD137 is a useful marker that can be used for identifying Mtb-reactive CD4+ T cells by flow cytometry.
Collapse
Affiliation(s)
- Z-H Yan
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - X-F Zheng
- Department of Pathology, Capital Medical University, Beijing Chao-yang Hospital, Beijing, China
| | - L Yi
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - J Wang
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - X-J Wang
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - P-J Wei
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - H-Y Jia
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - L-J Zhou
- Department of Central Laboratory, Navy General Hospital, Beijing, China
| | - Y-L Zhao
- Department of National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - H-T Zhang
- Department of Central Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University and, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
85
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
86
|
Hahn AW, Gill DM, Pal SK, Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 2017; 9:681-692. [DOI: 10.2217/imt-2017-0024] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Andrew W Hahn
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84112 USA
| | - David M Gill
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84112 USA
| | - Sumanta K Pal
- Department of Oncology, City of Hope Cancer Center, Duarte, CA, 91010 USA
| | - Neeraj Agarwal
- Department of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, 84112 USA
| |
Collapse
|
87
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
88
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
89
|
Economopoulou P, Kotsantis I, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches. ESMO Open 2017; 1:e000122. [PMID: 28848660 PMCID: PMC5548974 DOI: 10.1136/esmoopen-2016-000122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system plays a fundamental role in preventing cancer development by recognising and eliminating tumour cells. The recent success in the field of immunotherapy has confirmed the potential to exploit the immune response as a cancer treatment. Head and neck squamous cell carcinoma (HNSCC) is a malignancy characterized by dismal prognosis and high mortality rate; low survival outcomes in combination with significant toxicity of current treatment strategies highlight the necessity for novel therapeutic modalities. HNSCC is a favourable disease for immunotherapy, as immune escape plays a key role in tumour initiation and progression. T-cell checkpoint inhibitors targeting programmed cell death protein-1 have emerged as novel immunotherapy agents showing remarkable efficacy in HNSCC. However, only a minority of patients derive benefit for single-agent immunotherapies. In this regard, combinatorial immunotherapy approaches represent an alternative strategy that might increase the number of patients who respond to immunotherapy. Focusing on HNSCC, this review will summarise novel combinations of immune checkpoint blockade with other immunotherapy treatment modalities.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kotsantis
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Amanda Psyrri
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
90
|
Montufar-Solis D, Williams A, Vigneswaran N, Klein JR. Involvement of Ly6C, 4-1BB, and KLRG1 in the activation of lamina propria lymphocytes in the small intestine of sanroque mice. Biochem Biophys Res Commun 2017; 483:590-595. [PMID: 28011265 DOI: 10.1016/j.bbrc.2016.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 11/16/2022]
Abstract
Roquin is an E3 ligase that regulates mRNA stability. Mice with a mutation in the Rc3h1 gene and Roquin protein, referred to as Roquinsan/san or sanroque mice, develop broad-spectrum chronic inflammatory conditions and autoimmune pathologies. Our laboratory recently reported that sanroque mice also develop extensive inflammation that is localized in the small intestine but is rare in the colon. Here, we demonstrate that small intestinal intraepithelial lymphocytes (IELs) are present in the epithelium of sanroque mice but that cell recoverability is low using standard extraction techniques even though lamina propria lymphocytes (LPLs) can be recovered in normal numbers. In studies aimed at characterizing T cell costimulatory markers and activation molecules on LPLs in sanroque mice, we identified Ly6C and 4-1BB (CD137) as being expressed at elevated levels on sanroque small intestinal LPLs, and we show that both of those subsets, in conjunction with cells expressing the KLRG1 T cell activation molecule, are sources of IL-17A, IFN-γ, and TNFα. TNFα was primarily produced by 4-1BB+, KLRG1-cells, but was also made by some 4-1BB-, KLRG1-cells, and 4-1BB-, KLRG1+ cells. These findings collectively suggest that the small intestinal inflammatory response in sanroque mice is driven, at least in part, by LPL activation through Ly6C and 4-1BB signaling, and they provide further evidence in support of using the sanroque mouse as an animal model of chronic small intestinal inflammation.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Alexander Williams
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston TX, USA
| | - John R Klein
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston TX, USA.
| |
Collapse
|
91
|
McKee SJ, Doff BL, Soon MS, Mattarollo SR. Therapeutic Efficacy of 4-1BB Costimulation Is Abrogated by PD-1 Blockade in a Model of Spontaneous B-cell Lymphoma. Cancer Immunol Res 2017; 5:191-197. [DOI: 10.1158/2326-6066.cir-16-0249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/12/2016] [Accepted: 01/06/2017] [Indexed: 11/16/2022]
|
92
|
Abstract
Chimeric antigen receptor (CAR) gene-engineered T cell therapy holds the potential to make a meaningful difference in the lives of patients with terminal cancers. For decades, cancer therapy was based on biophysical parameters, with surgical resection to debulk, followed by radiation and chemotherapy to target the rapidly growing tumor cells, while mostly sparing quiescent normal tissues. One breakthrough occurred with allogeneic bone-marrow transplant for patients with leukemia, which provided a sometimes curative therapy. The field of adoptive cell therapy for solid tumors was established with the discovery that tumor-infiltrating lymphocytes could be expanded and used to treat and even cure patients with metastatic melanoma. Tumor-specific T-cell receptors (TCRs) were identified and engineered into patient peripheral blood lymphocytes, which were also found to treat tumors. However, these were limited by patient HLA-restriction. Close behind came generation of CAR, combining the exquisite recognition of an antibody with the effector function of a T cell. The advent of CD19-targeted CARs for treating patients with multiple forms of advanced B-cell malignancies met with great success, with up to 95% response rates. Applying CAR treatment to solid tumors, however, has just begun, but already certain factors have been made clear: the tumor target is of utmost importance for clinicians to do no harm; and solid tumors respond differently to CAR therapy compared with hematologic ones. Here we review the state of clinical gene-engineered T cell immunotherapy, its successes, challenges, and future.
