51
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
52
|
Allan KJ, Stojdl DF, Swift SL. High-throughput screening to enhance oncolytic virus immunotherapy. Oncolytic Virother 2016; 5:15-25. [PMID: 27579293 PMCID: PMC4996253 DOI: 10.2147/ov.s66217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research.
Collapse
Affiliation(s)
- K J Allan
- Children's Hospital of Eastern Ontario (CHEO) Research Institute; Department of Biology, Microbiology and Immunology
| | - David F Stojdl
- Children's Hospital of Eastern Ontario (CHEO) Research Institute; Department of Biology, Microbiology and Immunology; Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - S L Swift
- Children's Hospital of Eastern Ontario (CHEO) Research Institute
| |
Collapse
|
53
|
Predictive and Prognostic Clinical Variables in Cancer Patients Treated With Adenoviral Oncolytic Immunotherapy. Mol Ther 2016; 24:1323-32. [PMID: 27039846 DOI: 10.1038/mt.2016.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The development of oncolytic viruses has recently made great progress towards being available to cancer patients. With the breakthrough into clinics, it is crucial to analyze the existing clinical experience and use it as a basis for treatment improvements. Here, we report clinical data from 290 patients treated with oncolytic adenovirus. Using clinical variables and treatment characteristics, we constructed statistical models with regard to treatment response and overall survival (OS). Additionally, we investigated effects of neutralizing antibodies, tumor burden, and peripheral blood leucocyte counts on these outcomes. We found the absence of liver metastases to correlate with an improved rate of disease control (P = 0.021). In multivariate evaluation, patients treated with viruses coding for immunostimulatory granulocyte macrophage colony-stimulating factor were linked to better prognosis (hazard ratio (HR) 0.378, P < 0.001), as well as women with any cancer type (HR 0.694, P = 0.017). In multivariate analysis for imaging response, patients treated via intraperitoneal injection were more likely to achieve disease control (odds ratio (OR) 3.246, P = 0.027). Patients with low neutrophil-to-lymphocyte ratio before treatment had significantly longer OS (P < 0.001). These findings could explain some of the variation seen in treatment outcomes after virotherapy. Furthermore, the results offer hypotheses for treatment optimization and patient selection in oncolytic adenovirus immunotherapy.
Collapse
|
54
|
MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. J Virol 2016; 90:4078-4092. [PMID: 26865716 PMCID: PMC4810567 DOI: 10.1128/jvi.02810-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated, justifying the continued development of novel oncolytic viruses with enhanced potency. Here, we introduce mengovirus as a novel oncolytic agent. Mengovirus is appealing as an oncolytic virotherapy platform because of its small size, simple genome structure, rapid replication cycle, and broad cell/species tropism. However, mengovirus can cause encephalomyelitis and myocarditis. It can be partially attenuated by shortening the poly(C) tract in the 5′ NCR but remains capable of damaging cardiac and nervous tissue. Here, we further enhanced the safety profile of a poly(C)-truncated mengovirus by incorporating muscle- and neuron-specific microRNA target sequences into the viral genome. This dual-detargeted virus has reduced pathogenesis but retained potent oncolytic activity. Our data show that microRNA targeting can be used to further increase the safety of an attenuated mengovirus, providing a basis for its development as an oncolytic platform.
Collapse
|
55
|
Hirvinen M, Capasso C, Guse K, Garofalo M, Vitale A, Ahonen M, Kuryk L, Vähä-Koskela M, Hemminki A, Fortino V, Greco D, Cerullo V. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16002. [PMID: 27626058 PMCID: PMC5008257 DOI: 10.1038/mto.2016.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022]
Abstract
In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI) to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate-and eventually the long-lasting adaptive immunity against cancer.
