51
|
Hanamura T, Christenson JL, O'Neill KI, Rosas E, Spoelstra NS, Williams MM, Richer JK. Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Res 2021; 23:102. [PMID: 34736512 PMCID: PMC8567567 DOI: 10.1186/s13058-021-01478-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Accumulating evidence has attracted attention to the androgen receptor (AR) as a biomarker and therapeutic target in breast cancer. We hypothesized that AR activity within the tumor has clinical implications and investigated whether androgen responsive serum factors might serve as a minimally invasive indicator of tumor AR activity. METHODS Based on a comprehensive gene expression analysis of an AR-positive, triple negative breast cancer patient-derived xenograft (PDX) model, 163 dihydrotestosterone (DHT)-responsive genes were defined as an androgen responsive gene set. Among them, we focused on genes that were DHT-responsive that encode secreted proteins, namely KLK3, AZGP1 and PIP, that encode the secreted factors prostate specific antigen (PSA), zinc-alpha-2-glycoprotein (ZAG) and prolactin induced protein (PIP), respectively. Using AR-positive breast cancer cell lines representing all breast cancer subtypes, expression of candidate factors was assessed in response to agonist DHT and antagonist enzalutamide. Gene set enrichment analysis (GSEA) was performed on publically available gene expression datasets from breast cancer patients to analyze the relationship between genes encoding the secreted factors and other androgen responsive gene sets in each breast cancer subtype. RESULTS Anti-androgen treatment decreased proliferation in all cell lines tested representing various tumor subtypes. Expression of the secreted factors was regulated by AR activation in the majority of breast cancer cell lines. In GSEA, the candidate genes were positively correlated with an androgen responsive gene set across breast cancer subtypes. CONCLUSION KLK3, AZGP1 and PIP are AR regulated and reflect tumor AR activity. Further investigations are needed to examine the potential efficacy of these factors as serum biomarkers.
Collapse
Affiliation(s)
- Toru Hanamura
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Jessica L Christenson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Emmanuel Rosas
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Michelle M Williams
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
52
|
Napieralski R, Schricker G, Auer G, Aubele M, Perkins J, Magdolen V, Ulm K, Hamann M, Walch A, Weichert W, Kiechle M, Wilhelm OG. PITX2 DNA-Methylation: Predictive versus Prognostic Value for Anthracycline-Based Chemotherapy in Triple-Negative Breast Cancer Patients. Breast Care (Basel) 2021; 16:523-531. [PMID: 34720812 DOI: 10.1159/000510468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. Material and Methods The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. Results The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; p = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR >2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; p = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; p = 0.014). Conclusion In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.
Collapse
Affiliation(s)
| | | | - Gert Auer
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Viktor Magdolen
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Moritz Hamann
- Department of Gynecology Rotkreuzklinikum München, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
53
|
Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun 2021; 12:6276. [PMID: 34725325 PMCID: PMC8560912 DOI: 10.1038/s41467-021-26502-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a collection of biologically diverse cancers characterized by distinct transcriptional patterns, biology, and immune composition. TNBCs subtypes include two basal-like (BL1, BL2), a mesenchymal (M) and a luminal androgen receptor (LAR) subtype. Through a comprehensive analysis of mutation, copy number, transcriptomic, epigenetic, proteomic, and phospho-proteomic patterns we describe the genomic landscape of TNBC subtypes. Mesenchymal subtype tumors display high mutation loads, genomic instability, absence of immune cells, low PD-L1 expression, decreased global DNA methylation, and transcriptional repression of antigen presentation genes. We demonstrate that major histocompatibility complex I (MHC-I) is transcriptionally suppressed by H3K27me3 modifications by the polycomb repressor complex 2 (PRC2). Pharmacological inhibition of PRC2 subunits EZH2 or EED restores MHC-I expression and enhances chemotherapy efficacy in murine tumor models, providing a rationale for using PRC2 inhibitors in PD-L1 negative mesenchymal tumors. Subtype-specific differences in immune cell composition and differential genetic/pharmacological vulnerabilities suggest additional treatment strategies for TNBC. Triple negative breast cancer can be divided into additional subtypes. Here, using omics analyses, the authors show that in the mesenchymal subtype expression of MHC-1 is repressed and that this can be restored by using drugs that target subunits of the epigenetic modifier PRC2.
Collapse
|
54
|
Breast Cancer Consensus Subtypes: A system for subtyping breast cancer tumors based on gene expression. NPJ Breast Cancer 2021; 7:136. [PMID: 34642313 PMCID: PMC8511026 DOI: 10.1038/s41523-021-00345-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is heterogeneous in prognoses and drug responses. To organize breast cancers by gene expression independent of statistical methodology, we identified the Breast Cancer Consensus Subtypes (BCCS) as the consensus groupings of six different subtyping methods. Our classification software identified seven BCCS subtypes in a study cohort of publicly available data (n = 5950) including METABRIC, TCGA-BRCA, and data assayed by Affymetrix arrays. All samples were fresh-frozen from primary tumors. The estrogen receptor-positive (ER+) BCCS subtypes were: PCS1 (18%) good prognosis, stromal infiltration; PCS2 (15%) poor prognosis, highly proliferative; PCS3 (13%) poor prognosis, highly proliferative, activated IFN-gamma signaling, cytotoxic lymphocyte infiltration, high tumor mutation burden; PCS4 (18%) good prognosis, hormone response genes highly expressed. The ER− BCCS subtypes were: NCS1 (11%) basal; NCS2 (10%) elevated androgen response; NCS3 (5%) cytotoxic lymphocyte infiltration; unclassified tumors (9%). HER2+ tumors were heterogeneous with respect to BCCS.
Collapse
|
55
|
Recurrence biomarkers of triple negative breast cancer treated with neoadjuvant chemotherapy and anti-EGFR antibodies. NPJ Breast Cancer 2021; 7:124. [PMID: 34535679 PMCID: PMC8448841 DOI: 10.1038/s41523-021-00334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
To find metastatic recurrence biomarkers of triple-negative breast cancer (TNBC) treated by neoadjuvant chemotherapy and anti-EGFR antibodies (NAT), we evaluated tumor genomic, transcriptomic, and immune features, using MSK-IMPACT assay, gene arrays, Nanostring technology, and TIL assessment on H&E. Six patients experienced a rapid fatal recurrence (RR) and other 6 had later non-fatal recurrences (LR). Before NAT, RR had low expression of 6 MHC class I and 13 MHC class II genes but were enriched in upregulated genes involved in the cell cycle-related pathways. Their TIL number before NAT in RR was very low (<5%) and did not increase after treatment. In post-NAT residual tumors, RR cases showed high expression of SOX2 and CXCR4. Our results indicate that high expression of cell cycle genes, combined with cold immunological phenotype, may predict strong TNBC resistance to NAT and rapid progression after it. This biomarker combination is worth validation in larger studies.
Collapse
|
56
|
Balkrishna A, Mittal R, Arya V. Unveiling Novel Therapeutic Drug Targets and Prognostic Markers of Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 21:907-918. [PMID: 34503412 DOI: 10.2174/1568009621666210908113010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Triple negative breast cancer represents multiple genomic and transcriptomic heterogeneities. Genetic and epigenetic changes emerging in TNBC help it in acquiring resistance against immunological response. Distant metastasis, lack of clinically targeted therapies and prognostic markers make it the most aggressive form of breast cancer. In this review, we showed that driver alterations in targeted genes AR, ERR, TIL, TAM, miRNA, mTOR and immunosuppressive cytokines are predominantly involved in complicating TNBC by inducing cell proliferation, invasion and metastasis, and by inhibiting apoptosis. The role of node status, cathepsin-D, Ki-67 index, CD3+TIL, BRCA1 promoter methylation value and p53 as an efficient prognostic factor have also been studied to predict the disease free and overall survival rate in TNBC patients. The present review article is an attempt to gain an insight with a new vision on the etiology of TNBC, its treatment strategies and prognostic marker to identify the outcome of standard therapies and to re-design future treatment strategies to provide maximum benefit to patients.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| |
Collapse
|
57
|
Hossain F, Majumder S, David J, Miele L. Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions. Cancers (Basel) 2021; 13:cancers13153739. [PMID: 34359640 PMCID: PMC8345034 DOI: 10.3390/cancers13153739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The implementation of precision medicine will revolutionize cancer treatment paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable candidate to practice precision medicine. Using TNBC molecular subtyping and genomic profiling, a precision medicine-based clinical trial is ongoing. This review summarizes the current landscape and future directions of precision medicine and TNBC. Abstract Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer associated with a high recurrence and metastasis rate that affects African-American women disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients by the US ‘Food and Drug Administration’ is a promising development. The advancement of next-generation sequencing, particularly somatic exome panels, has raised hopes for more individualized treatment plans. However, the use of precision medicine for TNBC is a work in progress. This review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent clinical trial designed to target TNBC patients based on their subtype-specific classification shows promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain a challenge for oncologists to design adaptive precision medicine-based treatment plans.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Correspondence:
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Justin David
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| |
Collapse
|
58
|
Dent R, Oliveira M, Isakoff SJ, Im SA, Espié M, Blau S, Tan AR, Saura C, Wongchenko MJ, Xu N, Bradley D, Reilly SJ, Mani A, Kim SB. Final results of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer. Breast Cancer Res Treat 2021; 189:377-386. [PMID: 34264439 DOI: 10.1007/s10549-021-06143-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE In LOTUS (NCT02162719), adding the oral AKT inhibitor ipatasertib to first-line paclitaxel for locally advanced/metastatic triple-negative breast cancer (aTNBC) improved progression-free survival (PFS; primary endpoint), with an enhanced effect in patients with PIK3CA/AKT1/PTEN-altered tumors (FoundationOne next-generation sequencing [NGS] assay). We report final overall survival (OS) results. METHODS Eligible patients had measurable previously untreated aTNBC. Patients were stratified by prior (neo)adjuvant therapy, chemotherapy-free interval, and tumor immunohistochemistry PTEN status, and were randomized 1:1 to paclitaxel 80 mg/m2 (days 1, 8, 15) plus ipatasertib 400 mg or placebo (days 1-21) every 28 days until disease progression or unacceptable toxicity. OS (intent-to-treat [ITT], immunohistochemistry PTEN-low, and PI3K/AKT pathway-activated [NGS PIK3CA/AKT1/PTEN-altered] populations) was a secondary endpoint. RESULTS Median follow-up was 19.0 versus 16.0 months in the ipatasertib-paclitaxel versus placebo-paclitaxel arms, respectively. In the ITT population (n = 124), median OS was numerically longer with ipatasertib-paclitaxel than placebo-paclitaxel (hazard ratio 0.80, 95% CI 0.50-1.28; median 25.8 vs 16.9 months, respectively; 1-year OS 83% vs 68%). Likewise, median OS favored ipatasertib-paclitaxel in the PTEN-low (n = 48; 23.1 vs 15.8 months; hazard ratio 0.83) and PIK3CA/AKT1/PTEN-altered (n = 42; 25.8 vs 22.1 months; hazard ratio 1.13) subgroups. The ipatasertib-paclitaxel safety profile was unchanged. CONCLUSIONS Final OS results show a numerical trend favoring ipatasertib-paclitaxel and median OS exceeding 2 years with ipatasertib-paclitaxel. Overall, results are consistent with the reported PFS benefit; interpretation within biomarker-defined subgroups is complicated by small sample sizes and TNBC heterogeneity.
