51
|
Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, Verbanck M, Arredouani A, Marre M, Pigeyre M, Bessede A, Guillemin GJ, Chinetti G, Staels B, Pattou F, Balkau B, Allorge D, Froguel P, Poulain-Godefroy O. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 2015; 23:2066-74. [PMID: 26347385 DOI: 10.1002/oby.21199] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study characterized the kynurenine pathway (KP) in human obesity by evaluating circulating levels of kynurenines and the expression of KP enzymes in adipose tissue. METHODS Tryptophan and KP metabolite levels were measured in serum of individuals from the D.E.S.I.R. cohort (case-cohort study: 212 diabetic, 836 randomly sampled) and in women with obesity, diabetic or normoglycemic, from the ABOS cohort (n = 100). KP enzyme gene expressions were analyzed in omental and subcutaneous adipose tissue of women from the ABOS cohort, in human primary adipocytes and in monocyte-derived macrophages. RESULTS In the D.E.S.I.R. cohort, kynurenine levels were positively associated with body mass index (BMI) (P = 4.68 × 10(-19) ) and with a higher HOMA2-IR insulin resistance index (P = 6.23 × 10(-4) ). The levels of kynurenine, kynurenic acid, and quinolinic acid were associated with higher BMI (P < 0.05). The expression of several KP enzyme genes (indoleamine 2,3-dioxygenase 1 [IDO1], kynureninase [KYNU], kynurenine 3-monooxygenase [KMO], and kynurenine aminotransferase III [CCBL2]) was increased in the omental adipose tissue of women with obesity compared to lean (P < 0.05), and their expression was induced by proinflammatory cytokines in human primary adipocytes (P < 0.05), except for KMO that is not expressed in these cells. The expressions of IDO1, KYNU, KMO, and CCBL2 were higher in proinflammatory than in anti-inflammatory macrophages (P < 0.05). CONCLUSIONS In the context of obesity, the presence of macrophages in adipose tissue may contribute to diverting KP toward KMO activation.
Collapse
Affiliation(s)
- Marie Favennec
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
| | - Benjamin Hennart
- University of Lille, Lille, France
- CHRU De Lille, Lille, France
- EA4483, Lille, France
| | - Robert Caiazzo
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | - Audrey Leloire
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Loïc Yengo
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Marie Verbanck
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | | | | | - Marie Pigeyre
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | | | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie University, Sydney, New South Wales, Australia
| | - Giulia Chinetti
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- INSERM UMR 1011, Lille, France
| | - Bart Staels
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- INSERM UMR 1011, Lille, France
| | - François Pattou
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | | | - Delphine Allorge
- University of Lille, Lille, France
- CHRU De Lille, Lille, France
- EA4483, Lille, France
| | - Philippe Froguel
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Odile Poulain-Godefroy
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| |
Collapse
|
52
|
Bipath P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis 2015; 15:346. [PMID: 26285873 PMCID: PMC4545362 DOI: 10.1186/s12879-015-1087-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tryptophan is an essential amino acid for the synthesis of proteins and important metabolites such as serotonin, melatonin, tryptamine and niacin. After protein synthesis, more than 90 % of tryptophan catabolism occurs along the kynurenine pathway. The inflammation-inducible enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the first rate-limiting step in the kynurenine pathway, i.e., oxidation of tryptophan to kynurenine. Excessive IDO activity in conditions such as HIV/AIDS may lead to tryptophan depletion and accumulation of metabolites downstream from kynurenine. Little is known about the kynurenine pathway of HIV/AIDS patients in sub-Saharan regions. This study, in a low income sub-Saharan HIV/AIDS population, examined the effects of activities in the kynurenine pathway on plasma levels of tryptophan, kynurenine and the neurotoxin quinolinic acid, and on de novo synthesis of nicotinamide. METHODS Plasma samples were obtained from a cohort of 105 HIV patients and 60 controls. Kynurenine pathway metabolites were analysed using gas chromatography - mass spectrometry. ELISA and flow cytometry were used to assess plasma inflammatory markers. RESULTS IDO activity, depletion of tryptophan, as well as accumulation of kynurenine and the neurotoxin quinolinic acid, were not only significantly greater in the patients than in the controls, but also markedly greater than in HIV/AIDS patients from developed countries. Tryptophan levels were 12.3 % higher, kynurenine levels 16.2 % lower, quinolinic acid levels 43.2 % lower and nicotinamide levels 27,2 % lower in patients on antiretroviral treatment than in antiretroviral-naïve patients. Patients' kynurenine pathway metabolites correlated with the levels of inflammatory markers, including that of the major IDO-inducer, interferon-gamma. Indications are that the rate of de novo synthesis of nicotinamide in the kynurenine pathway correlates with increases in quinolinic acid levels up to a point where saturation of the enzyme quinolinate phosphoribosyl transferase occurs. CONCLUSIONS Higher levels of inflammatory activity in this low income sub-Saharan HIV/AIDS population than in patients from developed countries lead to greater tryptophan depletion and greater accumulation of metabolites downstream from tryptophan with quinolinic acid levels often reaching levels associated with the development of HIV/AIDS-associated neurocognitive dysfunction. De novo synthesis of nicotinamide from quinolinic acid contributes to the maintenance of nicotinamide, and by implication NAD levels, in HIV/AIDS patients from low income populations. Antiretroviral treatment partially corrects disturbances in the kynurenine pathway.
