51
|
van de Donk NW, Usmani SZ. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front Immunol 2018; 9:2134. [PMID: 30294326 PMCID: PMC6158369 DOI: 10.3389/fimmu.2018.02134] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
MM cells express high levels of CD38, while CD38 is expressed at relatively low levels on normal lymphoid and myeloid cells, and in some non-hematopoietic tissues. This expression profile, together with the role of CD38 in adhesion and as ectoenzyme, resulted in the development of CD38 antibodies for the treatment of multiple myeloma (MM). At this moment several CD38 antibodies are at different phases of clinical testing, with daratumumab already approved for various indications both as monotherapy and in combination with standards of care in MM. CD38 antibodies have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). Inhibition of ectoenzymatic function and direct apoptosis induction may also contribute to the efficacy of the antibodies to kill MM cells. The CD38 antibodies also improve host-anti-tumor immunity by the elimination of regulatory T cells, regulatory B cells, and myeloid-derived suppressor cells. Mechanisms of primary and/or acquired resistance include tumor-related factors, such as reduced cell surface expression levels of the target antigen and high levels of complement inhibitors (CD55 and CD59). Differences in frequency or activity of effector cells may also contribute to differences in outcome. Furthermore, the microenvironment protects MM cells to CD38 antibody-induced ADCC by upregulation of anti-apoptotic molecules, such as survivin. Improved understanding of modes of action and mechanisms of resistance has resulted in rationally designed CD38-based combination therapies, which will contribute to further improvement in outcome of MM patients.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/antagonists & inhibitors
- ADP-ribosyl Cyclase 1/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Apoptosis/drug effects
- Apoptosis/immunology
- B-Lymphocytes, Regulatory/drug effects
- B-Lymphocytes, Regulatory/immunology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Randomized Controlled Trials as Topic
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Treatment Outcome
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Saad Z. Usmani
- Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC, United States
| |
Collapse
|
52
|
Applicability of Traditional In Vitro Toxicity Tests for Assessing Adverse Effects of Monoclonal Antibodies: A Case Study of Rituximab and Trastuzumab. Antibodies (Basel) 2018; 7:antib7030030. [PMID: 31544882 PMCID: PMC6640679 DOI: 10.3390/antib7030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapeutics have a promising outlook within the pharmaceutical industry having made positive strides in both research and development as well as commercialisation, however this development has been hampered by manufacturing failures and attrition. This study explores the applicability of traditional in vitro toxicity tests for detecting any off-target adverse effect elicited by mAbs on specific organ systems using hepatocarcinoma cell line (HepG2) and human dermal fibroblasts neonatal (HDFn), respectively. The mechanism of antibody dependent cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) via complement activation, and complement dependent cellular cytotoxicity (CDCC) were assessed. Major results: no apparent ADCC, CDCC, or CDC mediated decrease in cell viability was measured for HepG2 cells. For HDFn cells, though ADCC or CDCC mediated decreases in cell viability wasn’t detected, a CDC mediated decrease in cell viability was observed. Several considerations have been elucidated for development of in vitro assays better suited to detect off target toxicity of mAbs.
Collapse
|
53
|
Brady JV, Troyer RM, Ramsey SA, Leeper H, Yang L, Maier CS, Goodall CP, Ruby CE, Albarqi HAM, Taratula O, Bracha S. A Preliminary Proteomic Investigation of Circulating Exosomes and Discovery of Biomarkers Associated with the Progression of Osteosarcoma in a Clinical Model of Spontaneous Disease. Transl Oncol 2018; 11:1137-1146. [PMID: 30053712 PMCID: PMC6077151 DOI: 10.1016/j.tranon.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Circulating cancer exosomes are microvesicles which originate from malignant cells and other organs influenced by the disease and can be found in blood. The exosomal proteomic cargo can often be traced to the cells from which they originated, reflecting the physiological status of these cells. The similarities between cancer exosomes and the tumor cells they originate from exhibit the potential of these vesicles as an invaluable target for liquid biopsies. Exosomes were isolated from the serum of eight osteosarcoma-bearing dogs, five healthy dogs, and five dogs with traumatic fractures. We also characterized exosomes which were collected longitudinally from patients with osteosarcoma prior and 2 weeks after amputation, and eventually upon detection of lung metastasis. Exosomal proteins fraction were analyzed by label-free mass spectrometry proteomics and were validated with immunoblots of selected proteins. Ten exosomal proteins were found that collectively discriminate serum of osteosarcoma patients from serum healthy or fractured dogs with an accuracy of 85%. Additionally, serum from different disease stages could be distinguished with an accuracy of 77% based on exosomal proteomic composition. The most discriminating protein changes for both sample group comparisons were related to complement regulation, suggesting an immune evasion mechanism in early stages of osteosarcoma as well as in advanced disease.