Collapse
Affiliation(s)
- Laura A Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
93
|
Meylan F, Siegel RM. TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology. Semin Immunopathol 2016; 39:21-28. [PMID: 27896636 DOI: 10.1007/s00281-016-0612-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor (TNF) receptors and their corresponding cytokine ligands have been implicated in many aspects of the biology of immune functions. TNF receptors have key roles during various stages of T cell homeostasis. Many of them can co-stimulate lymphocyte proliferation and cytokine production. Additionally, several TNF cytokines can regulate T cell differentiation, including promoting Th1, Th2, Th17, and more recently the newly described Th9 subset. Four TNF family cytokines have been identified as regulators for IL-9 production by T cells. OX40L, TL1A, and GITRL can promote Th9 formation but can also divert iTreg into Th9, while 4-1BBL seems to inhibit IL-9 production from iTreg and has not been studied for its ability to promote Th9 generation. Regulation of IL-9 production by TNF family cytokines has repercussions in vivo, including enhancement of anti-tumor immunity and immunopathology in allergic lung and ocular inflammation. Regulating T cell production of IL-9 through blockade or agonism of TNF family cytokine receptors may be a therapeutic strategy for autoimmune and allergic diseases and in tumor.
Collapse
Affiliation(s)
- Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
94
|
Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, Rosenberg SA. Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clin Cancer Res 2016; 23:2491-2505. [PMID: 27827318 DOI: 10.1158/1078-0432.ccr-16-2680] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023]
Abstract
Purpose: The adoptive transfer of lymphocytes genetically modified to express tumor reactive T-cell receptors (TCR) can mediate tumor regression. Some tumor-infiltrating lymphocytes (TIL) recognize somatic mutations expressed only in the patient's tumors, and evidence suggests that clinically effective TILs target tumor-specific neoantigens. Here we attempted to isolate neoantigen-reactive TCRs as a prelude to the treatment of patients with autologous T cells genetically modified to express such TCRs.Experimental Design: Mutations expressed by tumors were identified using whole-exome and RNA sequencing. Tandem minigene (TMG) constructs encoding 12-24 mutated gene products were synthesized, each encoding the mutated amino acid flanked by 12 amino acids of the normal protein sequence. TILs were cultured with autologous dendritic cells (DC) transfected with in vitro transcribed (IVT) mRNAs encoding TMGs and were evaluated for IFNγ secretion and CD137 expression. Neoantigen-reactive T cells were enriched from TILs by sorting for CD137+ CD8+ T cells and expanded in vitro Dominant TCR α and β chains were identified in the enriched populations using a combination of 5' rapid amplification of cDNA ends, deep sequencing of genomic DNA, PairSeq analysis, and single-cell RT-PCR analysis. Human PBL retrovirally transduced to express the TCRs were evaluated for recognition of relevant neoantigens.Results: We identified 27 TCRs from 6 patients that recognized 14 neoantigens expressed by autologous tumor cells.Conclusions: This strategy provides the means to generate T cells expressing neoantigen-reactive TCRs for use in future adoptive cell transfer immunotherapy trials for patients with cancer. Clin Cancer Res; 23(10); 2491-505. ©2016 AACR.
Collapse
Affiliation(s)
| | - Alena Gros
- NIH/NCI Surgery Branch, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
95
|
Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother 2016; 65:1243-8. [PMID: 27034234 PMCID: PMC5035667 DOI: 10.1007/s00262-016-1829-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/21/2016] [Indexed: 01/06/2023]
Abstract
The success of checkpoint inhibitors has validated immunomodulatory agents as a valuable class of anticancer therapeutics. A promising co-stimulatory immunologic target is 4-1BB, or CD137, a member of the tumor necrosis factor receptor superfamily. Ligation of 4-1BB induces an activating signal in CD8(+) T cells and natural killer cells, resulting in increased pro-inflammatory cytokine secretion, cytolytic function, and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB with agonistic monoclonal antibody (mAb) therapy demonstrated potent antitumor effects in murine tumor models. While anti-4-1BB mAbs have entered clinical trials, optimal efficacy of 4-1BB-targeted agents will inevitably come from combination therapeutic strategies. Checkpoint blockade is a compelling combination partner for 4-1BB agonism. This novel immunotherapeutic approach has the potential to active antitumor immune effectors by a complementary mechanism: simultaneously "removing the brakes" via blocking inhibitory signaling and "stepping on the accelerator" via co-stimulation. While important considerations should be given to 4-1BB-mediated toxicities, the current understanding of 4-1BB biology suggests it may play a key role in advancing the capabilities of cancer combination therapy.
