51
|
Elitok S, Gobel U, Bieringer M, Nagel M, Schneider W, Kettritz R, Luft FC. MYH9 mutation and lupus erythematosus. Clin Kidney J 2010. [DOI: 10.1093/ndtplus/sfp181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
52
|
A synthetic analog of 15-epi-lipoxin A4 inhibits human monocyte apoptosis: Involvement of ERK-2 and PI3-kinase. Prostaglandins Other Lipid Mediat 2010; 91:10-7. [DOI: 10.1016/j.prostaglandins.2009.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 01/25/2023]
|
53
|
Ghosh S, Tewari R, Dixit D, Sen E. TNFα induced oxidative stress dependent Akt signaling affects actin cytoskeletal organization in glioma cells. Neurochem Int 2010; 56:194-201. [DOI: 10.1016/j.neuint.2009.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 11/16/2022]
|
54
|
The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 2009; 115:1621-31. [PMID: 20007545 DOI: 10.1182/blood-2009-11-251744] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of nonopsonized bacteria is central to innate immunity, but its regulation is less defined. We show that overexpression of the P2X(7) receptor greatly augments the phagocytosis of nonopsonized beads and heat-killed bacteria by transfected HEK-293 cells, whereas blocking P2X(7) expression by siRNA significantly reduces the phagocytic ability of human monocytic cells. An intact P2X(7)-nonmuscle myosin complex is required for phagocytosis of nonopsonized beads because activation of P2X(7) receptors by adenosine triphosphate (ATP), which dissociates myosin IIA from the P2X(7) complex, inhibits this phagocytic pathway. Fresh human monocytes rapidly phagocytosed live and heat-killed Staphylococcus aureus and Escherichia coli in the absence of serum, but the uptake was reduced by prior incubation with ATP, or P2X(7) monoclonal antibody, or recombinant P2X(7) extracellular domain. Injection of beads or bacteria into the peritoneal cavity of mice resulted in their brisk phagocytosis by macrophages, but injection of ATP before particles markedly decreased this uptake. These data demonstrate a novel pathway of phagocytosis of nonopsonized particles and bacteria, which operate in vivo and require an intact P2X(7)-nonmuscle myosin IIA membrane complex. The inhibitory effect of ATP on particle uptake by the macrophage is regulated by the P2X(7) receptor and defines this phagocytic pathway.
Collapse
|
55
|
Abstract
The resolution of inflammation is an active process controlled by endogenous mediators with selective actions on neutrophils and monocytes. The initial phase of the acute inflammatory response is characterized by the production of pro-inflammatory mediators followed by a second phase in which lipid mediators with pro-resolution activities may be generated. The identification of these mediators has provided evidence for the dynamic regulation of the resolution of inflammation. Among these endogenous local mediators of resolution, lipoxins (LXs), lipid mediators typically formed during cell-cell interaction, were the first to be recognized. More recently, families of endogenous chemical mediators, termed resolvins and protectins, were discovered. LXs and aspirin-triggered LXs are considered to act as 'braking signals' in inflammation, limiting the trafficking of leukocytes to the inflammatory site. LXs are actively involved in the resolution of inflammation stimulating non-phlogistic phagocytosis of apoptotic cells by macrophages. Furthermore, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to growth factors. Here, we provide a review and an update of the biosynthesis, metabolism and bioactions of LXs and LX analogues, and the recent studies on their therapeutic potential as promoters of resolution and fibro-suppressants.