Collapse
Affiliation(s)
- Jacqueline V Brady
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | - Ryan M Troyer
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | - Stephen A Ramsey
- Carlson College of Veterinary Medicine, Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Haley Leeper
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | - Liping Yang
- College of Science, Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- College of Science, Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Cheri P Goodall
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | - Carl E Ruby
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Oleh Taratula
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Shay Bracha
- Carlson College of Veterinary Medicine, Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
54
|
Bareke H, Akbuga J. Complement system's role in cancer and its therapeutic potential in ovarian cancer. Scand J Immunol 2018; 88:e12672. [PMID: 29734524 DOI: 10.1111/sji.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy is a strong candidate for the long-awaited new edition to standard cancer therapies. For an effective immunotherapy, it is imperative to delineate the players of antitumour immune response. As an important innate immune system effector mechanism, complement is highly likely to play a substantial role in cancer immunity. Studies suggest that there may be two different "states of complement" that show opposing effects on cancer cells; a complement profile that has antitumour effects with low expression of membrane-bound complement regulator proteins (mCRPs), lytic membrane attack complex (MAC) concentration and moderate C5a concentration, and a complement profile that has protumour effects with high expression of mCRPs, sublytic MAC and high concentrations of C5a. One of the cancers that urgently require innovative therapeutic approaches is ovarian cancer, and complement has a potential to be a good target for this purpose. A combinatorial approach where the complement cascade is fine-tuned by inhibiting some of its activities while promoting the others can prove to be a fruitful approach. Herein, we will briefly discuss the cancer-immune system interaction and then present a discussion of complement system's role in tumour immunity and its therapeutic potential for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- H Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.,Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| | - J Akbuga
- Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| |
Collapse
|
55
|
van de Donk NWCJ. Immunomodulatory effects of CD38-targeting antibodies. Immunol Lett 2018; 199:16-22. [PMID: 29702148 DOI: 10.1016/j.imlet.2018.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023]
Abstract
The fist in class CD38-targeting antibody, daratumumab, is currently approved as single agent and in combination with standards of care for the treatment of relapsed and refractory multiple myeloma. Based on the high activity and favorable toxicity profile of daratumumab, other CD38 antibodies, such as isatuximab, MOR202, and TAK-079, are being evaluated in MM and other malignancies. The CD38-targeting antibodies have classic Fc-dependent immune effector mechanisms, including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). These mechanisms of action are dependent on CD38 expression on the tumor cells. There is increasing evidence that CD38 antibodies also improve host-anti-tumor immune response by eliminating CD38-positive immune suppressor cells, including regulatory T cells, regulatory B cells, and myeloid-derived suppressor cells. Indeed, daratumumab treatment results in a marked increase in T cell numbers and activity. CD38-targeting antibodies probably also reduce adenosine production in the bone marrow microenvironment, which may contribute to improved T cell activity. Preclinical and clinical studies have demonstrated that CD38-targeting antibodies have synergistic activity with several other anti-cancer drugs, including various agents with immune stimulating activity, such as lenalidomide and pomalidomide, as well as PD1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, Benvenuto E, Salzano AM, Scaloni A, Donini M. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng 2018; 115:565-576. [PMID: 29178403 DOI: 10.1002/bit.26503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | - Szymon Stelter
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Elena Morrocchi
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | | |
Collapse
|
57
|