Collapse
Affiliation(s)
- Mari Hirvinen
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
| | - Cristian Capasso
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
| | - Kilian Guse
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki, Finland
| | - Mariangela Garofalo
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
| | - Andrea Vitale
- Department of Movement Sciences and Wellness (DiSMEB), University of Naples Parthenope and CEINGE-Biotecnologie Avanzate , Naples, Italy
| | - Marko Ahonen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki, Finland
| | - Lukasz Kuryk
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Oncos Therapeutics Ltd., Helsinki, Finland
| | | | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics, Ltd., Helsinki, Finland; Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Dario Greco
- Finnish Institute of Occupational Health , Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
| |
Collapse
|
56
|
Murphy H, Jaafari H, Dobrovolny HM. Differences in predictions of ODE models of tumor growth: a cautionary example. BMC Cancer 2016; 16:163. [PMID: 26921070 PMCID: PMC4768423 DOI: 10.1186/s12885-016-2164-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/14/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND While mathematical models are often used to predict progression of cancer and treatment outcomes, there is still uncertainty over how to best model tumor growth. Seven ordinary differential equation (ODE) models of tumor growth (exponential, Mendelsohn, logistic, linear, surface, Gompertz, and Bertalanffy) have been proposed, but there is no clear guidance on how to choose the most appropriate model for a particular cancer. METHODS We examined all seven of the previously proposed ODE models in the presence and absence of chemotherapy. We derived equations for the maximum tumor size, doubling time, and the minimum amount of chemotherapy needed to suppress the tumor and used a sample data set to compare how these quantities differ based on choice of growth model. RESULTS We find that there is a 12-fold difference in predicting doubling times and a 6-fold difference in the predicted amount of chemotherapy needed for suppression depending on which growth model was used. CONCLUSION Our results highlight the need for careful consideration of model assumptions when developing mathematical models for use in cancer treatment planning.
Collapse
Affiliation(s)
- Hope Murphy
- Department of Physics, Utica College, Utica, NY, USA.
| | - Hana Jaafari
- Department of Physics & Astronomy, Texas Christian University, 2800 S. University Drive, TX, 76129, Fort Worth, USA.
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, 2800 S. University Drive, TX, 76129, Fort Worth, USA.
| |
Collapse
|
57
|
Siurala M, Vähä-Koskela M, Havunen R, Tähtinen S, Bramante S, Parviainen S, Mathis JM, Kanerva A, Hemminki A. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting. Oncoimmunology 2016; 5:e1136046. [PMID: 27467954 DOI: 10.1080/2162402x.2015.1136046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022] Open
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.
Collapse
Affiliation(s)
- Mikko Siurala
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Markus Vähä-Koskela
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Simona Bramante
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Suvi Parviainen
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, LA, USA
| | - Anna Kanerva
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
58
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
59
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
60
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
61
|
Dobbins GC, Ugai H, Curiel DT, Gillespie GY. A Multi Targeting Conditionally Replicating Adenovirus Displays Enhanced Oncolysis while Maintaining Expression of Immunotherapeutic Agents. PLoS One 2015; 10:e0145272. [PMID: 26689910 PMCID: PMC4687127 DOI: 10.1371/journal.pone.0145272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
Studies have demonstrated that oncolytic adenoviruses based on a 24 base pair deletion in the viral E1A gene (D24) may be promising therapeutics for treating a number of cancer types. In order to increase the therapeutic potential of these oncolytic viruses, a novel conditionally replicating adenovirus targeting multiple receptors upregulated on tumors was generated by incorporating an Ad5/3 fiber with a carboxyl terminus RGD ligand. The virus displayed full cytopathic effect in all tumor lines assayed at low titers with improved cytotoxicity over Ad5-RGD D24, Ad5/3 D24 and an HSV oncolytic virus. The virus was then engineered to deliver immunotherapeutic agents such as GM-CSF while maintaining enhanced heterogenic oncolysis.