Collapse
Affiliation(s)
- Paola Maderna
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
56
|
Decker Y, McBean G, Godson C. Lipoxin A4 inhibits IL-1beta-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am J Physiol Cell Physiol 2009; 296:C1420-7. [PMID: 19357230 DOI: 10.1152/ajpcell.00380.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a growing appreciation that endogenously produced mediators may actively promote the resolution of inflammation. Lipoxins (LX) are a group of recently discovered lipid mediators that have been shown to exert anti-inflammatory and proresolution effects on cells of myeloid and nonmyeloid origin. LXs mediate a number of processes, including regression of pro-inflammatory cytokine production, inhibition of cell proliferation, and stimulation of phagocytosis of apoptotic leukocytes by macrophages. Lipoxin A(4) (LXA(4)) is one of the principal LXs formed by mammalian cells. Recently, a G protein-coupled receptor that binds LXA(4,) the lipoxin A(4) receptor, was identified in astrocytes and microglia, suggesting that these cells may be a target for LX action in the brain. In this study, we have investigated the potential of LXA(4) to modify inflammatory responses of astrocytes, using the 1321N1 human astrocytoma cell line as a model system. As shown by quantitative RT-PCR, LXA(4) (10 nM) significantly inhibited (P < 0.05) the IL-1beta-induced stimulation of IL-8 and ICAM-1 expression in these cells. Furthermore, LXA(4) (10 nM) decreased the expression of IL-1beta-induced IL-8 protein levels (P < 0.05). LXA(4) (10 nM) was found to inhibit IL-1beta-induced degradation of IkappaBalpha (P < 0.05), and the activation of an NFkappaB regulated reporter gene construct (P < 0.05). Overall, these data suggest that LXA(4) exerts anti-inflammatory effects in 1321N1 astrocytoma cells at least in part via an NFkappaB-dependent mechanism. It is concluded that LXA(4) may represent a potentially novel therapeutic approach to acute or chronic inflammation in the brain.
Collapse
Affiliation(s)
- Yann Decker
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
57
|
Starosta V, Pazdrak K, Boldogh I, Svider T, Kurosky A. Lipoxin A4 counterregulates GM-CSF signaling in eosinophilic granulocytes. THE JOURNAL OF IMMUNOLOGY 2009; 181:8688-99. [PMID: 19050289 DOI: 10.4049/jimmunol.181.12.8688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eosinophils are granulated leukocytes that are involved in many inflammation-associated pathologies including airway inflammation in asthma. Resolution of eosinophilic inflammation and return to homeostasis is in part due to endogenous chemical mediators, for example, lipoxins, resolvins, and protectins. Lipoxins are endogenous eicosanoids that demonstrate antiinflammatory activity and are synthesized locally at sites of inflammation. In view of the importance of lipoxins (LXs) in resolving inflammation, we investigated the molecular basis of LXA(4) action on eosinophilic granulocytes stimulated with GM-CSF employing the eosinophilic leukemia cell line EoL-1 as well as peripheral blood eosinophils. We report herein that LXA(4) (1-100 nM) decreased protein tyrosine phosphorylation in EoL-1 cells stimulated with GM-CSF. Additionally, the expression of a number of GM-CSF-induced cytokines was inhibited by LXA(4) in a dose-dependent manner. Furthermore, using a proteomics approach involving mass spectrometry and immunoblot analysis we identified 11 proteins that were tyrosine phosphorylated after GM-CSF stimulation and whose phosphorylation was significantly inhibited by LXA(4) pretreatment. Included among these 11 proteins were alpha-fodrin (nonerythroid spectrin) and actin. Microscopic imaging showed that treatment of EoL-1 cells or blood eosinophils with GM-CSF resulted in the reorganization of actin and the translocation of alpha-fodrin from the cytoplasm to the plasma membrane. Importantly, alpha-fodrin translocation was prevented by LXA(4) but actin reorganization was not. Thus, the mechanism of LXA(4) action likely involves prevention of activation of eosinophilic granulocytes by GM-CSF through inhibition of protein tyrosine phosphorylation and modification of some cytoskeletal components.