Fantini M, David JM, Saric O, Dubeykovskiy A, Cui Y, Mavroukakis SA, Bristol A, Annunziata CM, Tsang KY, Arlen PM. Preclinical Characterization of a Novel Monoclonal Antibody NEO-201 for the Treatment of Human Carcinomas. Front Immunol 2018; 8:1899. [PMID: 29354121 PMCID: PMC5758533 DOI: 10.3389/fimmu.2017.01899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
NEO-201 is a novel humanized IgG1 monoclonal antibody that was derived from an immunogenic preparation of tumor-associated antigens from pooled allogeneic colon tumor tissue extracts. It was found to react against a variety of cultured human carcinoma cell lines and was highly reactive against the majority of tumor tissues from many different carcinomas, including colon, pancreatic, stomach, lung, and breast cancers. NEO-201 also exhibited tumor specificity, as the majority of normal tissues were not recognized by this antibody. Functional assays revealed that treatment with NEO-201 is capable of mediating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against tumor cells. Furthermore, the growth of human pancreatic xenograft tumors in vivo was largely attenuated by treatment with NEO-201 both alone and in combination with human peripheral blood mononuclear cells as an effector cell source for ADCC. In vivo biodistribution studies in human tumor xenograft-bearing mice revealed that NEO-201 preferentially accumulates in the tumor but not organ tissue. Finally, a single-dose toxicity study in non-human primates demonstrated safety and tolerability of NEO-201, as a transient decrease in circulating neutrophils was the only related adverse effect observed. These findings indicate that NEO-201 warrants clinical testing as both a novel diagnostic and therapeutic agent for the treatment of a broad variety of carcinomas.
Collapse
Affiliation(s)
| | | | - Olga Saric
- Precision Biologics, Inc., Rockville, MD, United States
| | | | - Yongzhi Cui
- Precision Biologics, Inc., Rockville, MD, United States
| | | | | | - Christina M Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kwong Y Tsang
- Precision Biologics, Inc., Rockville, MD, United States
| | | |
Collapse
|
58
|
Daugan M, Noe R, Herman Fridman W, Sautes-Fridman C, Roumenina LT. [The complement system: a double edge sword in tumor progression]. Med Sci (Paris) 2017; 33:871-877. [PMID: 28994383 DOI: 10.1051/medsci/20173310019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The complement system is a key component of the innate immunity, playing a role in pathogen elimination and in host homeostasis. The complement system has been considered for long time as an anti-tumoral element. However, recent studies showed a pro-tumoral effect of complement and particularly of the anaphylatoxines C3a and C5a in a large variety of tumor types. Complement proteins act on different levels of tumor progression, affecting the tumor cells, the angiogenesis and the immune microenvironment. The impact of the complement system on tumor progression seems to be cancer type-dependent and this has to be taken into account in the establishment of potential biomarkers and development of therapeutic strategies.
Collapse
Affiliation(s)
- Marie Daugan
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Remi Noe
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - École pratique des hautes études (EPHE), Paris, France
| | - Wolf Herman Fridman
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe cancer et immunité anti-tumorale, Paris, France
| | - Catherine Sautes-Fridman
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe cancer et immunité anti-tumorale, Paris, France
| | - Lubka T Roumenina
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France
| |
Collapse
|
59
|
Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2017; 9:63-73. [PMID: 28986820 PMCID: PMC5777978 DOI: 10.1007/s13238-017-0473-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/19/2017] [Indexed: 01/18/2023] Open
Abstract
Therapeutic monoclonal antibodies are among the most effective biotherapeutics to date. An important aspect of antibodies is their ability to bind antigen while at the same time recruit immune effector functions. The majority of approved recombinant monoclonal antibody therapies are of the human IgG1 subclass, which can engage both humoral and cellular components of the immune system. The wealth of information generated about antibodies has afforded investigators the ability to molecularly engineer antibodies to modulate effector functions. Here, we review various antibody engineering efforts intended to improve efficacy and safety relative to the human IgG isotype. Further, we will discuss proposed mechanisms by which engineering approaches led to modified interactions with immune components and provide examples of clinical studies using next generation antibodies.