Collapse
Affiliation(s)
- Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, 11 Hospital Crescent, Singapore, Singapore.
| | - Mafalda Oliveira
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Steven J Isakoff
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Marc Espié
- Department of Medical Oncology, Breast Disease Center, Hospital Saint Louis, Paris, France
| | - Sibel Blau
- Oncology Division, Northwest Medical Specialties, Puyallup, WA, USA
| | - Antoinette R Tan
- Department of Solid Tumor and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Cristina Saura
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Na Xu
- Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | - Denise Bradley
- Pharma Development, Roche Products Ltd, Welwyn Garden City, UK
| | | | - Aruna Mani
- Product Development Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
59
|
Bergeron A, MacGrogan G, Bertaut A, Ladoire S, Arveux P, Desmoulins I, Bonnefoi H, Loustalot C, Auriol S, Beltjens F, Degrolard-Courcet E, Charon-Barra C, Richard C, Boidot R, Arnould L. Triple-negative breast lobular carcinoma: a luminal androgen receptor carcinoma with specific ESRRA mutations. Mod Pathol 2021; 34:1282-1296. [PMID: 33753865 PMCID: PMC8216909 DOI: 10.1038/s41379-021-00742-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Primary triple-negative invasive lobular breast carcinomas (TN-ILCs), which do not express hormone receptors and HER2 at diagnosis, are rare and poorly known. In this study, we analyzed the largest TN-ILC series ever reported in the literature, in comparison to phenotypically similar breast tumor subtypes: triple-negative invasive ductal carcinoma (TN-IDC) and hormone receptor-positive invasive lobular carcinoma (HR + ILC). All primary TN-ILCs registered in our database between 2000 and 2018 (n = 38) were compared to tumors from control groups, matched by stage and Elston/Ellis grade, with regard to clinical, pathologic, and immunohistochemical characteristics. A comparative molecular analysis (whole-exome and RNA sequencing using next-generation technology) was also performed. We found that TN-ILC patients were older than those with HR + ILC (P = 0.002) or TN-IDC (P < 0.001). Morphologically, TN-ILCs had aggressive phenotypes, with more pleomorphism (P = 0.003) and higher nuclear grades than HR + ILCs (P = 0.009). Immunohistochemistry showed that TN-ILCs less frequently expressed basal markers (CK5/6, EGFR and SOX10) than TN-IDCs (P < 0.001), while androgen receptor (AR) positivity was more prevalent (P < 0.001). Survival curves analysis did not show differences between TN-ILC and TN-IDC patients, while overall and distant metastasis-free survival were significantly worse compared to those with HR + ILCs (P = 0.047 and P = 0.039, respectively). At a molecular level, we found that TN-ILCs had particular transcriptomic profiles, characterized by increased AR signaling, and associated with frequent alterations in the PI3K network and ERBB2. Interestingly, whole-exome analysis also identified three specific recurrent ESRRA hotspot mutations in these tumors, which have never been described in breast cancer to date and which were absent in the other two tumor subtypes. Our findings highlight that TN-ILC is a unique aggressive breast cancer associated with elderly age, which belong to the luminal androgen receptor subtype as determined by immunohistochemistry and transcriptomic profiling. Moreover, it harbors specific molecular alterations (PI3K, ERBB2 and ESRRA) which may pave the way for new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Bergeron
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France.
| | - Gaëtan MacGrogan
- Department of Biopathology, Institut Bergonié, Bordeaux, France
- INSERM U1218, Bordeaux, France
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Centre Georges-François Leclerc, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
| | - Patrick Arveux
- Department of Epidemiology, Centre Georges-François Leclerc, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Hervé Bonnefoi
- INSERM U1218, Bordeaux, France
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | - Sophie Auriol
- Department of Surgery, Institut Bergonié, Bordeaux, France
| | - Françoise Beltjens
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Emilie Degrolard-Courcet
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Céline Charon-Barra
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Corentin Richard
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Laurent Arnould
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
| |
Collapse
|
60
|
Ahn SG, Kim SK, Shepherd JH, Cha YJ, Bae SJ, Kim C, Jeong J, Perou CM. Clinical and genomic assessment of PD-L1 SP142 expression in triple-negative breast cancer. Breast Cancer Res Treat 2021; 188:165-178. [PMID: 33770313 PMCID: PMC8233296 DOI: 10.1007/s10549-021-06193-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE The SP142 PD-L1 assay is a companion diagnostic for atezolizumab in metastatic triple-negative breast cancer (TNBC). We strove to understand the biological, genomic, and clinical characteristics associated with SP142 PD-L1 positivity in TNBC patients. METHODS Using 149 TNBC formalin-fixed paraffin-embedded tumor samples, tissue microarray (TMA) and gene expression microarrays were performed in parallel. The VENTANA SP142 assay was used to identify PD-L1 expression from TMA slides. We next generated a gene signature reflective of SP142 status and evaluated signature distribution according to TNBCtype and PAM50 subtypes. A SP142 gene expression signature was identified and was biologically and clinically evaluated on the TNBCs of TCGA, other cohorts, and on other malignancies treated with immune checkpoint inhibitors (ICI). RESULTS Using SP142, 28.9% of samples were PD-L1 protein positive. The SP142 PD-L1-positive TNBC had higher CD8+ T cell percentage, stromal tumor-infiltrating lymphocyte levels, and higher rate of the immunomodulatory TNBCtype compared to PD-L1-negative samples. The recurrence-free survival was prolonged in PD-L1-positive TNBC. The SP142-guided gene expression signature consisted of 94 immune-related genes. The SP142 signature was associated with a higher pathologic complete response rate and better survival in multiple TNBC cohorts. In the TNBC of TCGA, this signature was correlated with lymphocyte-infiltrating signature scores, but not with tumor mutational burden or total neoantigen count. In other malignancies treated with ICIs, the SP142 genomic signature was associated with improved response and survival. CONCLUSIONS We provide multi-faceted evidence that SP142 PDL1-positive TNBC have immuno-genomic features characterized as highly lymphocyte-infiltrated and a relatively favorable survival.
Collapse
Affiliation(s)
- Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),, Daejeon, Korea
| | - Jonathan H Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea.
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
61
|
Garmpis N, Damaskos C, Garmpi A, Nikolettos K, Dimitroulis D, Diamantis E, Farmaki P, Patsouras A, Voutyritsa E, Syllaios A, Zografos CG, Antoniou EA, Nikolettos N, Kostakis A, Kontzoglou K, Schizas D, Nonni A. Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer. In Vivo 2021; 34:1715-1727. [PMID: 32606140 DOI: 10.21873/invivo.11965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely diverse group of breast tumors, with aggressive clinical behavior, higher rates of distant recurrence and worse overall survival compared to other types of breast cancers. The genetic, transcriptional histological and clinical heterogeneity of this disease has been an obstacle in the progression of targeted therapeutic approaches, as a ubiquitous TNBC marker has not yet been discerned. In terms of that, current studies focus on the classification of TNBC tumors in subgroups with similar characteristics in order to develop a treatment specialized for each group of patients. To date, a series of gene expression profiles analysis in order to identify the different molecular subtypes have been used. Complementary DNA microarrays, PAM50 assays, DNA and RNA sequencing as well as immunohistochemical analysis are some of the methods utilized to classify TNBC tumors. In 2012, the Cancer Genome Atlas (TCGA) Research Network conducted a major analysis of breast cancers using six different platforms, the genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays, in order to assort the tumors in homogenous subgroups. Since then, an increasing number of breast cancer data sets are being examined in an attempt to distinguish the classification with biological interpretation and clinical implementation. In this review, the progress in molecular subtyping of TNBC is discussed, providing a brief insight in novel TNBC biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Nikolettos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Nikolettos
- Obstetric - Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
62
|
Cisneros-Villanueva M, Hidalgo-Pérez L, Cedro-Tanda A, Peña-Luna M, Mancera-Rodríguez MA, Hurtado-Cordova E, Rivera-Salgado I, Martínez-Aguirre A, Jiménez-Morales S, Alfaro-Ruiz LA, Arellano-Llamas R, Tenorio-Torres A, Domínguez-Reyes C, Villegas-Carlos F, Ríos-Romero M, Hidalgo-Miranda A. LINC00460 Is a Dual Biomarker That Acts as a Predictor for Increased Prognosis in Basal-Like Breast Cancer and Potentially Regulates Immunogenic and Differentiation-Related Genes. Front Oncol 2021; 11:628027. [PMID: 33912452 PMCID: PMC8074675 DOI: 10.3389/fonc.2021.628027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogeneous disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non−coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified two novel tumor types from TCGA with LINC00460 deregulation. We used survival analysis to demonstrate that LINC00460 expression is a marker for poor overall (OS), relapse-free (RFS) and distant metastasis-free survival (DMFS) in basal-like BRCA patients. LINC00460 expression is a potential marker for aggressive phenotypes in distinct tumors, including HPV-negative HNSC, stage IV KIRC, locally advanced lung cancer and basal-like BRCA. We show that the LINC00460 prognostic expression effect is tissue-specific, since its upregulation can predict poor OS in some tumors, but also predicts an improved clinical course in BRCA patients. We found that the LINC00460 expression is significantly enriched in the Basal-like 2 (BL2) TNBC subtype and potentially regulates the WNT differentiation pathway. LINC00460 can also modulate a plethora of immunogenic related genes in BRCA, such as SFRP5, FOSL1, IFNK, CSF2, DUSP7 and IL1A and interacts with miR-103-a-1, in-silico, which, in turn, can no longer target WNT7A. Finally, LINC00460:WNT7A ratio constitutes a composite marker for decreased OS and DMFS in Basal-like BRCA, and can predict anthracycline therapy response in ER-BRCA patients. This evidence confirms that LINC00460 is a master regulator in BRCA molecular circuits and influences clinical outcome.
Collapse
Affiliation(s)
- Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Lizbett Hidalgo-Pérez
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Mónica Peña-Luna
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | - Eduardo Hurtado-Cordova
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Irene Rivera-Salgado
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Alejandro Martínez-Aguirre
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Luis Alberto Alfaro-Ruiz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Rocío Arellano-Llamas
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | | | | | - Magdalena Ríos-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
63
|
Beltjens F, Molly D, Bertaut A, Richard C, Desmoulins I, Loustalot C, Charon-Barra C, Courcet E, Bergeron A, Ladoire S, Jankowski C, Boidot R, Arnould L. ER-/PR+ breast cancer: A distinct entity, which is morphologically and molecularly close to triple-negative breast cancer. Int J Cancer 2021; 149:200-213. [PMID: 33634878 DOI: 10.1002/ijc.33539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Determining the status of steroid hormone receptors [oestrogen (ER) and progesterone receptors (PR)] is a crucial part of the breast cancer workup. Thereby, breast cancers can be classified into four subtypes. However, the existence of ER-/PR+ tumours, often reported to be ill-classified due to technical errors, remains controversial. In order to address this controversy, we reviewed the hormone receptor status of 49 breast tumours previously classified as ER-/PR+ by immunohistochemistry, and compared clinical, pathological and molecular characteristics of confirmed ER-/PR+ tumours with those of ER+ and triple-negative tumours. We unequivocally confirmed the ER-/PR+ status in 27 of 49 tumours (0.3% of all breast cancers diagnosed in our institution between 2000 and 2014). We found that ER-/PR+ were morphologically and histologically similar to triple-negative tumours, but very distinct from ER+ tumours, with more aggressive phenotypes and more frequent basal marker expression than the latter. On the molecular level, RNA sequencing revealed different gene expression profiles between the three groups. Of particular interest, several genes controlled by the suppressor of zest 12 (SUZ12) were upregulated in ER-/PR+ tumours. Overall, our results confirm that ER-/PR+ breast cancers are an extremely rare but 'real' tumour subtype that requires careful diagnosis and has distinct features warranting different responsiveness to therapies and different clinical outcomes. Studies on larger cohorts are needed to further characterise these tumours. The likely involvement of SUZ12 in their biology is an interesting finding which may - in a long run - give rise to the development of new therapeutic alternatives.