Collapse
Affiliation(s)
- Priyesh Bipath
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Peter F Levay
- Department of Internal Medicine (Kalafong Hospital), School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Margaretha Viljoen
- Department of Psychiatry, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
53
|
Ruggieri S, Orsomando G, Sorci L, Raffaelli N. Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1138-49. [PMID: 25770681 DOI: 10.1016/j.bbapap.2015.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/25/2022]
Abstract
In addition to its role as a redox coenzyme, NAD is a substrate of various enzymes that split the molecule to either catalyze covalent modifications of target proteins or convert NAD into biologically active metabolites. The coenzyme bioavailability may be significantly affected by these reactions, with ensuing major impact on energy metabolism, cell survival, and aging. Moreover, through the activity of the NAD-dependent deacetylating sirtuins, NAD behaves as a beacon molecule that reports the cell metabolic state, and accordingly modulates transcriptional responses and metabolic adaptations. In this view, NAD biosynthesis emerges as a highly regulated process: it enables cells to preserve NAD homeostasis in response to significant NAD-consuming events and it can be modulated by various stimuli to induce, via NAD level changes, suitable NAD-mediated metabolic responses. Here we review the current knowledge on the regulation of mammalian NAD biosynthesis, with focus on the relevant rate-limiting enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Leonardo Sorci
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
54
|
Antidepressants may lead to a decrease in niacin and NAD in patients with poor dietary intake. Med Hypotheses 2014; 84:178-82. [PMID: 25596911 DOI: 10.1016/j.mehy.2014.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
The term niacin is the generic name for the two compounds nicotinic acid and nicotinamide, the major dietary precursors for two important coenzymes, nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP. Niacin is important for the maintenance of cellular integrity and energy production and is involved in more than 500 intracellular reactions. Deficiencies of niacin may contribute to neuropsychiatric and neurodegenerative disorders. Patients who develop nutritional deficiencies as a result of poor dietary intake, especially inadequate intake of proteins and vitamins, could potentially suffer from niacin deficiency and NAD depletion. However, de novo synthesis of niacin and NAD in the kynurenine pathway of tryptophan metabolism may compensate for impaired dietary intake. The rate of synthesis of NAD and niacin from tryptophan oxidation depends on the induction of the enzyme indoleamine 2,3-dioxygenase (IDO) by pro-inflammatory cytokines such as interferon-gamma. Niacin synthesis is not limited by a decrease in tryptophan and excessive IDO activity may therefore lead to a decline in tryptophan levels. Antidepressants have an anti-inflammatory effect, including reduction of interferon-gamma and therefore inhibition of IDO, the rate-limiting enzyme of the kynurenine pathway. In theory, this could account for increased serotonin as more tryptophan becomes available for serotonin synthesis. However, the downside may be that less NAD and niacin are synthesised downstream, which could exacerbate common psychiatric problems. It is our hypothesis that patients with poor dietary intake, who are treated with antidepressants, are at risk of developing niacin/NAD deficiency with possible development of associated neuropsychiatric symptoms. We therefore propose that niacin supplementation be considered in patients with inadequate diets who are treated with antidepressants. We believe that if this does not happen, a subclinical niacin deficiency may result, which would be difficult to detect as it would cause the same symptoms of the original illness (e.g. depression). Niacin deficiency should be considered and ruled out in all patients with treatment-resistant depression, who have a poor response to antidepressants. This is potentially a cost-effective and easy intervention, which could be examined in a randomized controlled trial.