Collapse
Affiliation(s)
- Xinhua Wang
- Genentech, Antibody Engineering, South San Francisco, CA, 94080, USA
| | - Mary Mathieu
- Genentech, Antibody Engineering, South San Francisco, CA, 94080, USA
| | - Randall J Brezski
- Genentech, Antibody Engineering, South San Francisco, CA, 94080, USA.
| |
Collapse
|
60
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
61
|
Wirt T, Rosskopf S, Rösner T, Eichholz KM, Kahrs A, Lutz S, Kretschmer A, Valerius T, Klausz K, Otte A, Gramatzki M, Peipp M, Kellner C. An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity. Transfus Med Hemother 2017; 44:292-300. [PMID: 29070974 DOI: 10.1159/000479978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Engineering of the antibody's fragment crystallizable (Fc) by modifying the amino acid sequence (Fc protein engineering) or the glycosylation pattern (Fc glyco-engineering) allows enhancing effector functions of tumor targeting antibodies. Here, we investigated whether complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of CD20 antibodies could be improved simultaneously by combining Fc protein engineering and glyco-engineering technologies. METHODS AND RESULTS Four variants of the CD20 antibody rituximab were generated: a native IgG1, a variant carrying the EFTAE modification (S267E/H268F/S324T/G236A/I332E) for enhanced CDC as well as glyco-engineered, non-fucosylated derivatives of both to boost ADCC. The antibodies bound CD20 specifically with similar affinity. Antibodies with EFTAE modification were more efficacious in mediating CDC, irrespective of fucosylation, than antibodies with wild-type sequences due to enhanced C1q binding. In contrast, non-fucosylated variants had an enhanced affinity to FcγRIIIA and improved ADCC activity. Importantly, the double-engineered antibody lacking fucose and carrying the EFTAE modification mediated both CDC and ADCC with higher efficacy than the native CD20 IgG1 antibody. CONCLUSION Combining glyco-engineering and protein engineering technologies offers the opportunity to simultaneously enhance ADCC and CDC activities of therapeutic antibodies. This approach may represent an attractive strategy to further improve antibody therapy of cancer and deserves further evaluation.
Collapse
Affiliation(s)
- Tim Wirt
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sophia Rosskopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anne Kahrs
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sebastian Lutz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Kretschmer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
62
|
Abstract
BACKGROUND Glioblastoma is the most common and aggressive type of primary brain tumor in adults. A key problem is the capacity of glioma cells to inactivate the body's immune response. The complement system acts as a functional bridge between the innate and adaptive immune response. Still, the role of the complement system has almost been forgotten in glioma research. In our present study, we hypothesize that C1 inactivator (C1-IA) is upregulated in astrocytoma grade IV, and that its inhibition of the complement system has beneficial effects upon survival. METHODS AND RESULTS We have explored this hypothesis both on gene and protein levels and found an upregulation of C1-IA in human glioblastoma cells using data from a publicly available database and our own mRNA material from glioblastoma patients. Furthermore, we demonstrated the presence of C1-IA by using immunohistochemistry on glioma cells from both humans and rats in vitro. Finally, we could demonstrate a significantly increased survival in vivo in animals inoculated intracerebrally with glioma cells pre-coated with C1-IA antibodies as compared to control animals. CONCLUSIONS Our findings indicate that overexpression of C1-IA is present in glioblastomas. This could be demonstrated both at the gene level from patients with glioblastoma, on mRNA level and with immunohistochemistry. Treatment with antibodies against C1-IA had beneficial effects on survival when tested in vivo.
Collapse
|
63
|
Berraondo P, Minute L, Ajona D, Corrales L, Melero I, Pio R. Innate immune mediators in cancer: between defense and resistance. Immunol Rev 2017; 274:290-306. [PMID: 27782320 DOI: 10.1111/imr.12464] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation in the tumor microenvironment and evasion of the antitumor effector immune response are two of the emerging hallmarks required for oncogenesis and cancer progression. The innate immune system not only plays a critical role in perpetuating these tumor-promoting hallmarks but also in developing antitumor adaptive immune responses. Thus, understanding the dual role of the innate system in cancer immunology is required for the design of combined immunotherapy strategies able to tackle established tumors. Here, we review recent advances in the understanding of the role of cell populations and soluble components of the innate immune system in cancer, with a focus on complement, the adapter molecule Stimulator of Interferon Genes, natural killer cells, myeloid cells, and B cells.