Collapse
Affiliation(s)
- G. Clement Dobbins
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| | - Hideyo Ugai
- Cancer Biology Division, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, Missouri, United States of America
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| |
Collapse
|
62
|
Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2015; 5:e1115641. [PMID: 26942095 DOI: 10.1080/2162402x.2015.1115641] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 09/29/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022] Open
Abstract
On 2015, October 27th, the US Food and Drug Administration (FDA) has officially approved talimogene laherparepvec (T-VEC, also known as OncoVEXGM-CSF) for use in melanoma patients with injectable but non-resectable lesions in the skin and lymph nodes. T-VEC (which is commercialized by Amgen, Inc. under the name of Imlygic®) becomes therefore the first oncolytic virus approved for cancer therapy in the US.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Share senior co-authorship
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Share senior co-authorship
| |
Collapse
|
63
|
Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Immunostimulation with cytokines in cancer therapy. Oncoimmunology 2015; 5:e1115942. [PMID: 27057468 DOI: 10.1080/2162402x.2015.1115942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
During the past decade, great efforts have been dedicated to the development of clinically relevant interventions that would trigger potent (and hence potentially curative) anticancer immune responses. Indeed, developing neoplasms normally establish local and systemic immunosuppressive networks that inhibit tumor-targeting immune effector cells, be them natural or elicited by (immuno)therapy. One possible approach to boost anticancer immunity consists in the (generally systemic) administration of recombinant immunostimulatory cytokines. In a limited number of oncological indications, immunostimulatory cytokines mediate clinical activity as standalone immunotherapeutic interventions. Most often, however, immunostimulatory cytokines are employed as immunological adjuvants, i.e., to unleash the immunogenic potential of other immunotherapeutic agents, like tumor-targeting vaccines and checkpoint blockers. Here, we discuss recent preclinical and clinical advances in the use of some cytokines as immunostimulatory agents in oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
64
|
Neuroblastomas vary widely in their sensitivities to herpes simplex virotherapy unrelated to virus receptors and susceptibility. Gene Ther 2015; 23:135-43. [PMID: 26583803 PMCID: PMC4742391 DOI: 10.1038/gt.2015.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Although most high-risk neuroblastomas are responsive to chemotherapy, relapse is common and long-term survival is less than 40%, underscoring the need for more effective treatments. We evaluated the responsiveness of 12 neuroblastoma cell lines to the Δγ134.5 attenuated oncolytic HSV, Seprehvir (HSV1716), which is currently used in pediatric phase I trials. We found that entry of Seprehvir in neuroblastoma cells is independent of the expression of nectin-1 and the sum of all four known major HSV entry receptors. We observed varying levels of sensitivity and permissivity to Seprehvir, suggesting that the cellular anti-viral response, not virus entry, is the key determinant of efficacy with this virus. In vivo, we found significant anti-tumor efficacy following Seprehvir treatment, which ranged from 6/10 complete responses in the CHP-134 model to a mild prolonged median survival in the SK-N-AS model. Taken together, these data suggest that anti-tumor efficacy cannot be solely predicted based on in vitro response. Whether or not this discordance holds true for other viruses or tumor types is unknown. Our results also suggest that profiling the expression of known viral entry receptors on neuroblastoma cells may not be entirely predictive of their susceptibility to Seprehvir therapy.
Collapse
|
65
|
Hanna GG, Coyle VM, Prise KM. Immune modulation in advanced radiotherapies: Targeting out-of-field effects. Cancer Lett 2015; 368:246-51. [DOI: 10.1016/j.canlet.2015.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
|
66
|
Liu Z, Ravindranathan R, Li J, Kalinski P, Guo ZS, Bartlett DL. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 2015; 5:e1091554. [PMID: 27141352 PMCID: PMC4839379 DOI: 10.1080/2162402x.2015.1091554] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
We have armed a tumor-selective oncolytic vaccinia virus (vvDD) with the chemokine (CK) CXCL11, in order to enhance its ability to attract CXCR3+ antitumor CTLs and possibly NK cells to the tumor microenvironment (TME) and improve its therapeutic efficacy. As expected, vvDD-CXCL11 attracted high numbers of tumor-specific T cells to the TME in a murine AB12 mesothelioma model. Intratumoral virus-directed CXCL11 expression enhanced local numbers of CD8+ CTLs and levels of granzyme B, while reducing expression of several suppressive molecules, TGF-β, COX2, and CCL22 in the TME. Unexpectedly, we observed that vvDD-CXCL11, but not parental vvDD, induced a systemic increase in tumor-specific IFNγ-producing CD8+ T cells in the spleen and other lymph organs, indicating the induction of systemic antitumor immunity. This effect was associated with enhanced therapeutic efficacy and a survival benefit in tumor-bearing mice treated with vvDD-CXCL11, mediated by CD8+ T cells and IFNγ, but not CD4+ T cells. These results demonstrate that intratumoral expression of CXCL11, in addition to promoting local trafficking of T cells and to a lesser extent NK cells, has a novel function as a factor eliciting systemic immunity to cancer-associated antigens. Our data provide a rationale for expressing CXCL11 to enhance the therapeutic efficacy of oncolytic viruses (OVs) and cancer vaccines.