Collapse
Affiliation(s)
- Françoise Beltjens
- Department of Tumour Biology and Pathology, Pathology Unit, Centre Georges-François Leclerc, Dijon, France
| | | | - Aurélie Bertaut
- Methodology and Biostatistics Unit, Centre Georges-François Leclerc, Dijon, France
| | - Corentin Richard
- Department of Tumour Biology and Pathology, Molecular Biology Unit, Centre Georges-François Leclerc, Dijon, France
| | - Isabelle Desmoulins
- Department of Clinical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Catherine Loustalot
- Department of Surgical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Céline Charon-Barra
- Department of Tumour Biology and Pathology, Pathology Unit, Centre Georges-François Leclerc, Dijon, France
| | - Emilie Courcet
- Department of Tumour Biology and Pathology, Pathology Unit, Centre Georges-François Leclerc, Dijon, France
| | - Anthony Bergeron
- Department of Tumour Biology and Pathology, Pathology Unit, Centre Georges-François Leclerc, Dijon, France
| | - Sylvain Ladoire
- Department of Clinical Oncology, Centre Georges-François Leclerc, Dijon, France
| | | | - Romain Boidot
- Department of Tumour Biology and Pathology, Molecular Biology Unit, Centre Georges-François Leclerc, Dijon, France
| | - Laurent Arnould
- Department of Tumour Biology and Pathology, Pathology Unit, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
64
|
Yuan Y, Lee JS, Yost SE, Li SM, Frankel PH, Ruel C, Schmolze D, Robinson K, Tang A, Martinez N, Stewart D, Waisman J, Kruper L, Jones V, Menicucci A, Uygun S, Yoder E, van der Baan B, Yim JH, Yeon C, Somlo G, Mortimer J. Phase II Trial of Neoadjuvant Carboplatin and Nab-Paclitaxel in Patients with Triple-Negative Breast Cancer. Oncologist 2021; 26:e382-e393. [PMID: 33098195 PMCID: PMC7930424 DOI: 10.1002/onco.13574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In this phase II clinical trial, we evaluated the efficacy of the nonanthracycline combination of carboplatin and nab-paclitaxel in early stage triple-negative breast cancer (TNBC). PATIENTS AND METHODS Patients with newly diagnosed stage II-III TNBC (n = 69) were treated with neoadjuvant carboplatin (area under the curve 6) every 28 days for four cycles plus nab-paclitaxel (100 mg/m2 ) weekly for 16 weeks. Pathological complete response (pCR) and residual cancer burden (RCB) were analyzed with germline mutation status, tumor-infiltrating lymphocytes (TILs), TNBC molecular subtype, and GeparSixto immune signature (GSIS). RESULTS Sixty-seven patients were evaluable for safety and response. Fifty-three (79%) patients experienced grade 3/4 adverse events, including grade 3 anemia (43%), neutropenia (39%), leukopenia (15%), thrombocytopenia (12%), fatigue (7%), peripheral neuropathy (7%), neutropenia (16%), and leukopenia (1%). Twenty-four patients (35%) had at least one dose delay, and 50 patients (72%) required dose reduction. Sixty-three (94%) patients completed scheduled treatment. The responses were as follows: 32 of 67 patients (48%) had pCR (RCB 0), 10 of 67 (15%) had RCB I, 19 of 67 (28%) had RCB II, 5 of 67 (7%) had RCB III, and 1 of 67 (2%) progressed and had no surgery. Univariate analysis showed that immune-hot GSIS and DNA repair defect (DRD) were associated with higher pCR with odds ratios of 4.62 (p = .005) and 4.76 (p = .03), respectively, and with RCB 0/I versus RCB II/III with odds ratio 4.80 (p = .01). Immune-hot GSIS was highly correlated with DRD status (p = .03), TIL level (p < .001), and TNBC molecular subtype (p < .001). After adjusting for age, race, stage, and grade, GSIS remained associated with higher pCR and RCB class 0/I versus II/III with odds ratios 7.19 (95% confidence interval [CI], 2.01-25.68; p = .002) and 8.95 (95% CI, 2.09-38.23; p = .003), respectively. CONCLUSION The combination of carboplatin and nab-paclitaxel for early stage high-risk TNBC showed manageable toxicity and encouraging antitumor activity. Immune-hot GSIS is associated with higher pCR rate and RCB class 0/1. This study provides an additional rationale for using nonanthracycline platinum-based therapy for future neoadjuvant trials in early stage TNBCs. Clinical trial identification number: NCT01525966 IMPLICATIONS FOR PRACTICE: Platinum is an important neoadjuvant chemotherapy agent for treatment of early stage triple-negative breast cancer (TNBC). In this study, carboplatin and nab-paclitaxel were well tolerated and highly effective in TNBC, resulting in pathological complete response of 48%. In univariate and multivariate analyses adjusting for age, race, tumor stage and grade, "immune-hot" GeparSixto immune signature (GSIS) and DNA repair defect (DRD) were associated with higher pathological complete response (pCR) and residual cancer burden class 0/1. The association of immune-hot GSIS with higher pCR holds promise for de-escalating neoadjuvant chemotherapy for patients with early stage TNBC. Although GSIS is not routinely used in clinic, further development of this immune signature into a clinically applicable assay is indicated.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jin Sun Lee
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Susan E. Yost
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Sierra Min Li
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christopher Ruel
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Kim Robinson
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Aileen Tang
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Norma Martinez
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Daphne Stewart
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - James Waisman
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Laura Kruper
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Veronica Jones
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Sahra Uygun
- Agendia Precision OncologyIrvineCaliforniaUSA
| | - Erin Yoder
- Agendia Precision OncologyIrvineCaliforniaUSA
| | | | - John H. Yim
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christina Yeon
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - George Somlo
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
65
|
Craven KE, Gökmen-Polar Y, Badve SS. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep 2021; 11:4691. [PMID: 33633150 PMCID: PMC7907367 DOI: 10.1038/s41598-021-83913-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
66
|
Kenn M, Cacsire Castillo-Tong D, Singer CF, Karch R, Cibena M, Koelbl H, Schreiner W. Decision theory for precision therapy of breast cancer. Sci Rep 2021; 11:4233. [PMID: 33608588 PMCID: PMC7895957 DOI: 10.1038/s41598-021-82418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Correctly estimating the hormone receptor status for estrogen (ER) and progesterone (PGR) is crucial for precision therapy of breast cancer. It is known that conventional diagnostics (immunohistochemistry, IHC) yields a significant rate of wrongly diagnosed receptor status. Here we demonstrate how Dempster Shafer decision Theory (DST) enhances diagnostic precision by adding information from gene expression. We downloaded data of 3753 breast cancer patients from Gene Expression Omnibus. Information from IHC and gene expression was fused according to DST, and the clinical criterion for receptor positivity was re-modelled along DST. Receptor status predicted according to DST was compared with conventional assessment via IHC and gene-expression, and deviations were flagged as questionable. The survival of questionable cases turned out significantly worse (Kaplan Meier p < 1%) than for patients with receptor status confirmed by DST, indicating a substantial enhancement of diagnostic precision via DST. This study is not only relevant for precision medicine but also paves the way for introducing decision theory into OMICS data science.
Collapse
Affiliation(s)
- Michael Kenn
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian F Singer
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rudolf Karch
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michael Cibena
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Heinz Koelbl
- Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schreiner
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
67
|
Aine M, Boyaci C, Hartman J, Häkkinen J, Mitra S, Campos AB, Nimeus E, Ehinger A, Vallon-Christersson J, Borg Å, Staaf J. Molecular analyses of triple-negative breast cancer in the young and elderly. Breast Cancer Res 2021; 23:20. [PMID: 33568222 PMCID: PMC7874480 DOI: 10.1186/s13058-021-01392-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 01/09/2023] Open
Abstract
Background Breast cancer in young adults has been implicated with a worse outcome. Analyses of genomic traits associated with age have been heterogenous, likely because of an incomplete accounting for underlying molecular subtypes. We aimed to resolve whether triple-negative breast cancer (TNBC) in younger versus older patients represent similar or different molecular diseases in the context of genetic and transcriptional subtypes and immune cell infiltration. Patients and methods In total, 237 patients from a reported population-based south Swedish TNBC cohort profiled by RNA sequencing and whole-genome sequencing (WGS) were included. Patients were binned in 10-year intervals. Complimentary PD-L1 and CD20 immunohistochemistry and estimation of tumor-infiltrating lymphocytes (TILs) were performed. Cases were analyzed for differences in patient outcome, genomic, transcriptional, and immune landscape features versus age at diagnosis. Additionally, 560 public WGS breast cancer profiles were used for validation. Results Median age at diagnosis was 62 years (range 26–91). Age was not associated with invasive disease-free survival or overall survival after adjuvant chemotherapy. Among the BRCA1-deficient cases (82/237), 90% were diagnosed before the age of 70 and were predominantly of the basal-like subtype. In the full TNBC cohort, reported associations of patient age with changes in Ki67 expression, PIK3CA mutations, and a luminal androgen receptor subtype were confirmed. Within DNA repair deficiency or gene expression defined molecular subgroups, age-related alterations in, e.g., overall gene expression, immune cell marker gene expression, genetic mutational and rearrangement signatures, amount of copy number alterations, and tumor mutational burden did, however, not appear distinct. Similar non-significant associations for genetic alterations with age were obtained for other breast cancer subgroups in public WGS data. Consistent with age-related immunosenescence, TIL counts decreased linearly with patient age across different genetic TNBC subtypes. Conclusions Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC. Consequently, treatment decisions should be less influenced by age and more driven by tumor biology. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01392-0.
Collapse
Affiliation(s)
- Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Ceren Boyaci
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Shamik Mitra
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ana Bosch Campos
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Emma Nimeus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden.,Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden.,Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Johan Vallon-Christersson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden.
| |
Collapse
|
68
|
Wang X, Petrossian K, Huang MJ, Saeki K, Kanaya N, Chang G, Somlo G, Chen S. Functional characterization of androgen receptor in two patient-derived xenograft models of triple negative breast cancer. J Steroid Biochem Mol Biol 2021; 206:105791. [PMID: 33271252 PMCID: PMC8820229 DOI: 10.1016/j.jsbmb.2020.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Extensive efforts, through cell line-based models, have been made to characterize the androgen receptor (AR) signaling pathway in triple-negative breast cancer (TNBC). However, these efforts have not yet reached a consensus with regards to the mechanism of AR in TNBC. Considering that patient-derived xenografts (PDXs) are more appropriate than cell line-based models for recapitulating the structural and molecular features of a patient's tumor, we have identified and molecularly characterized two new AR-positive TNBC PDX models and assessed the impacts of AR agonist [dihydrotestosterone (DHT)] and antagonist (enzalutamide) on tumor growth and gene expression profiles by utilizing immunohistochemistry, western blots, and RNA-Seq analyses. Two PDX models, termed TN1 and TN2, were derived from two grade-3 TNBC tumors, each harboring 1∼5% of AR nuclear positive cancer cells. DHT activated AR in both PDX tumors by increasing nuclear localization and AR protein levels. However, the endpoint tumor volume of DHT-treated TN1 was 3-folds smaller than that of non-treated TN1 tumors. Conversely, the endpoint tumor volume of DHT-treated TN2 was 2-folds larger than that of non-treated TN2. Moreover, enzalutamide failed to antagonize DHT-induced tumor growth in TN2. The RNA-Seq analyses revealed that DHT mainly suppressed gene expression in TN1 (961 down-regulated genes versus 149 up-regulated genes), while DHT promoted gene expression in TN2 (673 up-regulated genes versus 192 down-regulated genes). RNA-Seq data predicted distinct TNBC molecular subtypes for TN1 and TN2. TN1 correlated to a basal-like 1 (BL1) subtype, and TN2 correlated to a basal-like 2 (BL2) subtype. These analyses suggest that TN1 and TN2, which both express functional AR, are two molecularly distinct PDX models. The molecular characterization of these PDX models expands our current knowledge on AR-positive TNBC. Our results do not support that AR is a suitable therapeutic target in TNBC. To our best knowledge, the molecular mechanisms of AR in TNBC are equivocal and should be evaluated using clinically relevant models, considering both the heterogeneous expression of AR in TNBC and the general complexities of AR signaling.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Karineh Petrossian
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Miao-Juei Huang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kohei Saeki
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Noriko Kanaya
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Gregory Chang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
69
|
Hartung C, Porsch M, Stückrath K, Kaufhold S, Staege MS, Hanf V, Lantzsch T, Uleer C, Peschel S, John J, Pöhler M, Weigert E, Buchmann J, Bürrig KF, Schüler K, Bethmann D, Große I, Kantelhardt EJ, Thomssen C, Vetter M. Identifying High-Risk Triple-Negative Breast Cancer Patients by Molecular Subtyping. Breast Care (Basel) 2021; 16:637-647. [DOI: 10.1159/000519255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
<b><i>Introduction:</i></b> Triple-negative breast cancer (TNBC) is considered the most aggressive type of breast cancer (BC) with limited options for therapy. TNBC is a heterogeneous disease and tumors have been classified into TNBC subtypes using gene expression profiling to distinguish basal-like 1, basal-like 2, immunomodulatory, mesenchymal, mesenchymal stem-like, luminal androgen receptor (LAR), and one nonclassifiable group (called unstable). <b><i>Objectives:</i></b> The aim of this study was to verify the clinical relevance of molecular subtyping of TNBCs to improve the individual indication of systemic therapy. <b><i>Patients and Methods:</i></b> Molecular subtyping was performed in 124 (82%) of 152 TNBC tumors that were obtained from a prospective, multicenter cohort including 1,270 histopathologically confirmed invasive, nonmetastatic BCs (NCT 01592825). Treatment was guideline-based. TNBC subtypes were correlated with recurrence-free interval (RFI) and overall survival (OS) after 5 years of observation. <b><i>Results:</i></b> Using PAM50 analysis, 87% of the tumors were typed as basal with an inferior clinical outcome compared to patients with nonbasal tumors. Using the TNBCtype-6 classifier, we identified 23 (15%) of TNBCs as LAR subtype. After standard adjuvant or neoadjuvant chemotherapy, patients with LAR subtype showed the most events for 5-year RFI (66.7 vs. 80.6%) and the poorest probability of 5-year OS (60.0 vs. 84.4%) compared to patients with non-LAR disease (RFI: adjusted hazard ratio [aHR] = 1.87, 95% confidence interval [CI] 0.69–5.05, <i>p</i> = 0.211; OS: aHR = 2.74, 95% CI 1.06–7.10, <i>p</i> = 0.037). <b><i>Conclusion:</i></b> Molecular analysis and subtyping of TNBC may be relevant to identify patients with LAR subtype. These cancers seem to be less sensitive to conventional chemotherapy, and new treatment options, including androgen receptor-blocking agents and immune checkpoint inhibitors, have to be explored.