Collapse
Affiliation(s)
- Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Luna Minute
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Daniel Ajona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain.,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Ruben Pio
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain. .,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain. .,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
64
|
|
65
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
66
|
Bondza S, Foy E, Brooks J, Andersson K, Robinson J, Richalet P, Buijs J. Real-time Characterization of Antibody Binding to Receptors on Living Immune Cells. Front Immunol 2017; 8:455. [PMID: 28484455 PMCID: PMC5401896 DOI: 10.3389/fimmu.2017.00455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding molecular interactions on immune cells is crucial for drug development to treat cancer and autoimmune diseases. When characterizing molecular interactions, the use of a relevant living model system is important, as processes such as receptor oligomerization and clustering can influence binding patterns. We developed a protocol to enable time-resolved analysis of ligand binding to receptors on living suspension cells. Different suspension cell lines and weakly adhering cells were tethered to Petri dishes with the help of a biomolecular anchor molecule, and antibody binding was analyzed using LigandTracer. The protocol and assay described in this report were used to characterize interactions involving eight cell lines. Experiments were successfully conducted in three different laboratories, demonstrating the robustness of the protocol. For various antibodies, affinities and kinetic rate constants were obtained for binding to CD20 on both Daudi and Ramos B-cells, the T-cell co-receptor CD3 on Jurkat cells, and the Fcγ receptor CD32 on transfected HEK293 cells, respectively. Analyzing the binding of Rituximab to B-cells resulted in an affinity of 0.7–0.9 nM, which is similar to values reported previously for living B-cells. However, we observed a heterogeneous behavior for Rituximab interacting with B-cells, which to our knowledge has not been described previously. The understanding of complex interactions will be facilitated with the possibility to characterize binding processes in real-time on living immune cells. This provides the chance to broaden the understanding of how binding kinetics relate to biological function.
Collapse
Affiliation(s)
- Sina Bondza
- Ridgeview Instruments AB, Vänge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eleanor Foy
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Karl Andersson
- Ridgeview Instruments AB, Vänge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - James Robinson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Jos Buijs
- Ridgeview Instruments AB, Vänge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
67
|
Tammen A, Derer S, Schwanbeck R, Rösner T, Kretschmer A, Beurskens FJ, Schuurman J, Parren PWHI, Valerius T. Monoclonal Antibodies against Epidermal Growth Factor Receptor Acquire an Ability To Kill Tumor Cells through Complement Activation by Mutations That Selectively Facilitate the Hexamerization of IgG on Opsonized Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1585-1594. [DOI: 10.4049/jimmunol.1601268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
|
68
|
Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy 2016; 8:1097-117. [PMID: 27485082 PMCID: PMC5619016 DOI: 10.2217/imt-2016-0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy.
Collapse
Affiliation(s)
| | - Jacob L Goldberg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics & Genetics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| |
Collapse
|
69
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
70
|
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 2016; 128:959-70. [DOI: 10.1182/blood-2016-03-703439] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Key Points
Response to the CD38-targeting antibody daratumumab is significantly associated with CD38 expression levels on the tumor cells. Resistance to daratumumab is accompanied by increased expression of complement-inhibitory proteins.