Collapse
Affiliation(s)
- Zuqiang Liu
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Li
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pawel Kalinski
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Sheng Guo
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
67
|
Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release 2015; 219:181-191. [PMID: 26453806 DOI: 10.1016/j.jconrel.2015.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research.
Collapse
|
68
|
Abstract
Harnessing the ability of the immune system to eradicate cancer has been a long-held goal of oncology. Work from the last two decades has finally brought immunotherapy into the forefront for cancer treatment, with demonstrable clinical success for aggressive tumors where other therapies had failed. In this review, we will discuss a range of therapies that are in different stages of clinical or preclinical development for companion animals with cancer, and which share the common objective of eliciting adaptive, anti-tumor immune responses. Even though challenges remain, manipulating the immune system holds significant promise to create durable responses and improve outcomes in companion animals with cancer. Furthermore, what we learn from this process will inform and accelerate development of comparable therapies for human cancer patients.
Collapse
|
69
|
Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia. J Virol 2015; 89:11786-800. [PMID: 26378177 PMCID: PMC4645320 DOI: 10.1128/jvi.01356-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we developed a recombinant strain of vesicular stomatitis virus (VSV) that specifically targets transformed CD4(+) T cells through replacement of the G protein of VSV with a hybrid fusion protein, combining domains from gp160 of HIV-1 and VSV-G. This modification eliminated the normally broad tropism of VSV and restricted infection to primarily the transformed CD4(+) cell population. This effect greatly reduced neurotoxic risk associated with VSV infection while still allowing VSV to effectively target ATL cells.
Collapse
|
70
|
VanSeggelen H, Tantalo DG, Afsahi A, Hammill JA, Bramson JL. Chimeric antigen receptor-engineered T cells as oncolytic virus carriers. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:15014. [PMID: 27119109 PMCID: PMC4782951 DOI: 10.1038/mto.2015.14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/13/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
The use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown. These viruses bear natural abilities to associate with lymphocytes upon systemic administration, but therapeutic doses must be very high in order to evade antibodies and other components of the immune system. As T cells readily circulate through the body, using these cells to deliver OVs directly to tumors may provide an ideal combination. Our studies demonstrate that loading chimeric antigen receptor–engineered T cells with low doses of virus does not impact receptor expression or function in either murine or human T cells. Engineered T cells can deposit virus onto a variety of tumor targets, which can enhance the tumoricidal activity of the combination treatment. This concept appears to be broadly applicable, as we observed similar results using murine or human T cells, loaded with either RNA or DNA viruses. Overall, loading of engineered T cells with OVs represents a novel combination therapy that may increase the efficacy of both treatments.
Collapse
Affiliation(s)
- Heather VanSeggelen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Ontario, Canada
| | - Daniela Gm Tantalo
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Ontario, Canada
| | - Arya Afsahi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Ontario, Canada
| | - Joanne A Hammill
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Ontario, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Ontario, Canada
| |
Collapse
|
71
|
Sousa MFQ, Silva MM, Giroux D, Hashimura Y, Wesselschmidt R, Lee B, Roldão A, Carrondo MJT, Alves PM, Serra M. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Biotechnol Prog 2015; 31:1600-12. [DOI: 10.1002/btpr.2158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/07/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Marcos F. Q. Sousa
- Inst. de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- iBET, Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
| | - Marta M. Silva
- Inst. de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- iBET, Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
| | | | | | | | | | - António Roldão
- Inst. de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- iBET, Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
| | - Manuel J. T. Carrondo
- iBET; Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
- Dept. de Química, Faculdade de Ciências e Tecnologia; Universidade Nova De Lisboa; 2829-516 Monte da Caparica Portugal
| | - Paula M. Alves
- Inst. de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- iBET, Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
| | - Margarida Serra
- Inst. de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- iBET, Inst. de Biologia Experimental e Tecnológica; Apartado 12 Oeiras 2780-901 Portugal
| |
Collapse
|
72
|
Immunogénicité de la chimiothérapie. ONCOLOGIE 2015. [DOI: 10.1007/s10269-015-2543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
73
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
74
|
Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus. Mol Ther 2015; 24:175-83. [PMID: 26310629 DOI: 10.1038/mt.2015.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.