Collapse
|
70
|
Proteomic Resistance Biomarkers for PI3K Inhibitor in Triple Negative Breast Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12123857. [PMID: 33371187 PMCID: PMC7765949 DOI: 10.3390/cancers12123857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The objective of this study is to identify potential proteomic biomarkers in triple negative breast cancer (TNBC) that associate with response to PI3K inhibitors which are in clinical trials. We tested a panel of TNBC patient-derived xenograft (PDX) models for their tumor growth response to a pan-PI3K inhibitor, BKM120. Proteomic analyses by reverse phase protein array (RPPA) of 182 markers were performed on baseline and post short-term treatment PDX samples, to correlate with tumor growth response. We identified several baseline and treatment induced proteomic biomarkers in association with resistance. These results provide important insights for the development of PI3K inhibitors in TNBC. Abstract PI3K pathway activation is frequently observed in triple negative breast cancer (TNBC). However, single agent PI3K inhibitors have shown limited anti-tumor activity. To investigate biomarkers of response and resistance mechanisms, we tested 17 TNBC patient-derived xenograft (PDX) models representing diverse genomic backgrounds and varying degrees of PI3K pathway signaling activities for their tumor growth response to the pan-PI3K inhibitor, BKM120. Baseline and post-treatment PDX tumors were subjected to reverse phase protein array (RPPA) to identify protein markers associated with tumor growth response. While BKM120 consistently reduced PI3K pathway activity, as demonstrated by reduced levels of phosphorylated AKT, percentage tumor growth inhibition (%TGI) ranged from 35% in the least sensitive to 84% in the most sensitive model. Several biomarkers showed significant association with resistance, including elevated baseline levels of growth factor receptors (EGFR, pHER3 Y1197), PI3Kp85 regulatory subunit, anti-apoptotic protein BclXL, EMT (Vimentin, MMP9, IntegrinaV), NFKB pathway (IkappaB, RANKL), and intracellular signaling molecules including Caveolin, CBP, and KLF4, as well as treatment-induced increases in the levels of phosphorylated forms of Aurora kinases. Interestingly, increased AKT phosphorylation or PTEN loss at baseline were not significantly correlated to %TGI. These results provide important insights into biomarker development for PI3K inhibitors in TNBC.
Collapse
|
71
|
Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen Y, Tang LC, Heiman DI, Cao S, Maruvka YE, Lei JT, Huang C, Kothadia RB, Colaprico A, Birger C, Wang J, Dou Y, Wen B, Shi Z, Liao Y, Wiznerowicz M, Wyczalkowski MA, Chen XS, Kennedy JJ, Paulovich AG, Thiagarajan M, Kinsinger CR, Hiltke T, Boja ES, Mesri M, Robles AI, Rodriguez H, Westbrook TF, Ding L, Getz G, Clauser KR, Fenyö D, Ruggles KV, Zhang B, Mani DR, Carr SA, Ellis MJ, Gillette MA. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020; 183:1436-1456.e31. [PMID: 33212010 PMCID: PMC8077737 DOI: 10.1016/j.cell.2020.10.036] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.
Collapse
Affiliation(s)
- Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philipp Mertins
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Max Delbrück Center for Molecular Medicine in the Helmholtz Society and Berlin Institute of Health, Berlin, Germany
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Antonio Colaprico
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jarey Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań 61-701, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xi Steven Chen
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
72
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
73
|
Cyclic Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis. Methods Mol Biol 2020; 2055:521-562. [PMID: 31502168 DOI: 10.1007/978-1-4939-9773-2_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy harnesses the power of the adaptive immune system and has revolutionized the field of oncotherapy, as novel therapeutic strategies have been introduced into clinical use. The development of immune checkpoint inhibitors has led to durable control of disease in a subset of advanced cancer patients, such as those with melanoma and non-small cell lung cancer. However, predicting patient responses to therapy remains a major challenge, due to the remarkable genomic, epigenetic, and microenvironmental heterogeneity present in each tumor. Breast cancer (BC) is the most common cancer in women, where hormone receptor-positive (HR+; estrogen receptor and/or progesterone receptor) BC comprises the majority (>50%) and has better prognosis, while a minority (<20%) are triple negative BC (TNBC), which has an aggressive phenotype. There is a clinical need to identify predictors of late recurrence in HR+ BC and predictors of immunotherapy outcomes in advanced TNBC. Tumor-infiltrating lymphocytes (TILs) have recently been shown to predict late recurrence in HR+, counter to the findings that TILs confer good prognosis in TNBC and human epidermal growth factor receptor 2 positive (HER2+) subtypes. Furthermore, the spatial arrangement of TILs also appears to have prognostic value, with dense clusters of immune cells predicting poor prognosis in HR+ and good prognosis in TNBC. Whether TIL clusters in different breast cancer subtypes represent the same or different landscapes of TILs is unknown and may have treatment implications for a significant portion of breast cancer patients. Current histopathological staining technology is not sufficient for characterizing the ensembles of TILs and their spatial patterns, in addition to tumor and microenvironmental heterogeneity. However, recent advances in cyclic immunofluorescence enable differentiation of the subsets based on TILs, tumor heterogeneity, and microenvironment composition between good and poor responders. A computational framework for understanding the importance of the spatial relationships between TILs and tumor cells in cancer tissues, which will allow for quantitative interpretation of cyclic immunostaining, is also under development. This chapter will explore the workflow for a newly developed cyclic multiplexed-immunofluorescence (cmIF) assay, which has been optimized for formalin-fixed. paraffin-embedded tissues and developed to process digital images for quantitative single-cell based spatial analysis of tumor heterogeneity and microenvironment, including immune cell composition.
Collapse
|
74
|
Tentler JJ, Lang J, Capasso A, Kim DJ, Benaim E, Lee YB, Eisen A, Bagby SM, Hartman SJ, Yacob BW, Gittleman B, Pitts TM, Pelanda R, Eckhardt SG, Diamond JR. RX-5902, a novel β-catenin modulator, potentiates the efficacy of immune checkpoint inhibitors in preclinical models of triple-negative breast Cancer. BMC Cancer 2020; 20:1063. [PMID: 33148223 PMCID: PMC7641792 DOI: 10.1186/s12885-020-07500-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear β-catenin signaling. The purpose of this study was to evaluate the ability of β-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. METHODS Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. RESULTS The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). CONCLUSIONS Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.
Collapse
Affiliation(s)
- John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA.
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Anna Capasso
- Dell Medical School, Department of Oncology, University of Texas at Austin, Austin, TX, USA
| | | | - Ely Benaim
- Rexahn Pharmaceuticals Inc., Rockville, MD, USA
| | - Young B Lee
- Rexahn Pharmaceuticals Inc., Rockville, MD, USA
| | | | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Sarah J Hartman
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Betelehem W Yacob
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Brian Gittleman
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - S Gail Eckhardt
- Dell Medical School, Department of Oncology, University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| |
Collapse
|
75
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
76
|
Wang L, Lang GT, Xue MZ, Yang L, Chen L, Yao L, Li XG, Wang P, Hu X, Shao ZM. Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-negative breast cancers. Am J Cancer Res 2020; 10:10531-10547. [PMID: 32929364 PMCID: PMC7482814 DOI: 10.7150/thno.40944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive malignancy with high heterogeneity. However, the alternative polyadenylation (APA) profiles of TNBC remain unknown. Here, we aimed to define the characteristics of the APA events at post-transcription level among TNBCs. Methods: Using transcriptome microarray data, we analyzed APA profiles of 165 TNBC samples and 33 paired normal tissues. A pooled short hairpin RNA screen targeting 23 core cleavage and polyadenylation (C/P) genes was used to identify key C/P factors. Results: We established an unconventional APA subtyping system composed of four stable subtypes: 1) luminal androgen receptor (LAR), 2) mesenchymal-like immune-activated (MLIA), 3) basal-like (BL), 4) suppressed (S) subtypes. Patients in the S subtype had the worst disease-free survival comparing to other patients (log-rank p = 0.021). Enriched clinically actionable pathways and putative therapeutic APA events were analyzed among each APA subtype. Furthermore, CPSF1 and PABPN1 were identified as the master C/P factors in regulating APA events and TNBC proliferation. The depletion of CPSF1 or PABPN1 weakened cell proliferation, enhanced apoptosis, resulted in cell cycle redistribution and a reversion of APA events of genes associated with tumorigenesis, proliferation, metastasis and chemosensitivity in breast cancer. Conclusions: Our findings advance the understanding of tumor heterogeneity regulation in APA and yield new insights into therapeutic target identification in TNBC.
Collapse
|
77
|
Herrera Juarez M, Tolosa Ortega P, Sanchez de Torre A, Ciruelos Gil E. Biology of the Triple-Negative Breast Cancer: Immunohistochemical, RNA, and DNA Features. Breast Care (Basel) 2020; 15:208-216. [PMID: 32774214 DOI: 10.1159/000508758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background The triple-negative breast cancer (TNBC) constitutes a heterogeneous disease with an aggressive behavior and a poor prognosis. A better understanding of its biology is required to identify new biomarkers and improve clinical outcomes. Summary To date, the definition and classification of TNBC depends on a multiomic approach including immunohistochemistry (IHC), genomic, and transcriptomic features, and the tumor immune landscape. The development of new technologies has allowed us to sequence the whole cancer genome. The Cancer Genome Atlas (TCGA) and next-generation sequencing have led to a greater knowledge of DNA alterations such as TP53 or BRCA mutations, copy number variations, and DNA methylations. In addition, gene expression profiling has allowed to define a molecular intrinsic classification of TNBC based on mRNA. IHC and genomic profiling are also necessary to identify new immune biomarkers such as the presence of tumor-infiltrating lymphocytes and the expression of immune checkpoint molecules. Key Messages This review aimed to provide recent knowledge of TNBC biology and classification focused on IHC, transcriptomics, genomic features, and the new immune biomarkers.
Collapse
Affiliation(s)
- Mercedes Herrera Juarez
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Pablo Tolosa Ortega
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Ana Sanchez de Torre
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| | - Eva Ciruelos Gil
- Division of Gyneco-Oncology, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
78
|
Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, Hubank M, Dowsett M, Dodson A, Daley F, Kriplani D, Gevensleben H, Davies HR, Degasperi A, Roylance R, Chan S, Tutt A, Skene A, Evans A, Bliss JM, Nik-Zainal S, Turner NC. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat Commun 2020; 11:2662. [PMID: 32471999 PMCID: PMC7260192 DOI: 10.1038/s41467-020-16142-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Triple negative breast cancer (TNBC) encompasses molecularly different subgroups, with a subgroup harboring evidence of defective homologous recombination (HR) DNA repair. Here, within a phase 2 window clinical trial, RIO trial (EudraCT 2014-003319-12), we investigate the activity of PARP inhibitors in 43 patients with untreated TNBC. The primary end point, decreased Ki67, occured in 12% of TNBC. In secondary end point analyses, HR deficiency was identified in 69% of TNBC with the mutational-signature-based HRDetect assay. Cancers with HRDetect mutational signatures of HR deficiency had a functional defect in HR, assessed by impaired RAD51 foci formation on end of treatment biopsy. Following rucaparib treatment there was no association of Ki67 change with HR deficiency. In contrast, early circulating tumor DNA dynamics identified activity of rucaparib, with end of treatment ctDNA levels suppressed by rucaparib in mutation-signature HR-deficient cancers. In ad hoc analysis, rucaparib induced expression of interferon response genes in HR-deficient cancers. The majority of TNBCs have a defect in DNA repair, identifiable by mutational signature analysis, that may be targetable with PARP inhibitors.