Collapse
|
71
|
Nissinen L, Farshchian M, Riihilä P, Kähäri VM. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res 2016; 365:691-702. [PMID: 27411692 DOI: 10.1007/s00441-016-2457-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022]
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, and its incidence is increasing worldwide. Solar UV radiation is an important risk factor for cSCC and leads to genetic and epigenetic changes both in epidermal keratinocytes and dermal cells. Tumor cells in cutaneous cSCCs typically harbor several driver gene mutations, but epidermal keratinocytes in sun-exposed normal skin also contain mutations in these same genes. Therefore, alterations in the microenvironment of premalignant lesions are evidently required for their progression to invasive and metastatic cSCC. For example, alterations in the composition of basement membrane and dermal extracellular matrix are early events in cSCC progression. The presence of microbial structures and the influx of inflammatory cells promote the secretion of proteases, which in turn regulate the availability of growth factors, cytokines, and chemokines and thus influence the growth and invasion of cSCC. Together, these observations emphasize the role of the tumor microenvironment in the progression of cSCC and identify it as a novel therapeutic target in cSCC and other malignant tumors. Graphical abstract Tumor-stroma interactions in the progression of cutaneous squamous cell carcinoma (cSCC). Epidermal layer is separated by a well-organized basement membrane (BM) from the dermal layer. UV radiation, other environmental insults, and aging target both epidermal keratinocytes and dermal fibroblasts and lead to genetic and epigenetic changes in these cells. In addition, epidermal keratinocytes in normal sun-exposed skin harbor several mutations in the cSCC driver genes. During transition to premalignant actinic keratosis (AK), the differentiation of keratinocytes is disturbed resulting in a neoplastic epithelium with hyperplastic cells. Expression of proteinases, such as matrix metalloproteinases (MMP) by neoplastic cells and activated stromal fibroblasts and macrophages is induced in AK, and collagen XV and XVIII are lost from the dermal BM. Furthermore, inflammatory cells accumulate at the site of the hyperplastic epithelium. During a later stage of cSCC progression, the number of inflammatory cells increases, and the expression of complement components and inhibitors by tumor cells is induced (CFI complement factor I, CFH complement factor H, FHL-1 Factor H-like protein 1). In addition to MMPs, activated fibroblasts also produce growth factors and promote inflammation, growth, and invasion of tumor cells.
Collapse
Affiliation(s)
- Liisa Nissinen
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Mehdi Farshchian
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Pilvi Riihilä
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Veli-Matti Kähäri
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland. .,MediCity Research Laboratory University of Turku, Turku, Finland.
| |
Collapse
|
72
|
Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28:309-16. [PMID: 27009480 DOI: 10.1016/j.smim.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Several mAbs that have been approved for the treatment of cancer make use of complement-dependent cytotoxicity (CDC) to eliminate tumor cells. Comprehensive investigations, based on in vitro studies, mouse models and analyses of patient blood samples after mAb treatment have provided key insights into the details of individual steps in the CDC reaction. Based on the lessons learned from these studies, new and innovative approaches are now being developed to increase the clinical efficacy of next generation mAbs with respect to CDC. These improvements include engineering changes in the mAbs to enhance their ability to activate complement. In addition, mAb dosing paradigms are being developed that take into account the capacity as well as the limitations of the complement system to eliminate a substantial burden of mAb-opsonized cells. Over the next few years it is likely these approaches will lead to mAbs that are far more effective in the treatment of cancer.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
73
|
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun 2016; 7:10346. [PMID: 26831747 PMCID: PMC4740357 DOI: 10.1038/ncomms10346] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. C1q is known to initiate the activation of the complement classical pathway. Here, the authors show the C1q is expressed in the tumour microenvironment and can promote cancer cell migration and adhesion in a complement activation-independent manner.
Collapse
|
74
|
A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors. Cell Rep 2015; 13:2376-2385. [PMID: 26670049 DOI: 10.1016/j.celrep.2015.11.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/07/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Immunoglobulin G (IgG) glycosylation modulates antibody activity and represents a major source of heterogeneity within antibody preparations. Depending on their glycosylation pattern, individual IgG glycovariants present in recombinant antibody preparations may trigger effects ranging from enhanced pro-inflammatory activity to increased anti-inflammatory activity. In contrast, reduction of IgG glycosylation beyond the central mannose core is generally believed to result in impaired IgG activity. However, this study reveals that a mono- or disaccharide structure consisting of one N-acetylglucosamine with or without a branching fucose residue is sufficient to retain the activity of the most active human and mouse IgG subclasses in vivo and further directs antibody activity to cellular Fcγ receptors. Notably, the activity of minimally glycosylated antibodies is not predicted by in vitro assays based on a monomeric antibody-Fcγ-receptor interaction analysis, whereas in vitro assay systems using immune complexes are more suitable to predict IgG activity in vivo.