Collapse
|
75
|
MacNeill AL. On the potential of oncolytic virotherapy for the treatment of canine cancers. Oncolytic Virother 2015; 4:95-107. [PMID: 27512674 PMCID: PMC4918385 DOI: 10.2147/ov.s66358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 6 million dogs are diagnosed with cancer in the USA each year. Treatment options for many of these patients are limited. It is important that the veterinary and scientific communities begin to explore novel treatment protocols for dogs with cancer. Oncolytic viral therapy is a promising treatment option that may prove to be relatively inexpensive and effective against several types of cancer. The efficacy of oncolytic virus therapies has been clearly demonstrated in murine cancer models, but the positive outcomes observed in mice are not always seen in human cancer patients. These therapies should be thoroughly evaluated in dogs with spontaneously arising cancers to provide needed information about the potential effectiveness of virus treatment for human cancers and to promote the health of our companion animals. This article provides a review of the results of oncolytic virus treatment of canine cancers.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
76
|
Birkeland AC, Owen JH, Prince ME. Targeting Head and Neck Cancer Stem Cells: Current Advances and Future Challenges. J Dent Res 2015; 94:1516-23. [PMID: 26307039 DOI: 10.1177/0022034515601960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells, comprise a subset of tumor cells with demonstrated ability for tumor growth, invasion, metastasis, and resistance to chemotherapy and radiation. Targeting of CSCs remains an attractive yet elusive therapeutic option, with the goal of increasing specificity and effectiveness in tumor eradication, as well as decreasing off-target or systemic toxicity. Research into further characterization and targeted therapy toward head and neck CSCs is an active and rapidly evolving field. This review discusses the current state of research into therapy against head and neck CSCs and future directions for targeted therapy.
Collapse
Affiliation(s)
- A C Birkeland
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| | - J H Owen
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| | - M E Prince
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
77
|
Zhang W, Ge K, Zhao Q, Zhuang X, Deng Z, Liu L, Li J, Zhang Y, Dong Y, Zhang Y, Zhang S, Liu B. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 2015; 6:20345-55. [PMID: 25972362 PMCID: PMC4653009 DOI: 10.18632/oncotarget.3884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022] Open
Abstract
Virotherapy is a promising strategy for cancer treatment. Using the human telomerase reverse transcriptase promoter, we developed a novel tumor-selective replication oncolytic HSV-1. Here we showed that oHSV1-hTERT virus was cytopathic in telomerase-positive cancer cell lines but not in telomerase-negative cell lines. In intra-venous injection in mice, oHSV1-hTERT was safer than its parental oHSV1-17+. In human blood cell transduction assays, both viruses transduced few blood cells and the transduction rate for oHSV1-hTERT was even less than that for its parental virus. In vivo, oHSV1-hTERT inhibited growth of tumors and prolong survival in telomerase-positive xenograft tumor models. Therefore, we concluded that this virus may be a safe and effective therapeutic agent for cancer treatment, warranting clinical trials in humans.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Keli Ge
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Qian Zhao
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xiufen Zhuang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Zhenling Deng
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Lingling Liu
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Li
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yu Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Ying Dong
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Binlei Liu
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.,Hubei University of Technology, Nanhu, Wuchang District, Wuhan 430068, China
| |
Collapse
|
78
|
Fonteneau JF, Achard C, Zaupa C, Foloppe J, Erbs P. Oncolytic immunotherapy: The new clinical outbreak. Oncoimmunology 2015; 5:e1066961. [PMID: 26942085 DOI: 10.1080/2162402x.2015.1066961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Carole Achard
- INSERM UMR892, CNRS UMR6299, Université de Nantes , Nantes, France
| | | | | | | |
Collapse
|
79
|
Koski A, Bramante S, Kipar A, Oksanen M, Juhila J, Vassilev L, Joensuu T, Kanerva A, Hemminki A. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues. Mol Ther 2015; 23:1641-52. [PMID: 26156245 DOI: 10.1038/mt.2015.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients.