Collapse
Affiliation(s)
- Cariad Chester
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Siddhant Ambulkar
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA
| | - Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA
| |
Collapse
|
96
|
Srivastava RM, Trivedi S, Concha-Benavente F, Gibson SP, Reeder C, Ferrone S, Ferris RL. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clin Cancer Res 2016; 23:707-716. [PMID: 27496866 DOI: 10.1158/1078-0432.ccr-16-0879] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/24/2023]
Abstract
PURPOSE Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity. EXPERIMENTAL DESIGN CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells. RESULTS CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab. CONCLUSIONS These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR.
Collapse
Affiliation(s)
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Sandra P Gibson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carly Reeder
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
97
|
Joseph AM, Srivastava R, Zabaleta J, Davila E. Cross-talk between 4-1BB and TLR1-TLR2 Signaling in CD8+ T Cells Regulates TLR2's Costimulatory Effects. Cancer Immunol Res 2016; 4:708-16. [PMID: 27267778 DOI: 10.1158/2326-6066.cir-15-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
Abstract
The activation of TLR-MyD88 (Toll-like receptor-myeloid differentiation factor 88) signaling within T cells functions as a potent costimulatory signal that boosts antitumor and antiviral responses. However, the molecular mechanisms underlying the costimulatory processes are poorly understood. We compared microarray gene analysis data between TLR1-TLR2-stimulated and unstimulated T-cell receptor transgenic "pmel" and MyD88(-/-) pmel CD8(+) T cells and identified changes in the expression of several TNF family members. In particular, TLR stimulation increased 4-1BB levels in pmel but not in MyD88(-/-)pmel T cells. A link between 4-1BB and TLR1-TLR2 signaling in CD8(+) T cells was highlighted by the suboptimal responses of 4-1BB(-/-) T cells to TLR1-TLR2 agonist, but their normal response to CD28 or OX40 costimulation. Blocking 4-1BB signaling with antibodies also hindered the costimulatory effects of the TLR1-TLR2 agonist. The elevated levels of 4-1BB transcripts in TLR1-TLR2-stimulated cells were not due to increased mRNA stability nor increased histone activation, but instead were associated with increased binding of p65 and c-Jun to two distinct 4-1BB promoter sites. Combining TLR1-TLR2 ligand with an agonistic antibody to 4-1BB enhanced the antitumor activity in mice with established melanoma tumors. These studies reveal that the costimulatory effects of TLR1-TLR2 signaling in CD8(+) T cells are in part mediated by 4-1BB and are important for mounting an effective antitumor immune response. Cancer Immunol Res; 4(8); 708-16. ©2016 AACR.
Collapse
Affiliation(s)
- Ann Mary Joseph
- University of Maryland, Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland. Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland
| | - Ratika Srivastava
- University of Maryland, Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eduardo Davila
- University of Maryland, Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland. Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
98
|
Augmented CD3+CD8+ and CD3+CD56− cells in cytokine-induced killer cells cultured with engineered cells for costimulatory enhancement from heavily pretreated patients with solid tumor. Cytotherapy 2016; 18:581-9. [DOI: 10.1016/j.jcyt.2015.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
|
99
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 736] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
100
|
Kumari A, Garnett-Benson C. Effector function of CTLs is increased by irradiated colorectal tumor cells that modulate OX-40L and 4-1BBL and is reversed following dual blockade. BMC Res Notes 2016; 9:92. [PMID: 26872462 PMCID: PMC4752774 DOI: 10.1186/s13104-016-1914-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Sub-lethal doses of ionizing radiation (IR) can alter the phenotype of target tissue by modulating genes that influence effector T cell activity. Previous studies indicate that cancer cells respond to radiation by up-regulating surface expression of death receptors, cell adhesion molecules and tumor-associated antigens (TAA). However, there is limited information available regarding how T cells themselves are altered following these interactions with irradiated tumor cells. Methods Here, several human colorectal tumor cell lines were exposed to radiation (0–10 Gy) in vitro and changes in the expression of molecules costimulatory to effector T cells (4-1BBL, OX-40L, CD70, ICOSL) were examined by flow cytometry. T cell effector function was assessed to determine if changes in these proteins were directly related to the changes in T cell function. Results We found OX-40L and 4-1BBL to be the most consistently upregulated proteins on the surface of colorectal tumor cells post-IR while ICOSL and CD70 remained largely unaltered. Expression of these gene products correlated with enhanced killing of irradiated human colorectal tumor cells by TAA-specific T-cells. Importantly, blocking of both OX-40L and 4-1BBL reversed radiation-enhanced T-cell killing of human tumor targets as well as T-cell survival and activation. Conclusions Overall, results of this study suggest that, beyond simply rendering tumor cells more sensitive to immune attack, radiation can be used to specifically modulate expression of genes that directly stimulate effector T cell activity.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|