Collapse
Affiliation(s)
- Neha Chopra
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Holly Tovey
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Ros Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Christy Toms
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Paula Proszek
- The Centre for Molecular Pathology, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, United Kingdom
| | - Michael Hubank
- The Centre for Molecular Pathology, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, United Kingdom
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Andrew Dodson
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Frances Daley
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Divya Kriplani
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Heidi Gevensleben
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
| | - Helen Ruth Davies
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Andrea Degasperi
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Rebecca Roylance
- University College London Hospitals NHS Foundation Trust, NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Stephen Chan
- Nottingham University Hospital Trust (City Campus), Nottingham, United Kingdom
| | - Andrew Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom
- Breast Cancer Now Research Unit, Cancer Centre, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Skene
- Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Abigail Evans
- Poole Hospital NHS Foundation Trust, Poole, United Kingdom
| | - Judith M Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Serena Nik-Zainal
- Department of Medical Genetics, The Clinical School, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Nicholas C Turner
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, CB2 0XZ, United Kingdom.
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London, United Kingdom.
| |
Collapse
|
79
|
Davis M, Martini R, Newman L, Elemento O, White J, Verma A, Datta I, Adrianto I, Chen Y, Gardner K, Kim HG, Colomb WD, Eltoum IE, Frost AR, Grizzle WE, Sboner A, Manne U, Yates C. Identification of Distinct Heterogenic Subtypes and Molecular Signatures Associated with African Ancestry in Triple Negative Breast Cancer Using Quantified Genetic Ancestry Models in Admixed Race Populations. Cancers (Basel) 2020; 12:E1220. [PMID: 32414099 PMCID: PMC7281131 DOI: 10.3390/cancers12051220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link between their aggressiveness with African ancestry is not established. We investigated primary TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n = 42) and European American (EA, n = 33) women. RNA sequencing data were analyzed to measure changes in genome-wide expression, and we utilized logistic regressions to identify ancestry-associated gene expression signatures. Using SNVs identified from our RNA sequencing data, global ancestry was estimated. We identified 156 African ancestry-associated genes and found that, compared to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific genes that were differentially expressed. A subset of African ancestry-specific genes that were upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was a higher incidence of basal-like two tumors and altered TP53, NFB1, and AKT pathways. The distinct distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, tumors from patients of various ancestral origins should be evaluated.
Collapse
Affiliation(s)
- Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
| | - Akanksha Verma
- Department of Computational Biology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Indra Adrianto
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA;
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
| | - Windy D. Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
- Department of Hematology and Oncology, Our Lady of Lourdes JD Moncus Cancer Center, Lafayette, LA 70508, USA
| | - Isam-Eldin Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andra R. Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10062, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
| |
Collapse
|
80
|
Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, Van Poznak C, Storniolo AM, Nangia J, Gonzalez-Ericsson PI, Sanchez V, Johnson KN, Abramson RG, Chen SC, Shyr Y, Arteaga CL, Wolff AC, Pietenpol JA. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR + Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2020; 26:2111-2123. [PMID: 31822498 PMCID: PMC7196503 DOI: 10.1158/1078-0432.ccr-19-2170] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/23/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Preclinical data demonstrating androgen receptor (AR)-positive (AR+) triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists, and PI3K inhibition catalyzed an investigator-initiated, multi-institutional phase Ib/II study TBCRC032. The trial investigated the safety and efficacy of the AR-antagonist enzalutamide alone or in combination with the PI3K inhibitor taselisib in patients with metastatic AR+ (≥10%) breast cancer. PATIENTS AND METHODS Phase Ib patients [estrogen receptor positive (ER+) or TNBC] with AR+ breast cancer received 160 mg enzalutamide in combination with taselisib to determine dose-limiting toxicities and the maximum tolerated dose (MTD). Phase II TNBC patients were randomized to receive either enzalutamide alone or in combination with 4 mg taselisib until disease progression. Primary endpoint was clinical benefit rate (CBR) at 16 weeks. RESULTS The combination was tolerated, and the MTD was not reached. The adverse events were hyperglycemia and skin rash. Overall, CBR for evaluable patients receiving the combination was 35.7%, and median progression-free survival (PFS) was 3.4 months. Luminal AR (LAR) TNBC subtype patients trended toward better response compared with non-LAR (75.0% vs. 12.5%, P = 0.06), and increased PFS (4.6 vs. 2.0 months, P = 0.082). Genomic analyses revealed subtype-specific treatment response, and novel FGFR2 fusions and AR splice variants. CONCLUSIONS The combination of enzalutamide and taselisib increased CBR in TNBC patients with AR+ tumors. Correlative analyses suggest AR protein expression alone is insufficient for identifying patients with AR-dependent tumors and knowledge of tumor LAR subtype and AR splice variants may identify patients more or less likely to benefit from AR antagonists.
Collapse
Affiliation(s)
- Brian D. Lehmann
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vandana G. Abramson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E. Sanders
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, Vanderbilt University, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville TN, USA
| | | | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | | - Paula I. Gonzalez-Ericsson
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, Vanderbilt University, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville TN, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kimberly N. Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard G. Abramson
- Department of Radiology and Radiological Sciences, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Carlos L. Arteaga
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio C. Wolff
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
81
|
Przybytkowski E, Davis T, Hosny A, Eismann J, Matulonis UA, Wulf GM, Nabavi S. An immune-centric exploration of BRCA1 and BRCA2 germline mutation related breast and ovarian cancers. BMC Cancer 2020; 20:197. [PMID: 32164626 PMCID: PMC7068944 DOI: 10.1186/s12885-020-6605-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
Background BRCA1/2 germline mutation related cancers are candidates for new immune therapeutic interventions. This study was a hypothesis generating exploration of genomic data collected at diagnosis for 19 patients. The prominent tumor mutation burden (TMB) in hereditary breast and ovarian cancers in this cohort was not correlated with high global immune activity in their microenvironments. More information is needed about the relationship between genomic instability, phenotypes and immune microenvironments of these hereditary tumors in order to find appropriate markers of immune activity and the most effective anticancer immune strategies. Methods Mining and statistical analyses of the original DNA and RNA sequencing data and The Cancer Genome Atlas data were performed. To interpret the data, we have used published literature and web available resources such as Gene Ontology, The Cancer immunome Atlas and the Cancer Research Institute iAtlas. Results We found that BRCA1/2 germline related breast and ovarian cancers do not represent a unique phenotypic identity, but they express a range of phenotypes similar to sporadic cancers. All breast and ovarian BRCA1/2 related tumors are characterized by high homologous recombination deficiency (HRD) and low aneuploidy. Interestingly, all sporadic high grade serous ovarian cancers (HGSOC) and most of the subtypes of triple negative breast cancers (TNBC) also express a high degree of HRD. Conclusions TMB is not associated with the magnitude of the immune response in hereditary BRCA1/2 related breast and ovarian cancers or in sporadic TNBC and sporadic HGSOC. Hereditary tumors express phenotypes as heterogenous as sporadic tumors with various degree of “BRCAness” and various characteristics of the immune microenvironments. The subtyping criteria developed for sporadic tumors can be applied for the classification of hereditary tumors and possibly also characterization of their immune microenvironment. A high HRD score may be a good candidate biomarker for response to platinum, and potentially PARP-inhibition. Trial registration Phase I Study of the Oral PI3kinase Inhibitor BKM120 or BYL719 and the Oral PARP Inhibitor Olaparib in Patients With Recurrent TNBC or HGSOC (NCT01623349), first posted on June 20, 2012. The design and the outcome of the clinical trial is not in the scope of this study.
Collapse
Affiliation(s)
- Ewa Przybytkowski
- Department of Computer Science and Engineering, University of Connecticut, Institute of System Genomics, Boston, MA, USA
| | - Thomas Davis
- Department of Computer Science and Engineering, University of Connecticut, Institute of System Genomics, Boston, MA, USA
| | - Abdelrahman Hosny
- Department of Computer Science and Engineering, University of Connecticut, Institute of System Genomics, Boston, MA, USA
| | | | | | - Gerburg M Wulf
- Beth Israel Deaconess Medical Center, Department of Hematology/Oncology, Harvard Medical School, Boston, MA, USA
| | - Sheida Nabavi
- Department of Computer Science and Engineering, University of Connecticut, Institute of System Genomics, Boston, MA, USA.
| |
Collapse
|
82
|
Coussy F, El Botty R, Lavigne M, Gu C, Fuhrmann L, Briaux A, de Koning L, Dahmani A, Montaudon E, Morisset L, Huguet L, Sourd L, Painsec P, Chateau-Joubert S, Larcher T, Vacher S, Melaabi S, Salomon AV, Marangoni E, Bieche I. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J Hematol Oncol 2020; 13:13. [PMID: 32087759 PMCID: PMC7036180 DOI: 10.1186/s13045-020-0846-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Metaplastic breast cancer (MBC) is a rare form of breast cancer characterized by an aggressive clinical presentation, with a poor response to standard chemotherapy. MBCs are typically triple-negative breast cancers (TNBCs), frequently with alterations to genes of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways. The objective of this study was to determine the response to PI3K and MAPK pathway inhibitors in patient-derived xenografts (PDXs) of MBCs with targetable alterations. Methods We compared survival between triple-negative MBCs and other histological subtypes, in a clinical cohort of 323 TNBC patients. PDX models were established from primary breast tumors classified as MBC. PI3K-AKT-mTOR and RTK-MAPK pathway alterations were detected by targeted next-generation sequencing (NGS) and analyses of copy number alterations. Activation of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways was analyzed with reverse-phase protein arrays (RPPA). PDXs carrying an activating mutation of PIK3CA and genomic changes to the RTK-MAPK signaling pathways were treated with a combination consisting of a PI3K inhibitor and a MEK inhibitor. Results In our clinical cohort, the patients with MBC had a worse prognosis than those with other histological subtypes. We established nine metaplastic TNBC PDXs. Three had a pathogenic mutation of PIK3CA and additional alterations to genes associated with RTK-MAPK signaling. The MBC PDXs expressed typical EMT and stem cell genes and were of the mesenchymal or mesenchymal stem-like TNBC subtypes. On histological analysis, MBC PDXs presented squamous or chondroid differentiation. RPPA analysis showed activation of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways. In vivo, the combination of PI3K and MAPK inhibitors displayed marked antitumor activity in PDXs carrying genomic alterations of PIK3CA, AKT1, BRAF, and FGFR4. Conclusion The treatment of metaplastic breast cancer PDXs by activation of the PI3K-AKT-mTOR and RTK-MAPK pathways at the genomic and protein levels with a combination of PI3K and MEK inhibitors resulted in tumor regression in mutated models and may therefore be of interest for therapeutic purposes.