Collapse
Affiliation(s)
- Anniina Koski
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Simona Bramante
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,School of Veterinary Science and Department of Infection Biology, Institute of Global Health, University of Liverpool, Liverpool, UK.,Present address: Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Minna Oksanen
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juuso Juhila
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lotta Vassilev
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna Kanerva
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Docrates Hospital, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
80
|
Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7:611-9. [PMID: 26098919 DOI: 10.2217/imt.15.35] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melanoma often spreads to cutaneous or subcutaneous sites that are amenable to direct, intralesional injection. As such, developing effective injectable agents has been of considerable interest. Talimogene laherperepvec (T-VEC) is an injectable modified oncolytic herpes virus being developed for the treatment of advanced melanoma. Pre-clinical studies have shown that T-VEC preferentially infects melanoma cells and exerts antitumor activity through directly mediating cell death and by augmenting local and even distant immune responses. T-VEC has now been assessed in Phase II and III clinical trials and has demonstrated a tolerable side-effect profile and promising efficacy, showing an improved durable response rate and a trend toward superior overall survival compared to granulocyte-macrophage colony-stimulating factor. Despite these promising results, responses have been uncommon in patients with visceral metastases. T-VEC is currently being evaluated in combination with other immune therapies (ipilimumab and pembrolizumab) with early signs of activity. In this review, we discuss the preclinical rationale, the clinical experience, and future directions for T-VEC in advanced melanoma.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, 777 PRB, 2220 Pierce Ave, Nashville, TN 37232, USA
| | - Igor Puzanov
- Department of Medicine, Vanderbilt University Medical Center, 777 PRB, 2220 Pierce Ave, Nashville, TN 37232, USA
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University Medical Center, TN, USA
| |
Collapse
|
81
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
82
|
de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 2015; 15:959-71. [PMID: 25959450 DOI: 10.1517/14712598.2015.1044433] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Over the past decade, the cytolytic capabilities of oncolytic viruses (OVs), exploited to selectively eliminate neoplastic cells, have become secondary to their use to elicit a tumor-directed immune response. AREAS COVERED Here, based on an NCBI-PubMed literature survey, we review the efforts undertaken to arm OVs in order to improve therapeutic antitumor responses upon administration of these agents. Specifically, we explore the different options to modulate immune suppression in the tumor microenvironment (TME) and to facilitate the generation of effective antitumor responses that have been investigated in conjunction with OVs in recent years. EXPERT OPINION Their induction of immunogenic tumor cell death and association with pro-inflammatory signals make OVs attractive immunotherapeutic modalities. The first promising clinical results with immunologically armed OVs warrant their further optimization and development. OVs should be modified to avoid detrimental effects of pre-existent anti-OV immunity as well as for increased tumor targeting and selectivity, so as to ultimately allow for systemic administration while achieving local immune potentiation and tumor elimination in the TME. In particular, a combination of trans-genes encoding bispecific T-cell engagers, immune checkpoint blockers and antigen-presenting cell enhancers will remove suppressive hurdles in the TME and allow for optimal antitumor efficacy of armed OVs.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- VU University Medical Center - Cancer Center Amsterdam, Department of Medical Oncology , Room VUmc-CCA 2.44, De Boelelaan 1117, 1081 HV Amsterdam , The Netherlands +31 20 4444063 ;
| | | | | |
Collapse
|
83
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
84
|
Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 2015; 6:187. [PMID: 25964783 PMCID: PMC4408862 DOI: 10.3389/fimmu.2015.00187] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 12/12/2022] Open
Abstract
The term "immunogenic cell death" (ICD) is commonly employed to indicate a peculiar instance of regulated cell death (RCD) that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin, and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD.