Collapse
|
75
|
|
76
|
Leoh LS, Daniels-Wells TR, Martínez-Maza O, Penichet ML. Insights into the effector functions of human IgG3 in the context of an antibody targeting transferrin receptor 1. Mol Immunol 2015; 67:407-15. [PMID: 26232328 DOI: 10.1016/j.molimm.2015.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 06/19/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
The transferrin receptor 1 (TfR1) is involved in cellular iron uptake and regulation of cell proliferation. The increased expression of TfR1 observed in malignant cells, compared to normal cells, together with its extracellular accessibility, make this receptor an attractive target for antibody-mediated cancer therapy. We have developed a mouse/human chimeric IgG3 specific for human TfR1 (ch128.1), which shows anti-tumor activity against certain malignant B cells in vitro through TfR1 degradation and iron deprivation, and in vivo through a mechanism yet to be defined. To further explore potential mechanisms of action of ch128.1, we examined its ability to induce antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC). We now report that ch128.1 is capable of mediating ADCC and CDC against malignant B cells, which is consistent with its ability to bind FcγRI, FcγRIIIa, and the complement component C1q. To delineate the residues involved in these effector functions, we developed a panel of three constructs with mutations in the lower hinge region and CH2 domain: 1) L234A/L235A, 2) P331S, and 3) L234A/L235A/P331S. The triple mutant consistently displayed a significant reduction in ADCC, while the L234A/L235A mutant exhibited less reduction in ADCC, and the P331S mutant did not show reduced ADCC. However, all three mutants exhibited impaired binding to FcγRI and FcγRIIIa. These results suggest that all three residues contribute to ADCC, although to different degrees. The P331S mutant showed drastically decreased C1q binding and abolished CDC, confirming the critical role of this residue in complement activation, while the other residues play a less important role in CDC. Our study provides insights into the effector functions of human IgG3 in the context of an antibody targeting TfR1.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Otoniel Martínez-Maza
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA; The Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
77
|
Battella S, Cox MC, Santoni A, Palmieri G. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J Leukoc Biol 2015; 99:87-96. [PMID: 26136506 DOI: 10.1189/jlb.5vmr0415-141r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeting mAb are widely used in the treatment of a variety of solid and hematopoietic tumors and represent the first immunotherapeutic approach successfully arrived to the clinic. Nevertheless, the role of distinct immune mechanisms in contributing to their therapeutic efficacy is not completely understood and may vary depending on tumor- or antigen/antibody-dependent characteristics. Availability of next-generation, engineered, tumor-targeting mAb, optimized in their capability to recruit selected immune effectors, re-enforces the need for a deeper understanding of the mechanisms underlying anti-tumor mAb functionality. NK cells participate with a major role to innate anti-tumor responses, by exerting cytotoxic activity and producing a vast array of cytokines. As the CD16 (low-affinity FcγRIIIA)-activating receptor is expressed on the majority of NK cells, its effector functions can be ideally recruited against therapeutic mAb-opsonized tumor cells. The exact role of NK cells in determining therapeutic efficacy of tumor-targeting mAb is still unclear and much sought after. This knowledge will be instrumental to design innovative combination schemes with newly validated immunomodulatory agents. We will summarize what is known about the role of NK cells in therapeutic anti-tumor mAb therapy, with particular emphasis on RTX chimeric anti-CD20 mAb, the first one used in clinical practice for treating B cell malignancies.
Collapse
Affiliation(s)
- Simone Battella
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Maria Christina Cox
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Angela Santoni
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Gabriella Palmieri
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
78
|
Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 2015; 29:2039-49. [PMID: 25975191 DOI: 10.1038/leu.2015.123] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.
Collapse
|
79
|
Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody Isotype Switching in Vertebrates. Results Probl Cell Differ 2015; 57:295-324. [PMID: 26537387 DOI: 10.1007/978-3-319-20819-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.
Collapse
Affiliation(s)
- Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jason Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|