Collapse
Affiliation(s)
- Vitaliy Starosta
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
58
|
Yun JH, Henson PM, Tuder RM. Phagocytic clearance of apoptotic cells: role in lung disease. Expert Rev Respir Med 2008; 2:753-65. [PMID: 20477237 PMCID: PMC3956128 DOI: 10.1586/17476348.2.6.753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Apoptosis and apoptotic clearance are matched processes that are centered in the maintenance of homeostasis. Similar to apoptosis, apoptotic cell clearance is a conserved mechanism that is highly efficient and redundant, highlighting its overall functional importance in homeostasis. Increasing evidence suggests that the mismatch between apoptosis and apoptotic cell clearance underlies pathologic conditions including inflammatory lung diseases, such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, acute lung injury/acute respiratory distress syndrome and cancer immunity. Although direct causality has yet to be established, this paradigm opens novel approaches towards the understanding and treatment of lung diseases. Glucocorticoids, statins and macrolide antibiotics, which are already in use for treating lung conditions, have a positive effect on apoptotic clearance and are among novel agents that are potential candidates for treatment of these disorders.
Collapse
Affiliation(s)
- Jeong H Yun
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA, Tel.: +1 303 724 6049,
| | - Peter M Henson
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA, Tel.: +1 303 398 1380, Fax: +1 303 398 1381,
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA, Tel.: +1 303 724 6062,
| |
Collapse
|
59
|
O'Meara SJ, Rodgers K, Godson C. Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 2008; 160:47-70. [PMID: 18481030 DOI: 10.1007/112_2006_0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that are typically generated by transcellular biosynthesis. These trihydroxytetraene-containing lipid mediators and their stable synthetic analogues possess a wide spectrum of anti-inflammatory and pro-resolution bioactions both in vitro and in vivo. More recently, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to platelet-derived growth factor (PDGF). Here we review the biosynthesis, metabolism and bioactions of LXs and LX analogues and their therapeutic potential.
Collapse
Affiliation(s)
- S J O'Meara
- UCD Conway Institute of Biomolecular and Biomedical Research and UCB Diabetes Research Center, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
60
|
Haworth O, Levy BD. Endogenous lipid mediators in the resolution of airway inflammation. Eur Respir J 2008; 30:980-92. [PMID: 17978156 DOI: 10.1183/09031936.00005807] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute inflammation in the lung is fundamentally important to host defence, but chronic or excessive inflammation leads to several common respiratory diseases, including asthma and acute respiratory distress syndrome. The resolution of inflammation is an active process. In health, events at the onset of acute inflammation establish biosynthetic circuits for specific chemical mediators that later serve as agonists to orchestrate a return to tissue homeostasis. In addition to an overabundance of pro-inflammatory stimuli, pathological inflammation can also result from defects in resolution signalling. The understanding of anti-inflammatory, pro-resolution molecules and their counter-regulatory signalling pathways is providing new insights into the molecular pathophysiology of lung disease and opportunities for the design of therapeutic strategies. In the present review, the growing family of lipid mediators of resolution is examined, including lipoxins, resolvins, protectins, cyclopentenones and presqualene diphosphate. Roles are uncovered for these compounds, or their structural analogues, in regulating airway inflammation.
Collapse
Affiliation(s)
- O Haworth
- Pulmonary and Critical Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
61
|
Lalwani AK, Atkin G, Li Y, Lee JY, Hillman DE, Mhatre AN. Localization in stereocilia, plasma membrane, and mitochondria suggests diverse roles for NMHC-IIa within cochlear hair cells. Brain Res 2008; 1197:13-22. [PMID: 18241845 DOI: 10.1016/j.brainres.2007.12.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/03/2007] [Accepted: 12/16/2007] [Indexed: 01/16/2023]
Abstract
NMHC-IIa, a nonmuscle myosin heavy chain isoform encoded by MYH9, is expressed in sensory hair cells and its dysfunction is associated with syndromic and nonsyndromic hearing loss. In this study, we investigate the ultrastructural distribution of NMHC-IIa within murine hair cells to elucidate its potential role in hair cell function. Using previously characterized anti-mouse NMHC-IIa antibody detected with immunogold labelling, NMHC-IIa was observed in the stereocilia, in the cytosol along the plasma membrane, and within mitochondria. Within stereocilia, presence of NMHC-IIa is observed throughout its length along the actin core, from the center to the periphery and at its base in the cuticular plate, suggesting a potential role in structural support. Within the sensory hair cells, NMHC-IIa was distributed throughout the cytoplasm and along the plasma membrane. A novel finding of this study is the localization of NMHC-IIa within the mitochondria, with the majority of the label along its inner membrane folds. The presence of NMHC-IIa within heterogeneous areas of the hair cell suggests that it may play different functional roles in these distinct regions. Thus, mutant NMHC-IIa may cause hearing loss by affecting hair cell dysfunction through structural and or functional disruption of its stereocilia, plasma membrane, and/or mitochondria.