Collapse
Affiliation(s)
- F Coussy
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France. .,Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France. .,Department of Medical Oncology, Institut Curie, Paris, France.
| | - R El Botty
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - M Lavigne
- Department of Biopathology, Institut Curie, Paris, France
| | - C Gu
- Department of Biopathology, Institut Curie, Paris, France
| | - L Fuhrmann
- Department of Biopathology, Institut Curie, Paris, France
| | - A Briaux
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - L de Koning
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - A Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - E Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Morisset
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Huguet
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Sourd
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - P Painsec
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - S Chateau-Joubert
- BioPôle Alfort, National Veterinary School of Alfort, Maison Alfort, France
| | - T Larcher
- INRA, APEX-PAnTher, Oniris, Nantes, France
| | - S Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - S Melaabi
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - E Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - I Bieche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Inserm U1016, University Paris Descartes, Paris, France
| |
Collapse
|
83
|
Fernandez AI, Geng X, Chaldekas K, Harris B, Duttargi A, Berry VL, Berry DL, Mahajan A, Cavalli LR, Győrffy B, Tan M, Riggins RB. The orphan nuclear receptor estrogen-related receptor beta (ERRβ) in triple-negative breast cancer. Breast Cancer Res Treat 2020; 179:585-604. [PMID: 31741180 PMCID: PMC7153462 DOI: 10.1007/s10549-019-05485-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC)/basal-like breast cancer (BLBC) is a highly aggressive form of breast cancer. We previously reported that a small molecule agonist ligand for the orphan nuclear receptor estrogen-related receptor beta (ERRβ or ESRRB) has growth inhibitory and anti-mitotic activity in TNBC cell lines. In this study, we evaluate the association of ESRRB mRNA, copy number levels, and protein expression with demographic, clinicopathological, and gene expression features in breast tumor clinical specimens. METHODS ESRRB mRNA-level expression and clinical associations were analyzed using RNAseq data. Array-based comparative genomic hybridization determined ESRRB copy number in African-American and Caucasian women. Transcription factor activity was measured using promoter-reporter luciferase assays in TNBC cell lines. Semi-automatic quantification of immunohistochemistry measured ERRβ protein expression on a 150-patient tissue microarray series. RESULTS ESRRB mRNA expression is significantly lower in TNBC/BLBC versus other breast cancer subtypes. There is no evidence of ESRRB copy number loss. ESRRB mRNA expression is correlated with the expression of genes associated with neuroactive ligand-receptor interaction, metabolic pathways, and deafness. These genes contain G/C-rich transcription factor binding motifs. The ESRRB message is alternatively spliced into three isoforms, which we show have different transcription factor activity in basal-like versus other TNBC cell lines. We further show that the ERRβ2 and ERRβsf isoforms are broadly expressed in breast tumors at the protein level. CONCLUSIONS Decreased ESRRB mRNA expression and distinct patterns of ERRβ isoform subcellular localization and transcription factor activity are key features in TNBC/BLBC.
Collapse
Affiliation(s)
- Aileen I Fernandez
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA.
- Department of Oncology, Georgetown University, 3970 Reservoir Rd NW, E412 Research Bldg., Washington, DC, 20057, USA.
| | - Xue Geng
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Krysta Chaldekas
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Brent Harris
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Anju Duttargi
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - V Layne Berry
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Deborah L Berry
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Akanksha Mahajan
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Luciane R Cavalli
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
- Research Institute Pelé Pequeno Príncipe Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Ming Tan
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Rebecca B Riggins
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA.
- Department of Oncology, Georgetown University, 3970 Reservoir Rd NW, E412 Research Bldg., Washington, DC, 20057, USA.
| |
Collapse
|
84
|
LncRNA RP11-19E11 is an E2F1 target required for proliferation and survival of basal breast cancer. NPJ Breast Cancer 2020; 6:1. [PMID: 31934613 PMCID: PMC6944689 DOI: 10.1038/s41523-019-0144-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in the regulation of breast cancer initiation and progression. LncRNAs are differentially expressed in breast cancer subtypes. Basal-like breast cancers are generally poorly differentiated tumors, are enriched in embryonic stem cell signatures, lack expression of estrogen receptor, progesterone receptor, and HER2 (triple-negative breast cancer), and show activation of proliferation-associated factors. We hypothesized that lncRNAs are key regulators of basal breast cancers. Using The Cancer Genome Atlas, we identified lncRNAs that are overexpressed in basal tumors compared to other breast cancer subtypes and expressed in at least 10% of patients. Remarkably, we identified lncRNAs whose expression correlated with patient prognosis. We then evaluated the function of a subset of lncRNA candidates in the oncogenic process in vitro. Here, we report the identification and characterization of the chromatin-associated lncRNA, RP11-19E11.1, which is upregulated in 40% of basal primary breast cancers. Gene set enrichment analysis in primary tumors and in cell lines uncovered a correlation between RP11-19E11.1 expression level and the E2F oncogenic pathway. We show that this lncRNA is chromatin-associated and an E2F1 target, and its expression is necessary for cancer cell proliferation and survival. Finally, we used lncRNA expression levels as a tool for drug discovery in vitro, identifying protein kinase C (PKC) as a potential therapeutic target for a subset of basal-like breast cancers. Our findings suggest that lncRNA overexpression is clinically relevant. Understanding deregulated lncRNA expression in basal-like breast cancer may lead to potential prognostic and therapeutic applications.
Collapse
|
85
|
Colaprico A, Olsen C, Bailey MH, Odom GJ, Terkelsen T, Silva TC, Olsen AV, Cantini L, Zinovyev A, Barillot E, Noushmehr H, Bertoli G, Castiglioni I, Cava C, Bontempi G, Chen XS, Papaleo E. Interpreting pathways to discover cancer driver genes with Moonlight. Nat Commun 2020; 11:69. [PMID: 31900418 PMCID: PMC6941958 DOI: 10.1038/s41467-019-13803-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.
Collapse
Affiliation(s)
- Antonio Colaprico
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium.
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore), VUB-ULB, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Matthew H Bailey
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University, St. Louis, MO, 63108, USA
| | - Gabriel J Odom
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biostatistics, Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA
| | - Thilde Terkelsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiago C Silva
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - André V Olsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Laura Cantini
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Houtan Noushmehr
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosurgery, Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Elena Papaleo
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Science, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
86
|
Coussy F, Lavigne M, de Koning L, Botty RE, Nemati F, Naguez A, Bataillon G, Ouine B, Dahmani A, Montaudon E, Painsec P, Chateau-Joubert S, Laetitia F, Larcher T, Vacher S, Chemlali W, Briaux A, Melaabi S, Salomon AV, Guinebretiere JM, Bieche I, Marangoni E. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics 2020; 10:1531-1543. [PMID: 32042320 PMCID: PMC6993232 DOI: 10.7150/thno.36182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Luminal androgen receptor (LAR) breast cancer accounts for 10% of all triple-negative breast cancers (TNBC). Anti-androgen therapy for this subtype is in development, but yields only partial clinical benefits. In this study, we aimed to characterize the genomic alterations of LAR TNBC, to analyze activation of the PI3K signaling pathway and to compare the response to PI3K pathway inhibitors with that to anti-androgen therapy in patient-derived xenografts (PDX) of LAR TNBC. Methods: Four LAR PDX models were identified, on the basis of their transcriptomic profiles, in a cohort of 57 PDX models of TNBC. The expression of AR-related genes, basal and luminal cytokeratins and EMT genes was analyzed by RT-PCR and IHC. AKT1 and PIK3CA mutations were identified by targeted NGS, and activation of the PI3K pathway was analyzed with a reverse-phase protein array. Three LAR PDXs with a PIK3CA or AKT1 mutation were treated with the AR inhibitor enzalutamide, a PI3K inhibitor, a dual PI3K-mTOR inhibitor and a mTORC1-mTORC2 inhibitor. Finally, we screened a clinical cohort of 329 TNBC for PIK3CA and AKT1 hotspot mutations. Results: LAR TNBC PDXs were significantly enriched in PIK3CA and AKT1 mutations, and had higher levels of luminal-androgen-like gene expression and a higher PI3K pathway protein activation score than other TNBC subtypes. Immunohistochemistry analysis revealed strong expression of the luminal cytokeratin CK18 and AR in three LAR PDX models. We found that mTOR and PI3K inhibitors had marked antitumor activity in vivo in PDX harboring genomic alterations of PIK3CA and AKT1 genes that did not respond to the AR antagonist enzalutamide. PIK3CA mutations were detected in more than one third of AR+ TNBC from patients (38%), and only 10% of AR-negative TNBC. Conclusion: Our results for PDX models of LAR TNBC resistant to enzalutamide indicate that PIK3CA and AKT1 are potential therapeutic targets.
Collapse
|
87
|
Omene C, Ma L, Moore J, Ouyang H, Illa-Bochaca I, Chou W, Patel MS, Sebastiano C, Demaria S, Mao JH, Karagoz K, Gatza ML, Barcellos-Hoff MH. Aggressive Mammary Cancers Lacking Lymphocytic Infiltration Arise in Irradiated Mice and Can Be Prevented by Dietary Intervention. Cancer Immunol Res 2019; 8:217-229. [PMID: 31831632 DOI: 10.1158/2326-6066.cir-19-0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023]
Abstract
Because the incidence of breast cancer increases decades after ionizing radiation exposure, aging has been implicated in the evolution of the tumor microenvironment and tumor progression. Here, we investigated radiation-induced carcinogenesis using a model in which the mammary glands of 10-month-old BALB/c mice were transplanted with Trp53-null mammary tissue 3 days after exposure to low doses of sparsely ionizing γ-radiation or densely ionizing particle radiation. Mammary transplants in aged, irradiated hosts gave rise to significantly more tumors that grew more rapidly than those in sham-irradiated mice, with the most pronounced effects seen in mice irradiated with densely ionizing particle radiation. Tumor transcriptomes identified a characteristic immune signature of these aggressive cancers. Consistent with this, fast-growing tumors exhibited an immunosuppressive tumor microenvironment with few infiltrating lymphocytes, abundant immunosuppressive myeloid cells, and high COX-2 and TGFβ. Only irradiated hosts gave rise to tumors lacking cytotoxic CD8+ lymphocytes (defined here as immune desert), which also occurred in younger irradiated hosts. These data suggest that host irradiation may promote immunosuppression. To test this, young chimera mice were fed chow containing a honeybee-derived compound with anti-inflammatory and immunomodulatory properties, caffeic acid phenethyl ester (CAPE). CAPE prevented the detrimental effects of host irradiation on tumor growth rate, immune signature, and immunosuppression. These data indicated that low-dose radiation, particularly densely ionizing exposure of aged mice, promoted more aggressive cancers by suppressing antitumor immunity. Dietary intervention with a nontoxic immunomodulatory agent could prevent systemic effects of radiation that fuel carcinogenesis, supporting the potential of this strategy for cancer prevention.
Collapse
Affiliation(s)
- Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Lin Ma
- University of California, San Francisco, San Francisco, California
| | - Jade Moore
- University of California, San Francisco, San Francisco, California
| | - Haoxu Ouyang
- New York University School of Medicine, New York, New York
| | | | - William Chou
- University of California, San Francisco, San Francisco, California
| | - Manan S Patel
- New York University School of Medicine, New York, New York
| | | | - Sandra Demaria
- New York University School of Medicine, New York, New York
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Kubra Karagoz
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | |
Collapse
|
88
|
Wu Q, Ma G, Deng Y, Luo W, Zhao Y, Li W, Zhou Q. Prognostic Value of Ki-67 in Patients With Resected Triple-Negative Breast Cancer: A Meta-Analysis. Front Oncol 2019; 9:1068. [PMID: 31681601 PMCID: PMC6811517 DOI: 10.3389/fonc.2019.01068] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Ki-67 is a widely used marker of tumor proliferation, but the prognostic value of ki-67 in triple-negative breast cancer (TNBC) has not been comprehensively reviewed. This meta-analysis was conducted to evaluate the association between ki-67 expression and survival of patients with resected TNBC. Materials and Methods: Relevant studies, evaluating the prognostic impact of pretreatment ki-67 in resected TNBC patients, were identified from PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Cochrane Library until March 14, 2019. Hazard ratios (HRs) with 95% confidence intervals (CI) were calculated as effect values for disease-free survival (DFS) and overall survival (OS). Results: In present meta-analysis, 35 studies with 7,716 enrolled patients were eligible for inclusion. Pooled results showed that a high ki-67 expression was significantly associated with poor DFS (HR = 1.73, 95% CI: 1.45–2.07, p < 0.001) and poor OS (HR = 1.65, 95% CI: 1.27–2.14, p < 0.001) in resected TNBC. In the subgroup analysis, when a cutoff of Ki-67 staining ≥40% was applied, the pooled HR for DFS and OS was 2.30 (95% CI 1.54–3.44, p < 0.001) and 2.95 (95% CI 1.67–5.19, p < 0.001), respectively. Conclusion: A high Ki-67 expression is a poor prognostic factor of resected TNBC. The cut-off of ki-67 ≥40% is associated with a greater risk of recurrence and death compared with lower expression rates, despite the Ki-67 threshold with the greatest prognostic significance is as yet unknown.