Collapse
|
55
|
He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 2014; 10:e1004860. [PMID: 25521617 PMCID: PMC4270464 DOI: 10.1371/journal.pgen.1004860] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. Aging is the greatest risk factor for many diseases, which together account for the majority of global deaths and healthcare costs. Here we show that the common drug ibuprofen increases the lifespan of yeast, worms and flies, indicative of conserved longevity effects. In budding yeast, an excellent model of cellular longevity mechanisms, ibuprofen's pro-longevity action is independent of its known anti-inflammatory role. We show that the critical function of ibuprofen in longevity is to inhibit the uptake of aromatic amino acids, by destabilizing the high-affinity tryptophan permease. We further show that ibuprofen alters cell cycle progression. Mirroring the effects of ibuprofen, we found that most yeast long-lived mutants were also similarly affected in cell cycle progression. These findings identify a safe drug that extends the lifespan of divergent organisms and reveal fundamental cellular properties associated with longevity.
Collapse
Affiliation(s)
- Chong He
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Scott K. Tsuchiyama
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Quynh T. Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ekaterina N. Plyusnina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Samuel R. Terrill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sarah Sahibzada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bhumil Patel
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Alena R. Faulkner
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Ruilin Tian
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexey A. Moskalev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (BKK); (MP)
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BKK); (MP)
| |
Collapse
|
56
|
Ball HJ, Jusof FF, Bakmiwewa SM, Hunt NH, Yuasa HJ. Tryptophan-catabolizing enzymes - party of three. Front Immunol 2014; 5:485. [PMID: 25346733 PMCID: PMC4191572 DOI: 10.3389/fimmu.2014.00485] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/22/2014] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties, and biological functions. This review analyzes the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.
Collapse
Affiliation(s)
- Helen J Ball
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney , Sydney, NSW , Australia
| | - Felicita F Jusof
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney , Sydney, NSW , Australia ; Department of Physiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Supun M Bakmiwewa
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney , Sydney, NSW , Australia
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney , Sydney, NSW , Australia
| | - Hajime J Yuasa
- Laboratory of Biochemistry, Faculty of Science, Department of Applied Science, National University Corporation Kochi University , Kochi , Japan
| |
Collapse
|
57
|
Williams AC, Dunbar RIM. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med Hypotheses 2014; 83:79-87. [PMID: 24767939 DOI: 10.1016/j.mehy.2014.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Meat eating has been an important trigger for human evolution however the responsible component in meat has not been clearly identified. Here we propose that the limiting factors for expanding brains and increasing longevity were the micronutrient nicotinamide (vitamin B3) and the metabolically related essential amino-acid, tryptophan. Meat offers significant sourcing challenges and lack causes a deficiency of nicotinamide and tryptophan and consequently the energy carrier nicotinamide adenine dinucleotide (NAD) that gets consumed in regulatory circuits important for survival, resulting in premature ageing, poor cognition and brain atrophy. If a trophic supply of dietary nicotinamide/tryptophan is so essential for building brains, constraining their size and connectivity, we hypothesise that back-up mechanisms to ensure the supply evolved. One strategy may be increasing the reliance on gut symbionts to break down celluloses that produces NADH and only nicotinamide indirectly, and may cause diarrhoea. We suggest that a direct supplier was the chronic mycobacterial infection tuberculosis (TB) that is a surprise candidate but it co-evolved early, does not inevitably cause disease (90-95% of those infected are healthy), and secretes (and is inhibited by) nicotinamide. We hypothesise that TB evolved first as a symbiont that enabled humans to cope with short-lived shortages of meat and only later behaved as a pathogen when the supply deteriorated chronically, for those in poverty. (TB immunology and epidemiology is riddled with paradoxes for a conventional pathogen). We test this in pilot data showing that sharp declines in TB (and diarrhoea) - `environmental enteropathy' strongly correlate with increasing meat consumption and therefore nicotinamide exposure, unlike later onset cancers and Parkinson's disease that increased in incidence, perhaps - as we propose a hypothetical hypervitaminosis B3 (to include obesity and the metabolic syndrome) - as the trade-off for increased brain power and longevity, a recently evolved human characteristic.