Collapse
Affiliation(s)
- Anil K Lalwani
- Laboratory of Molecular Otology, Department of Otolaryngology, New York University School of Medicine, New York, NY 10016,
| | | | | | | | | | | |
Collapse
|
62
|
Zhang L, Wan J, Li H, Wu P, Jin S, Zhou X, Yuan P, Xiong W, Li Y, Ye D. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatol Res 2007; 37:948-56. [PMID: 17610505 DOI: 10.1111/j.1872-034x.2007.00154.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that display unique anti-inflammatory and pro-resolving actions during various inflammatory conditions, but the pathophysiological significance of LX in liver disorders remains unknown. METHODS In the present study, we used a murine model of carbon tetrachloride (CCl(4))-induced acute liver injury to investigate the effects of LX on the progression of acute liver injury. RESULTS The results indicated that the lipoxin A(4) receptor (ALX) was upregulated after giving CCl(4). BML-111, a commercially available ALX agonist, effectively protected the liver from CCl(4)-induced injury as evidenced by decreased serum aminotransferase (ALT, AST) levels and improved histological damage. The dampened liver injury was accompanied byreduced malondialdehyde (MDA) content in liver homogenates and decreased concentration of tumor necrosis factor-alpha (TNF-alpha) in the serum. Most interestingly, BML-111 markedly upregulated hepatic heme oxygenase-1 (HO-1) expression in CCl(4)-treated mice, which might provide antioxidative activities in the liver. CONCLUSION These data indicate that ALX agonist BML-111 plays a critical protective role in CCl(4)-induced acute liver injury through limiting the inflammatory response and promoting antioxidative protein expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, Maderna P. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:4595-605. [PMID: 17372018 DOI: 10.4049/jimmunol.178.7.4595] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The resolution of inflammation is a dynamically regulated process that may be subverted in many pathological conditions. Macrophage (Mphi) phagocytic clearance of apoptotic leukocytes plays an important role in the resolution of inflammation as this process prevents the exposure of tissues at the inflammatory site to the noxious contents of lytic cells. It is increasingly appreciated that endogenously produced mediators, such as lipoxins, act as potent regulators (nanomolar range) of the phagocytic clearance of apoptotic cells. In this study, we have investigated the intriguing possibility that apoptotic cells release signals that promote their clearance by phagocytes. We report that conditioned medium from apoptotic human polymorphonuclear neutrophils (PMN), Jurkat T lymphocytes, and human mesangial cells promote phagocytosis of apoptotic PMN by Mphi and THP-1 cells differentiated to a Mphi-like phenotype. This prophagocytic activity appears to be dose dependent, sensitive to the caspase inhibitor zVAD-fmk, and is associated with actin rearrangement and release of TGF-beta1, but not IL-8. The prophagocytic effect can be blocked by the formyl peptide receptor antagonist Boc2, suggesting that the prophagocytic factor(s) may interact with the lipoxin A(4) receptor, FPRL-1. Using nanoelectrospray liquid chromatography mass spectrometry and immunodepletion and immunoneutralization studies, we have ascertained that annexin-1 and peptide derivatives are putative prophagocytic factors released by apoptotic cells that promote phagocytosis of apoptotic PMN by M[phi] and differentiated THP-1 cells. These data highlight the role of annexin-1 and peptide derivatives in promoting the resolution of inflammation and expand on the therapeutic anti-inflammatory potential of annexin-1.