Collapse
Affiliation(s)
- Qiang Wu
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Guangzhi Ma
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfu Deng
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Wuxia Luo
- Department of Oncology, Chengdu First People's Hospital, Chengdu, China
| | - Yaqin Zhao
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
89
|
Shee K, Wells JD, Ung M, Hampsch RA, Traphagen NA, Yang W, Liu SC, Zeldenrust MA, Wang L, Kalari KR, Yu J, Boughey JC, Demidenko E, Kettenbach AN, Cheng C, Goetz MP, Miller TW. A Transcriptionally Definable Subgroup of Triple-Negative Breast and Ovarian Cancer Samples Shows Sensitivity to HSP90 Inhibition. Clin Cancer Res 2019; 26:159-170. [PMID: 31558472 DOI: 10.1158/1078-0432.ccr-18-2213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE We hypothesized that integrated analysis of cancer types from different lineages would reveal novel molecularly defined subgroups with unique therapeutic vulnerabilities. On the basis of the molecular similarities between subgroups of breast and ovarian cancers, we analyzed these cancers as a single cohort to test our hypothesis. EXPERIMENTAL DESIGN Identification of transcriptional subgroups of cancers and drug sensitivity analyses were performed using mined data. Cell line sensitivity to Hsp90 inhibitors (Hsp90i) was tested in vitro. The ability of a transcriptional signature to predict Hsp90i sensitivity was validated using cell lines, and cell line- and patient-derived xenograft (PDX) models. Mechanisms of Hsp90i sensitivity were uncovered using immunoblot and RNAi. RESULTS Transcriptomic analyses of breast and ovarian cancer cell lines uncovered two mixed subgroups comprised primarily of triple-negative breast and multiple ovarian cancer subtypes. Drug sensitivity analyses revealed that cells of one mixed subgroup are significantly more sensitive to Hsp90i compared with cells from all other cancer lineages evaluated. A gene expression classifier was generated that predicted Hsp90i sensitivity in vitro, and in cell line- and PDXs. Cells from the Hsp90i-sensitive subgroup underwent apoptosis mediated by Hsp90i-induced upregulation of the proapoptotic proteins Bim and PUMA. CONCLUSIONS Our findings identify Hsp90i as a potential therapeutic strategy for a transcriptionally defined subgroup of ovarian and breast cancers. This study demonstrates that gene expression profiles may be useful to identify therapeutic vulnerabilities in tumor types with limited targetable genetic alterations, and to identify molecularly definable cancer subgroups that transcend lineage.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Jason D Wells
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew Ung
- Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Riley A Hampsch
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Wei Yang
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Stephanie C Liu
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eugene Demidenko
- Department of Community and Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Arminja N Kettenbach
- Department of Biochemistry, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Chao Cheng
- Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. .,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
90
|
Funakoshi Y, Wang Y, Semba T, Masuda H, Hout D, Ueno NT, Wang X. Comparison of molecular profile in triple-negative inflammatory and non-inflammatory breast cancer not of mesenchymal stem-like subtype. PLoS One 2019; 14:e0222336. [PMID: 31532791 PMCID: PMC6750603 DOI: 10.1371/journal.pone.0222336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive form of breast cancer. The triple-negative subtype of IBC (TN-IBC) is particularly aggressive. Identification of molecular differences between TN-IBC and TN-non-IBC may help clarify the unique clinical behaviors of TN-IBC. However, our previous study comparing gene expression between TN-IBC and TN-non-IBC did not identify any TN-IBC-specific molecular signature. Lehmann et al recently reported that the mesenchymal stem-like (MSL) TNBC subtype consisted of infiltrating tumor-associated stromal cells but not cancer cells. Therefore, we compared the gene expression profiles between TN-IBC and TN-non-IBC patient samples not of the MSL subtype. METHODS We classified 88 TNBC samples from the World IBC Consortium into subtypes according to the Vanderbilt classification and Insight TNBCtype, removed samples of MSL and unstable subtype, and compared gene expression profiles between the remaining TN-IBC and TN-non-IBC samples. RESULTS In the Vanderbilt analysis, we identified 75 genes significantly differentially expressed between TN-IBC and TN-non-IBC at an FDR of 0.2. In the Insight TNBCtype analysis, we identified 81 genes significantly differentially expressed between TN-IBC and TN-non-IBC at an FDR of 0.4. In both analyses, the top canonical pathway was "Fc Receptor-mediated Phagocytosis in Macrophages and Monocytes", and the top 10 differentially regulated genes included PADI3 and MCTP1, which were up-regulated, and CDC42EP3, SSR1, RSBN1, and ZC3H13, which were downregulated. CONCLUSIONS Our data suggest that the activity of macrophages might be enhanced in TN-IBC compared with TN-non-IBC. Further clinical and preclinical studies are needed to determine the cross-talk between macrophages and IBC cells.
Collapse
Affiliation(s)
- Yohei Funakoshi
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ying Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hiroko Masuda
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Hout
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (NTU); (XW)
| | - Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (NTU); (XW)
| |
Collapse
|
91
|
Vallon-Christersson J, Häkkinen J, Hegardt C, Saal LH, Larsson C, Ehinger A, Lindman H, Olofsson H, Sjöblom T, Wärnberg F, Ryden L, Loman N, Malmberg M, Borg Å, Staaf J. Cross comparison and prognostic assessment of breast cancer multigene signatures in a large population-based contemporary clinical series. Sci Rep 2019; 9:12184. [PMID: 31434940 PMCID: PMC6704148 DOI: 10.1038/s41598-019-48570-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022] Open
Abstract
Multigene expression signatures provide a molecular subdivision of early breast cancer associated with patient outcome. A gap remains in the validation of such signatures in clinical treatment groups of patients within population-based cohorts of unselected primary breast cancer representing contemporary disease stages and current treatments. A cohort of 3520 resectable breast cancers with RNA sequencing data included in the population-based SCAN-B initiative (ClinicalTrials.gov ID NCT02306096) were selected from a healthcare background population of 8587 patients diagnosed within the years 2010-2015. RNA profiles were classified according to 19 reported gene signatures including both gene expression subtypes (e.g. PAM50, IC10, CIT) and risk predictors (e.g. Oncotype DX, 70-gene, ROR). Classifications were analyzed in nine adjuvant clinical assessment groups: TNBC-ACT (adjuvant chemotherapy, n = 239), TNBC-untreated (n = 82), HER2+/ER- with anti-HER2+ ACT treatment (n = 110), HER2+/ER+ with anti-HER2 + ACT + endocrine treatment (n = 239), ER+/HER2-/LN- with endocrine treatment (n = 1113), ER+/HER2-/LN- with endocrine + ACT treatment (n = 243), ER+/HER2-/LN+ with endocrine treatment (n = 423), ER+/HER2-/LN+ with endocrine + ACT treatment (n = 433), and ER+/HER2-/LN- untreated (n = 200). Gene signature classification (e.g., proportion low-, high-risk) was generally well aligned with stratification based on current immunohistochemistry-based clinical practice. Most signatures did not provide any further risk stratification in TNBC and HER2+/ER- disease. Risk classifier agreement (low-, medium/intermediate-, high-risk groups) in ER+ assessment groups was on average 50-60% with occasional pair-wise comparisons having <30% agreement. Disregarding the intermediate-risk groups, the exact agreement between low- and high-risk groups was on average ~80-95%, for risk prediction signatures across all assessment groups. Outcome analyses were restricted to assessment groups of TNBC-ACT and endocrine treated ER+/HER2-/LN- and ER+/HER2-/LN+ cases. For ER+/HER2- disease, gene signatures appear to contribute additional prognostic value even at a relatively short follow-up time. Less apparent prognostic value was observed in the other groups for the tested signatures. The current study supports the usage of gene expression signatures in specific clinical treatment groups within population-based breast cancer. It also stresses the need of further development to reach higher consensus in individual patient classifications, especially for intermediate-risk patients, and the targeting of patients where current gene signatures and prognostic variables provide little support in clinical decision-making.
Collapse
Affiliation(s)
- Johan Vallon-Christersson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE 22381, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
- Division of Clinical Genetics and Pathology, Department of Laboratory Medicine, SE 22185, Lund, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, SE 75185, Uppsala, Sweden
| | - Helena Olofsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE 75185, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, SE 75185, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, SE 75185, Uppsala, Sweden
| | - Fredrik Wärnberg
- Department of Surgical Sciences, Uppsala University, SE 75185, Uppsala, Sweden
| | - Lisa Ryden
- Division of Surgery, Department of Clinical Sciences, Lund University, SE 22185, Lund, Sweden
| | - Niklas Loman
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
- Department of Hematology, Oncology and Radiation physics, Skåne University Hospital, SE 22185, Lund, Sweden
| | - Martin Malmberg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
- Department of Hematology, Oncology and Radiation physics, Skåne University Hospital, SE 22185, Lund, Sweden
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden.
| |
Collapse
|
92
|
DiNome ML, Orozco JIJ, Matsuba C, Manughian-Peter AO, Ensenyat-Mendez M, Chang SC, Jalas JR, Salomon MP, Marzese DM. Clinicopathological Features of Triple-Negative Breast Cancer Epigenetic Subtypes. Ann Surg Oncol 2019; 26:3344-3353. [PMID: 31342401 DOI: 10.1245/s10434-019-07565-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVE Triple-negative breast cancer (TNBC) is a heterogeneous collection of breast tumors with numerous differences including morphological characteristics, genetic makeup, immune-cell infiltration, and response to systemic therapy. DNA methylation profiling is a robust tool to accurately identify disease-specific subtypes. We aimed to generate an epigenetic subclassification of TNBC tumors (epitypes) with utility for clinical decision-making. METHODS Genome-wide DNA methylation profiles from TNBC patients generated in the Cancer Genome Atlas project were used to build machine learning-based epigenetic classifiers. Clinical and demographic variables, as well as gene expression and gene mutation data from the same cohort, were integrated to further refine the TNBC epitypes. RESULTS This analysis indicated the existence of four TNBC epitypes, named as Epi-CL-A, Epi-CL-B, Epi-CL-C, and Epi-CL-D. Patients with Epi-CL-B tumors showed significantly shorter disease-free survival and overall survival [log rank; P = 0.01; hazard ratio (HR) 3.89, 95% confidence interval (CI) 1.3-11.63 and P = 0.003; HR 5.29, 95% CI 1.55-18.18, respectively]. Significant gene expression and mutation differences among the TNBC epitypes suggested alternative pathway activation that could be used as ancillary therapeutic targets. These epigenetic subtypes showed complementarity with the recently described TNBC transcriptomic subtypes. CONCLUSIONS TNBC epigenetic subtypes exhibit significant clinical and molecular differences. The links between genetic make-up, gene expression programs, and epigenetic subtypes open new avenues in the development of laboratory tests to more efficiently stratify TNBC patients, helping optimize tailored treatment approaches.
Collapse
Affiliation(s)
- Maggie L DiNome
- Department of Surgery, David Geffen School of Medicine, University California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Javier I J Orozco
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Chikako Matsuba
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Ayla O Manughian-Peter
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Miquel Ensenyat-Mendez
- Cancer Cell Biology Group, Balearic Islands Health Research Institute (IdISBa), Palma, Islas Baleares, Spain
| | - Shu-Ching Chang
- Medical Data Research Center, Providence Saint Joseph Health, Portland, OR, USA
| | - John R Jalas
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
93
|
TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem Cell Biol 2019; 152:155-166. [PMID: 31111198 DOI: 10.1007/s00418-019-01791-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Trace amine-associated receptors are G protein-coupled receptors of which TAAR1 is the most well-studied. Recently, Vattai et al. (J Cancer Res Clin Oncol 143:1637-1647 https://doi.org/10.1007/s00432-017-2420-8 , 2017) reported that expression of TAAR1 may be a marker of breast cancer (BC) survival, with a positive correlation also suggested between TAAR1 expression and HER2 positivity. Neither a role for TAAR1 in breast tissue, nor in cancer, had previously been suspected. We, therefore, sought to provide independent validation and to further examine these putative relationships. First, a bioinformatic analysis on 58 total samples including normal breast tissue, BC-related cell lines, and tumour samples representing different BC sub-types found no clear correlation between TAAR1 mRNA levels and any BC subtype, including HER2 + . We next confirmed the bioinformatics data correlated to protein expression using a well validated anti-human TAAR1 antibody. TAAR1 mRNA levels correlated with the relative intensity of immunofluorescence staining in six BC cell lines (MCF-7, T47D, MDA-MB-231, SKBR3, MDA-MB-468, BT-474), but not in the MCF-10A immortalized mammary gland line, which had high mRNA but low protein levels. As expected, TAAR1 protein was intracellular in all cell lines. Surprisingly MCF-7, SKBR3, and MDA-MB-468 showed pronounced nuclear localization. The relative protein expression in MCF-7, MDA-MB-231, and MCF-10A lines was further confirmed by semi-quantitative flow cytometry. Finally, we demonstrate that the commercially available anti-TAAR1 antibody has poor selectivity, which likely explains the lack of correlation with the previous study. Therefore, while we clearly demonstrate variable expression and sub-cellular localization of TAAR1 across BC cell lines, we find no evidence for association with BC subtype.