Collapse
Affiliation(s)
- Adrian C Williams
- Institute for Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford OX2 6PN, UK.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, South Parks Rd, Oxford OX1 3UD, UK
| |
Collapse
|
58
|
Malik SS, Patterson DN, Ncube Z, Toth EA. The crystal structure of human quinolinic acid phosphoribosyltransferase in complex with its inhibitor phthalic acid. Proteins 2013; 82:405-14. [PMID: 24038671 DOI: 10.1002/prot.24406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/31/2013] [Accepted: 08/21/2013] [Indexed: 11/07/2022]
Abstract
Quinolinic acid (QA), a biologically potent but neurodestructive metabolite is catabolized by quinolinic acid phosphoribosyltransferase (QPRT) in the first step of the de novo NAD(+) biosynthesis pathway. This puts QPRT at the junction of two different pathways, that is, de novo NAD(+) biosynthesis and the kynurenine pathway of tryptophan degradation. Thus, QPRT is an important enzyme in terms of its biological impact and its potential as a therapeutic target. Here, we report the crystal structure of human QPRT bound to its inhibitor phthalic acid (PHT) and kinetic analysis of PHT inhibition of human QPRT. This structure, determined at 2.55 Å resolution, shows an elaborate hydrogen bonding network that helps in recognition of PHT and consequently its substrate QA. In addition to this hydrogen bonding network, we observe extensive van der Waals contacts with the PHT ring that might be important for correctly orientating the substrate QA during catalysis. Moreover, our crystal form allows us to observe an intact hexamer in both the apo- and PHT-bound forms in the same crystal system, which provides a direct comparison of unique subunit interfaces formed in hexameric human QPRT. We call these interfaces "nondimeric interfaces" to distinguish them from the typical dimeric interfaces observed in all QPRTs. We observe significant changes in the nondimeric interfaces in the QPRT hexamer upon binding PHT. Thus, the new structural and functional features of this enzyme we describe here will aid in understanding the function of hexameric QPRTs, which includes all eukaryotic and select prokaryotic QPRTs.
Collapse
Affiliation(s)
- Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | | | | |
Collapse
|
59
|
Williams AC, Dunbar RIM. Big brains, meat, tuberculosis, and the nicotinamide switches: co-evolutionary relationships with modern repercussions? Int J Tryptophan Res 2013; 6:73-88. [PMID: 24250227 PMCID: PMC3825668 DOI: 10.4137/ijtr.s12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Meat-eating was a game changer for human evolution. We suggest that the limiting factors for expanding brains earlier were scarcities of nicotinamide and tryptophan. In humans and some other omnivores, lack of meat causes these deficiencies. Nicotinamide adenine dinucleotide (NADH) is necessary to synthesize adenosine triphosphate (ATP) via either glycolysis or via the mitochondrial respiratory chain. NAD consumption is also necessary for developmental and repair circuits. Inadequate supplies result in "de-evolutionary" brain atrophy, as seen with pellagra. If trophic nicotinamide/tryptophan was a "prime mover" in building bigger brains, back-up mechanisms should have evolved. One strategy may be to recruit extra gut symbionts that produce NADH precursors or export nicotinamide (though this may cause diarrhea). We propose a novel supplier TB that co-evolved early, which did not originally and does not now inevitably cause disease. TB has highly paradoxical immunology for a pathogen, and secretes and is inhibited by nicotinamide and its analogue, isoniazid. Sharp declines in TB and diarrhea correlated with increased meat intake in the past, suggesting that dietary vitamin B3 and tryptophan deficiencies (also associated with poor cognition and decreased lifespans) are still common where meat is unaffordable.
Collapse
Affiliation(s)
- Adrian C Williams
- Institute for Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, UK
| | | |
Collapse
|
60
|
Anderson G, Maes M. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 2013; 49:771-83. [PMID: 24085563 DOI: 10.1007/s12035-013-8554-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.
Collapse
|
61
|
Benjamins JA. Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 2013; 333:30-6. [DOI: 10.1016/j.jns.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022]
|
62
|
Abstract
NAD(+)-dependent deacetylase SIRT1 is a master regulator of nucleosome positioning and chromatin structure, thereby reprogramming gene expression. In acute inflammation, chromatin departs from, and returns to, homeostasis in an orderly sequence. This sequence depends on shifts in NAD(+) availability for SIRT1 activation and deacetylation of signaling proteins, which support orderly gene reprogramming during acute inflammation by switching between euchromatin and heterochromatin. In contrast, in chronic inflammation and cancer, limited availability of NAD(+) and reduced expression of SIRT1 may sustain aberrant chromatin structure and functions. SIRT1 also influences inflammation and cancer by directly deacetylating targets like NFκB p65 and p53. Here, we review SIRT1 in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Tie Fu Liu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
63
|
Flick HE, LaLonde JM, Malachowski WP, Muller AJ. The Tumor-Selective Cytotoxic Agent β-Lapachone is a Potent Inhibitor of IDO1. Int J Tryptophan Res 2013; 6:35-45. [PMID: 24023520 PMCID: PMC3762611 DOI: 10.4137/ijtr.s12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
β-lapachone is a naturally occurring 1,2-naphthoquinone-based compound that has been advanced into clinical trials based on its tumor-selective cytotoxic properties. Previously, we focused on the related 1,4-naphthoquinone pharmacophore as a basic core structure for developing a series of potent indoleamine 2,3-dioxygenase 1 (IDO1) enzyme inhibitors. In this study, we identified IDO1 inhibitory activity as a previously unrecognized attribute of the clinical candidate β-lapachone. Enzyme kinetics-based analysis of β-lapachone indicated an uncompetitive mode of inhibition, while computational modeling predicted binding within the IDO1 active site consistent with other naphthoquinone derivatives. Inhibition of IDO1 has previously been shown to breach the pathogenic tolerization that constrains the immune system from being able to mount an effective anti-tumor response. Thus, the finding that β-lapachone has IDO1 inhibitory activity adds a new dimension to its potential utility as an anti-cancer agent distinct from its cytotoxic properties, and suggests that a synergistic benefit can be achieved from its combined cytotoxic and immunologic effects.