Collapse
Affiliation(s)
- Michael Scannell
- Diabetes Research Centre, School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
64
|
Schwab JM, Chiang N, Arita M, Serhan CN. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447:869-74. [PMID: 17568749 PMCID: PMC2757086 DOI: 10.1038/nature05877] [Citation(s) in RCA: 903] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/25/2007] [Indexed: 12/17/2022]
Abstract
Resolution of acute inflammation is an active process essential for appropriate host responses, tissue protection and the return to homeostasis. During resolution, specific omega-3 polyunsaturated fatty-acid-derived mediators are generated within resolving exudates, including resolvin E1 (RvE1) and protectin D1 (PD1). It is thus important to pinpoint specific actions of RvE1 and PD1 in regulating tissue resolution. Here we report that RvE1 and PD1 in nanogram quantities promote phagocyte removal during acute inflammation by regulating leukocyte infiltration, increasing macrophage ingestion of apoptotic polymorphonuclear neutrophils in vivo and in vitro, and enhancing the appearance of phagocytes carrying engulfed zymosan in lymph nodes and spleen. In this tissue terrain, inhibition of either cyclooxygenase or lipoxygenases--pivotal enzymes in the temporal generation of both pro-inflammatory and pro-resolving mediators--caused a 'resolution deficit' that was rescued by RvE1, PD1 or aspirin-triggered lipoxin A4 analogue. Also, new resolution routes were identified that involve phagocytes traversing perinodal adipose tissues and non-apoptotic polymorphonuclear neutrophils carrying engulfed zymosan to lymph nodes. Together, these results identify new active components for postexudate resolution traffic, and demonstrate that RvE1 and PD1 are potent agonists for resolution of inflamed tissues.
Collapse
Affiliation(s)
| | | | | | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
65
|
Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S, Xu Y, Tsutusmi-Ishii Y, Miyake K, Miyake N, Kondo S, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M. Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 2007; 14:1443-56. [PMID: 17464329 DOI: 10.1038/sj.cdd.4402139] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chimeric fusion protein AML1-ETO, created by the t(8;21) translocation, recruits histone deacetylase (HDAC) to AML1-dependent promoters, resulting in transcriptional repression of the target genes. We analyzed the transcriptional changes in t(8;21) Kasumi-1 AML cells in response to the HDAC inhibitors, depsipeptide (FK228) and suberoylanilide hydroxamic acid (SAHA), which induced marked growth inhibition and apoptosis. Using cDNA array, annexin A1 (ANXA1) was identified as one of the FK228-induced genes. Induction of ANXA1 mRNA was associated with histone acetylation in ANXA1 promoter and reversal of the HDAC-dependent suppression of C/EBPalpha by AML1-ETO with direct recruitment of C/EBPalpha to ANXA1 promoter. This led to increase in the N-terminal cleaved isoform of ANXA1 protein and accumulation of ANXA1 on cell membrane. Neutralization with anti-ANXA1 antibody or gene silencing with ANXA1 siRNA inhibited FK228-induced apoptosis, suggesting that the upregulation of endogenous ANXA1 promotes cell death. FK228-induced ANXA1 expression was associated with massive increase in cell attachment and engulfment of Kasumi-1 cells by human THP-1-derived macrophages, which was completely abrogated with ANXA1 knockdown via siRNA transfection or ANXA1 neutralization. These findings identify a novel mechanism of action of HDAC inhibitors, which induce the expression and externalization of ANXA1 in leukemic cells, which in turn mediates the phagocytic clearance of apoptotic cells by macrophages.