Collapse
|
94
|
Coussy F, de Koning L, Lavigne M, Bernard V, Ouine B, Boulai A, El Botty R, Dahmani A, Montaudon E, Assayag F, Morisset L, Huguet L, Sourd L, Painsec P, Callens C, Chateau-Joubert S, Servely JL, Larcher T, Reyes C, Girard E, Pierron G, Laurent C, Vacher S, Baulande S, Melaabi S, Vincent-Salomon A, Gentien D, Dieras V, Bieche I, Marangoni E. A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer. Int J Cancer 2019; 145:1902-1912. [PMID: 30859564 DOI: 10.1002/ijc.32266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/26/2018] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) represents 10% of all breast cancers and is a very heterogeneous disease. Globally, women with TNBC have a poor prognosis, and the development of effective targeted therapies remains a real challenge. Patient-derived xenografts (PDX) are clinically relevant models that have emerged as important tools for the analysis of drug activity and predictive biomarker discovery. The purpose of this work was to analyze the molecular heterogeneity of a large panel of TNBC PDX (n = 61) in order to test targeted therapies and identify biomarkers of response. At the gene expression level, TNBC PDX represent all of the various TNBC subtypes identified by the Lehmann classification except for immunomodulatory subtype, which is underrepresented in PDX. NGS and copy number data showed a similar diversity of significantly mutated gene and somatic copy number alteration in PDX and the Cancer Genome Atlas TNBC patients. The genes most commonly altered were TP53 and oncogenes and tumor suppressors of the PI3K/AKT/mTOR and MAPK pathways. PDX showed similar morphology and immunohistochemistry markers to those of the original tumors. Efficacy experiments with PI3K and MAPK inhibitor monotherapy or combination therapy showed an antitumor activity in PDX carrying genomic mutations of PIK3CA and NRAS genes. TNBC PDX reproduce the molecular heterogeneity of TNBC patients. This large collection of PDX is a clinically relevant platform for drug testing, biomarker discovery and translational research.
Collapse
Affiliation(s)
- Florence Coussy
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Leanne de Koning
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - Marion Lavigne
- Department of Biopathology, Institut Curie, Paris, France
| | - Virginie Bernard
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Berengere Ouine
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - Anais Boulai
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Franck Assayag
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Ludivine Morisset
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Lea Huguet
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Celine Callens
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - Jean-Luc Servely
- BioPôle Alfort, National Veterinary School of Alfort, Maison Alfort, France
| | | | - Cecile Reyes
- Translational Research Department, Genomics Platform, Institut Curie Research Center, Paris, France
| | | | - Gaelle Pierron
- Unit of Somatic Genomics, Department of Genetics, Institut Curie, Paris, France
| | | | - Sophie Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | - Samia Melaabi
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - David Gentien
- Translational Research Department, Genomics Platform, Institut Curie Research Center, Paris, France
| | | | - Ivan Bieche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Inserm U1016, Paris Descartes University, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| |
Collapse
|
95
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
96
|
Tao M, Song T, Du W, Han S, Zuo C, Li Y, Wang Y, Yang Z. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data. Genes (Basel) 2019; 10:E200. [PMID: 30866472 PMCID: PMC6471546 DOI: 10.3390/genes10030200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/31/2022] Open
Abstract
It is very significant to explore the intrinsic differences in breast cancer subtypes. These intrinsic differences are closely related to clinical diagnosis and designation of treatment plans. With the accumulation of biological and medicine datasets, there are many different omics data that can be viewed in different aspects. Combining these multiple omics data can improve the accuracy of prediction. Meanwhile; there are also many different databases available for us to download different types of omics data. In this article, we use estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) to define breast cancer subtypes and classify any two breast cancer subtypes using SMO-MKL algorithm. We collected mRNA data, methylation data and copy number variation (CNV) data from TCGA to classify breast cancer subtypes. Multiple Kernel Learning (MKL) is employed to use these omics data distinctly. The result of using three omics data with multiple kernels is better than that of using single omics data with multiple kernels. Furthermore; these significant genes and pathways discovered in the feature selection process are also analyzed. In experiments; the proposed method outperforms other state-of-the-art methods and has abundant biological interpretations.
Collapse
Affiliation(s)
- Mingxin Tao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
- Computational System Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| | - Tianci Song
- Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Siyu Han
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Chunman Zuo
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Ying Li
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Zekun Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| |
Collapse
|
97
|
Beltrán-Anaya FO, Romero-Córdoba S, Rebollar-Vega R, Arrieta O, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Riuz L, Jiménez-Morales S, Cedro-Tanda A, Ríos-Romero M, Reyes-Grajeda JP, Tagliabue E, Iorio MV, Hidalgo-Miranda A. Expression of long non-coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple-negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death. Mol Oncol 2019; 13:909-927. [PMID: 30648789 PMCID: PMC6441920 DOI: 10.1002/1878-0261.12446] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/29/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents an aggressive phenotype with poor prognosis compared with ER, PR, and HER2‐positive tumors. TNBC is a heterogeneous disease, and gene expression analysis has identified seven molecular subtypes. Accumulating evidence demonstrates that long non‐coding RNA (lncRNA) are involved in regulation of gene expression and cancer biology, contributing to essential cancer cell functions. In this study, we analyzed the expression profile of lncRNA in TNBC subtypes from 156 TNBC samples, and then characterized the functional role of LncKLHDC7B (ENSG00000226738). A total of 710 lncRNA were found to be differentially expressed between TNBC subtypes, and a subset of these altered lncRNA were independently validated. We discovered that LncKLHDC7B (ENSG00000226738) acts as a transcriptional modulator of its neighboring coding gene KLHDC7B in the immunomodulatory subtype. Furthermore, LncKLHDC7B knockdown enhanced migration and invasion, and promoted resistance to cellular death. Our findings confirmed the contribution of LncKLHDC7B to induction of apoptosis and inhibition of cell migration and invasion, suggesting that TNBC tumors with enrichment of LncKLHDC7B may exhibit distinct regulatory activity, or that this may be a generalized process in breast cancer. Additionally, in silico analysis confirmed for the first time that the low expression of KLHDC7B and LncKLHDC7B is associated with poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Fredy Omar Beltrán-Anaya
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sandra Romero-Córdoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosa Rebollar-Vega
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | | | - Luis Alfaro-Riuz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magdalena Ríos-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Elda Tagliabue
- Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena V Iorio
- Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
98
|
Rossing M, Sørensen CS, Ejlertsen B, Nielsen FC. Whole genome sequencing of breast cancer. APMIS 2019; 127:303-315. [PMID: 30689231 PMCID: PMC6850492 DOI: 10.1111/apm.12920] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer was the first to take advantage of targeted therapy using endocrine therapy, and for up to 20% of all breast cancer patients a further significant improvement has been obtained by HER2‐targeted therapy. Greater insight in precision medicine is to some extent driven by technical and computational progress, with the first wave of a true technical advancement being the application of transcriptomic analysis. Molecular subtyping further improved our understanding of breast cancer biology and has through a new tumor classification enabled allocation of personalized treatment regimens. The next wave in technical progression must be next‐generation‐sequencing which is currently providing new and exciting results. Large‐scale sequencing data unravel novel somatic and potential targetable mutations as well as allowing the identification of new candidate genes predisposing for familial breast cancer. So far, around 15% of all breast cancer patients are genetically predisposed with most genes being factors in pathways implicated in genome maintenance. This review focuses on whole‐genome sequencing and the new possibilities that this technique, together with other high‐throughput analytic approaches, provides for a more individualized treatment course of breast cancer patients.
Collapse
Affiliation(s)
- Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group & Department of Clinical Oncology Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
99
|
He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:327. [PMID: 30594216 PMCID: PMC6310928 DOI: 10.1186/s13046-018-1002-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
Background Abundant evidence shows that triple-negative breast cancer (TNBC) is heterogeneous, and many efforts have been devoted to identifying TNBC subtypes on the basis of genomic profiling. However, few studies have explored the classification of TNBC specifically based on immune signatures that may facilitate the optimal stratification of TNBC patients responsive to immunotherapy. Methods Using four publicly available TNBC genomics datasets, we classified TNBC on the basis of the immunogenomic profiling of 29 immune signatures. Unsupervised and supervised machine learning methods were used to perform the classification. Results We identified three TNBC subtypes that we named Immunity High (Immunity_H), Immunity Medium (Immunity_M), and Immunity Low (Immunity_L) and demonstrated that this classification was reliable and predictable by analyzing multiple different datasets. Immunity_H was characterized by greater immune cell infiltration and anti-tumor immune activities, as well as better survival prognosis compared to the other subtypes. Besides the immune signatures, some cancer-associated pathways were hyperactivated in Immunity_H, including apoptosis, calcium signaling, MAPK signaling, PI3K–Akt signaling, and RAS signaling. In contrast, Immunity_L presented depressed immune signatures and increased activation of cell cycle, Hippo signaling, DNA replication, mismatch repair, cell adhesion molecule binding, spliceosome, adherens junction function, pyrimidine metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and RNA polymerase pathways. Furthermore, we identified a gene co-expression subnetwork centered around five transcription factor (TF) genes (CORO1A, STAT4, BCL11B, ZNF831, and EOMES) specifically significant in the Immunity_H subtype and a subnetwork centered around two TF genes (IRF8 and SPI1) characteristic of the Immunity_L subtype. Conclusions The identification of TNBC subtypes based on immune signatures has potential clinical implications for TNBC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-1002-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zehang Jiang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Cai Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China. .,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China. .,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
100
|
Gayle SS, Sahni JM, Webb BM, Weber-Bonk KL, Shively MS, Spina R, Bar EE, Summers MK, Keri RA. Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. J Biol Chem 2018; 294:875-886. [PMID: 30482844 DOI: 10.1074/jbc.ra118.004712] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibitors of bromodomain and extra-terminal proteins (BETi) suppress oncogenic gene expression and have been shown to be efficacious in many in vitro and murine models of cancer, including triple-negative breast cancer (TNBC), a highly aggressive disease. However, in most cancer models, responses to BETi can be highly variable. We previously reported that TNBC cells either undergo senescence or apoptosis in response to BETi, but the specific mechanisms dictating these two cell fates remain unknown. Using six human TNBC cell lines, we show that the terminal response of TNBC cells to BETi is dictated by the intrinsic expression levels of the anti-apoptotic protein B-cell lymphoma-extra large (BCL-xL). BCL-xL levels were higher in cell lines that senesce in response to BETi compared with lines that primarily die in response to these drugs. Moreover, BCL-xL expression was further reduced in cells that undergo BETi-mediated apoptosis. Forced BCL-xL overexpression in cells that normally undergo apoptosis following BETi treatment shifted them to senescence without affecting the reported mechanism of action of BETi in TNBC, that is, mitotic catastrophe. Most importantly, pharmacological or genetic inhibition of BCL-xL induced apoptosis in response to BETi, and inhibiting BCL-xL, even after BETi-induced senescence had already occurred, still induced cell death. These results indicate that BCL-xL provides a senescent cell death-inducing or senolytic target that may be exploited to improve therapeutic outcomes of TNBC in response to BETi. They also suggest that the basal levels of BCL-xL should be predictive of tumor responses to BETi in current clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mathew K Summers
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Ruth A Keri
- From the Departments of Pharmacology, .,Genetics and Genome Sciences and Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|