Collapse
Affiliation(s)
- Lucillia Bezu
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Faculté de Medecine, Université Paris-Sud , Le Kremlin-Bicêtre , France
| | - Ligia C Gomes-de-Silva
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Chemistry, University of Coimbra , Coimbra , Portugal
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University , Ghent , Belgium ; Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Jitka Fucikova
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Radek Spisek
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Gustave Roussy Campus Cancer , Villejuif , France ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP , Paris , France
| |
Collapse
|
85
|
Qiao J, Dey M, Chang AL, Kim JW, Miska J, Ling A, M Nettlebeck D, Han Y, Zhang L, Lesniak MS. Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy. Oncoimmunology 2015; 4:e1022302. [PMID: 26405578 DOI: 10.1080/2162402x.2015.1022302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor and is associated with poor survival. Virotherapy is a promising candidate for the development of effective, novel treatments for GBM. Recent studies have underscored the potential of virotherapy in enhancing antitumor immunity despite the fact that its mechanisms remain largely unknown. Here, using a syngeneic GBM mouse model, we report that intratumoral virotherapy significantly modulates the tumor microenvironment. We found that intratumoral administration of an oncolytic adenovirus, AdCMVdelta24, decreased tumor-infiltrating CD4+ Foxp3+ regulatory T cells (Tregs) and increased IFNγ-producing CD8+ T cells in treated tumors, even in late stage disease in which a highly immunosuppressive tumor microenvironment is considered to be a significant barrier to immunotherapy. Importantly, intratumoral AdCMVdelta24 treatment augmented systemically transferred tumor-antigen-specific T cell therapy. Furthermore, mechanistic studies showed (1) downregulation of Foxp3 in Tregs that were incubated with media conditioned by virus-infected tumor cells, (2) downregulation of indoleamine 2,3 dioxygenase 1 (IDO) in glioma cells upon infection by AdCMVdelta24, and (3) reprograming of Tregs from an immunosuppressive to a stimulatory state. Taken together, our findings demonstrate the potency of intratumoral oncolytic adenoviral treatment in enhancing antitumor immunity through the regulation of multiple aspects of immune suppression in the context of glioma, supporting further clinical development of oncolytic adenovirus-based immune therapies for malignant brain cancer.
Collapse
Affiliation(s)
- Jian Qiao
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Mahua Dey
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Alan L Chang
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Julius W Kim
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Jason Miska
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Alex Ling
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Dirk M Nettlebeck
- Oncolytic Adenovirus Group; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Yu Han
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Lingjiao Zhang
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Maciej S Lesniak
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| |
Collapse
|
86
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
87
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
88
|
Passaro C, Portella G. Oncolytic virotherapy for thyroid cancer: will it translate to the clinic? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.14.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Carmela Passaro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
89
|
Potent antitumor activity of Oct4 and hypoxia dual-regulated oncolytic adenovirus against bladder cancer. Gene Ther 2015; 22:305-15. [PMID: 25588741 DOI: 10.1038/gt.2014.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/08/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
Abstract
Most solid tumors undergo hypoxia, leading to rapid cell division, metastasis and expansion of a cell population with hallmarks of cancer stem cells (CSCs). Tumor-selective replication of oncolytic adenoviruses may be hindered by oxygen deprivation in tumors. It is desirable to develop a potent oncolytic adenovirus, retaining its antitumor activity even in a hypoxic environment. We have previously generated an Oct4-dependent oncolytic adenovirus, namely Ad9OC, driven by nine copies of the Oct4 response element (ORE) for specifically killing Oct4-overexpressing bladder tumors. Here, we developed a novel Oct4 and hypoxia dual-regulated oncolytic adenovirus, designated AdLCY, driven by both hypoxia response element (HRE) and ORE. We showed that hypoxia-inducible factor (HIF)-2α and Oct4 were frequently overexpressed in hypoxic bladder cancer cells, and HIF-2α was involved in HRE-dependent and Oct4 transactivation. AdLCY exhibited higher cytolytic activities than Ad9OC against hypoxic bladder cancer cells, while sparing normal cells. AdLCY exerted potent antitumor effects in mice bearing human bladder tumor xenografts and syngeneic bladder tumors. It could target hypoxic CD44- and CD133-positive bladder tumor cells. Therefore, AdLCY may have therapeutic potential for targeting hypoxic bladder tumors and CSCs. As Oct4 is expressed in various cancers, AdLCY may be further explored as a broad-spectrum anticancer agent.
Collapse
|
90
|
Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 2014; 15:337-51. [DOI: 10.1517/14712598.2015.993374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
91
|
Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147. [PMID: 25941597 DOI: 10.4161/21624011.2014.967147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | | |
Collapse
|
92
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 629] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
93
|
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Henrik ter Meulen J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179. [PMID: 25083332 PMCID: PMC4091055 DOI: 10.4161/onci.29179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France
- INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Villejuif, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|