Collapse
MESH Headings
- Acetylation
- Annexin A1/biosynthesis
- Annexin A1/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA, Complementary/genetics
- Depsipeptides/pharmacology
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macrophages/physiology
- Oncogene Proteins, Fusion/metabolism
- Phagocytosis/drug effects
- RUNX1 Translocation Partner 1 Protein
- Up-Regulation/drug effects
- Vorinostat
Collapse
Affiliation(s)
- Y Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Jin SW, Zhang L, Lian QQ, Liu D, Wu P, Yao SL, Ye DY. Posttreatment with aspirin-triggered lipoxin A4 analog attenuates lipopolysaccharide-induced acute lung injury in mice: the role of heme oxygenase-1. Anesth Analg 2007; 104:369-77. [PMID: 17242094 DOI: 10.1213/01.ane.0000252414.00363.c4] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND We hypothesized that posttreatment with 15-epi-16-parafluoro-phenoxy lipoxin A4 (ATL) could attenuate lipopolysaccharide (LPS)-induced acute lung injury in mice. METHODS All the animals were randomly assigned to one of six groups (n = 6 per group). In the sham-vehicle group, mice were treated with 0.9% saline 60 min after they were challenged with saline. The sham-ATL group was identical to the sham-vehicle group except that ATL (0.7 mg/kg, IV) was administered, and the sham-ZnPP group was identical to the sham-vehicle group except that Zinc protoporphyrin IX (ZnPP, 25 mg/kg IV) was administered. In the LPS-vehicle group, mice were treated with vehicle 60 min after they were challenged with LPS. The LPS-ATL group was identical to the LPS-vehicle group but received ATL. The ZnPP-ATL-LPS group was identical to the LPS-ATL group, but ZnPP was administered 30 min before ATL. RESULTS Inhalation of LPS increased inflammatory cell counts, tumor necrosis factor-alpha, and protein concentration in bronchoalveolar lavage fluid and also induced lung histological injury and edema. Posttreatment with ATL inhibited tumor necrosis factor-alpha, nitric oxide, and malondialdehyde production, with the outcome of decreased pulmonary edema, lipid peroxidation, and the infiltration of neutrophils in lung tissues. In addition, ATL promoted the formation of heme oxygenase-1 in the lung tissues. Heme oxygenase-1 activity was also increased in the lung tissues after ATL stimulation. The beneficial effects of ATL were abolished by ZnPP. CONCLUSIONS This study demonstrates that posttreatment with ATL significantly reduces LPS-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Sheng-Wei Jin
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, China.
| | | | | | | | | | | | | |
Collapse
|
67
|
Goligorsky MS, Rabelink T. Meeting report: ISN forefronts in nephrology on endothelial biology and renal disease: from bench to prevention. Kidney Int 2006; 70:258-64. [PMID: 16775602 DOI: 10.1038/sj.ki.5001559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This ISN-sponsored Forefront in Nephrology meeting, which has brought together 120 scientists from 21 countries, has been concerned with various aspects of endothelial function and dysfunction and their contribution to progression of chronic kidney disease and/or its cardiovascular complications. The following themes were discussed in great depth: (1) phenotypical changes in the vascular endothelium - permeability, senescence, and apoptosis; (2) regulation of endothelial nitric oxide (NO) synthase function - caveolar and shear stress mechanisms, epigenetic regulation, S-nitrosylation, and Rho-kinase regulation; (3) oxidative stress and hypoxia-induced changes; (4) organellar dysfunction - lysosomes, mitochondria, and endoplasmic reticulum; (5) NO-independent mechanisms of vasomotion - epoxides, heme oxygenase-1 and carbon monoxide, thromboxane, tumor necrosis factor-alpha, and uric acid; (6) endothelial crosstalk with podocytes, monocytes, smooth muscle cells, and platelets; (7) candidate clinical biomarkers of endothelial dysfunction - functional testing of macro- and micro-vascular functions, surrogate markers, circulating detached endothelial cells, and endothelial precursor cells; and culminated in Round Table discussion on the diagnosis of endothelial dysfunction and its treatment options. In conclusion, this meeting has focused on several key problems of endothelial cell pathobiology relevant to chronic kidney disease.
Collapse
Affiliation(s)
- M S Goligorsky
- New York Medical College, Valhalla, New York, USA and Leiden University Medical School, Leiden, The Netherlands.
| | | |
Collapse
|