Collapse
Affiliation(s)
- Hollie E. Flick
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
64
|
Blankfield A. Kynurenine Pathway Pathologies: do Nicotinamide and Other Pathway Co-Factors have a Therapeutic Role in Reduction of Symptom Severity, Including Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). Int J Tryptophan Res 2013; 6:39-45. [PMID: 23922501 PMCID: PMC3729338 DOI: 10.4137/ijtr.s11193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management.
Collapse
|
65
|
Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer's disease brain. PLoS One 2013; 8:e59749. [PMID: 23630570 PMCID: PMC3632609 DOI: 10.1371/journal.pone.0059749] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/18/2013] [Indexed: 12/28/2022] Open
Abstract
To assess the role of the kynurenine pathway in the pathology of Alzheimer's disease (AD), the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO), and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.
Collapse
MESH Headings
- 3-Hydroxyanthranilate 3,4-Dioxygenase/genetics
- 3-Hydroxyanthranilate 3,4-Dioxygenase/metabolism
- Aged
- Aged, 80 and over
- Alzheimer Disease/enzymology
- Animals
- CA1 Region, Hippocampal/enzymology
- CA3 Region, Hippocampal/enzymology
- Carboxy-Lyases/genetics
- Carboxy-Lyases/metabolism
- Case-Control Studies
- Cerebellum/enzymology
- Cerebral Cortex/enzymology
- Gene Expression
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Metabolic Networks and Pathways
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle Aged
- Organ Specificity
- Pentosyltransferases/genetics
- Pentosyltransferases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Tryptophan/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
Collapse
Affiliation(s)
- Wei Wu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Li Wen
- Cornea and NSW Eye Bank, The University of Sydney, Sydney, New South Wales, Australia
| | - Roger Chung
- Menzies Research Institute Tasmania, The University of Tasmania, Hobart, Tasmania, Australia
| | - Roger Stankovic
- Discipline of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Shisan S. Bao
- Discipline of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Chai K. Lim
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- MND and Neurodegenerative Disease Research Group, Macquarie University, North Ryde, New South Wales, Australia
| | - Bruce J. Brew
- St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Karen M. Cullen
- Discipline of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- MND and Neurodegenerative Disease Research Group, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
66
|
Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012; 26:1512-24. [PMID: 23035031 DOI: 10.1177/0269881112458732] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin is the principal curcuminoid of the popular Indian spice turmeric and has attracted increasing attention for the treatment of a range of conditions. Research into its potential as a treatment for depression is still in its infancy, although several potential antidepressant mechanisms of action have been identified. Research completed to date on the multiple effects of curcumin is reviewed in this paper, with a specific emphasis on the biological systems that are compromised in depression. The antidepressant effects of curcumin in animal models of depression are summarised, and its influence on neurotransmitters such as serotonin and dopamine is detailed. The effects of curcumin in moderating hypothalamus-pituitary-adrenal disturbances, lowering inflammation and protecting against oxidative stress, mitochondrial damage, neuroprogression and intestinal hyperpermeability, all of which are compromised in major depressive disorder, are also summarised. With increasing interest in natural treatments for depression, and efforts to enhance current treatment outcomes, curcumin is presented as a promising novel, adjunctive or stand-alone natural antidepressant.
Collapse
|
67
|
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13:465-77. [PMID: 22678511 DOI: 10.1038/nrn3257] [Citation(s) in RCA: 1033] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.
Collapse
Affiliation(s)
- Robert Schwarcz
- University of Maryland School of Medicine, Baltimore, Maryland 21228, USA. rschwarc@mprc. umaryland.edu
| | | | | | | |
Collapse
|