51
|
Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: A review of prevention methods. Travel Med Infect Dis 2019; 32:101520. [PMID: 31730910 PMCID: PMC7110694 DOI: 10.1016/j.tmaid.2019.101520] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Middle East Respiratory Coronavirus Virus (MERS-CoV) first emerged from Saudi Arabia in 2012 and has since been recognized as a significant human respiratory pathogen on a global level. METHODS In this narrative review, we focus on the prevention of MERS-CoV. We searched PubMed, Embase, Cochrane, Scopus, and Google Scholar, using the following terms: 'MERS', 'MERS-CoV', 'Middle East respiratory syndrome' in combination with 'prevention' or 'infection control'. We also reviewed the references of each article to further include other studies or reports not identified by the search. RESULTS As of Nov 2019, a total of 2468 laboratory-confirmed cases of MERS-CoV were diagnosed mostly from Middle Eastern regions with a mortality rate of at least 35%. A major outbreak that occurred outside the Middle East (in South Korea) and infections reported from 27 countries. MERS-CoV has gained recognition as a pathogen of global significance. Prevention of MERS-CoV infection is a global public health priority. Healthcare facility transmission and by extension community transmission, the main amplifier of persistent outbreaks, can be prevented through early identification and isolation of infected humans. While MERS-CoV vaccine studies were initially hindered by multiple challenges, recent vaccine development for MERS-CoV is showing promise. CONCLUSIONS The main factors leading to sustainability of MERS-CoV infection in high risk courtiers is healthcare facility transmission. MERS-CoV transmission in healthcare facility mainly results from laps in infection control measures and late isolation of suspected cases. Preventive measures for MERS-CoV include disease control in camels, prevention of camel to human transmission.
Collapse
Affiliation(s)
- Salim Baharoon
- Infectious Disease Division, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,Department of Critical Care, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,Professor of Critical Care, King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Ziad A. Memish
- Infectious Diseases Division, Department of Medicine and Research Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,Corresponding author. College of Medicine, Alfaisal University, P.O. Box 54146, Riyadh, 11514, Saudi Arabia
| |
Collapse
|
52
|
Al-Tawfiq JA, Gautret P. Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: Extent and implications for infection control: A systematic review. Travel Med Infect Dis 2018; 27:27-32. [PMID: 30550839 PMCID: PMC7110966 DOI: 10.1016/j.tmaid.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023]
Abstract
Background The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) emerged in 2012 and attracted an international attention as the virus caused multiple healthcare associated outbreaks. There are reports of the role of asymptomatic individuals in the transmission of MERS-CoV, however, the exact role is not known. Method The MEDLINE/PubMed and Scopus databases were searched for relevant papers published till August 2018 describing asymptomatic MERS-CoV infection. Results A total of 10 papers were retrieved and included in the final analysis and review. The extent of asymptomatic MERS infection had increased with change in the policy of testing asymptomatic contacts. In early cases in April 2012–October 2013, 12.5% were asymptomatic among 144 PCR laboratory-confirmed MERS-CoV cases while in 2014 the proportion rose to 25.1% among 255 confirmed cases. The proportion of asymptomatic cases reported among pediatric confirmed MERS-CoV cases were higher (41.9%–81.8%). Overall, the detection rate of MERS infection among asymptomatic contacts was 1-3.9% in studies included in this review. Asymptomatic individuals were less likely to have underlying condition compared to fatal cases. Of particular interest is that most of the identified pediatric cases were asymptomatic with no clear explanation. Conclusions The proportion of asymptomatic MERS cases were detected with increasing frequency as the disease progressed overtime. Those patients were less likely to have comorbid disease and may contribute to the transmission of the virus.
Collapse
Affiliation(s)
- Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Philippe Gautret
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Microbes Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire-Méditerranée Infection (IHU-Méditerranée Infection), Marseille, France
| |
Collapse
|
53
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
54
|
Abstract
Purpose of Review This review highlights some of the recent concerning emerging infectious diseases, a number of them specifically that the World Health Organization has categorized as priorities for research. Recent Findings Emerging and reemerging infectious diseases account for significant losses in not only human life, but also financially. There are a number of contributing factors, most commonly surrounding human behavior, that lead to disease emergence. Zoonoses are the most common type of infection, specifically from viral pathogens. The most recent emerging diseases in the USA are Emergomyces canadensis, the Heartland virus, and the Bourbon virus. Summary In addition to the aforementioned pathogens, the Severe Acute Respiratory Syndrome, Middle East Respiratory Syndrome, Nipah virus, New Delhi metallo-ß-lactamase-1 Enterobacteriaceae, Rift Valley Fever virus, and Crimean-Congo Hemorrhagic Fever virus are reviewed. These pathogens are very concerning with a high risk for potential epidemic, ultimately causing both significant mortality and financial costs. Research should be focused on monitoring, prevention, and treatment of these diseases.
Collapse
Affiliation(s)
- Kevin Watkins
- Cleveland Clinic Foundation, Akron General Medical Center, 1 Akron General Avenue, Akron, OH 44307 USA
| |
Collapse
|
55
|
Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, Memish ZA. Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia. Front Med 2018; 13:126-130. [PMID: 29623560 PMCID: PMC7088593 DOI: 10.1007/s11684-017-0603-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
Abstract
Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as an important respiratory disease with high fatality rates of 40%-60%. Despite the increased number of cases over subsequent years, the number of pediatric cases remained low. A review of studies conducted from June 2012 to April 19, 2016 reported 31 pediatric MERS-CoV cases. In this paper, we present the clinical and laboratory features of seven patients with pediatric MERS. Five patients had no underlying medical illnesses, and three patients were asymptomatic. Of the seven cases, four (57%) patients sought medical advice within 1-7 days from the onset of symptoms. The three other patients (43%) were asymptomatic and were in contact with patients with confirmed diagnosis of MERS-CoV. The most common presenting symptoms were fever (57%), cough (14%), shortness of breath (14%), vomiting (28%), and diarrhea (28%). Two (28.6%) patients had platelet counts of < 150 × 109/L, and one patient had an underlying end-stage renal disease. The remaining patients presented with normal blood count, liver function, and urea and creatinine levels. The documented MERS-CoV Ct values were 32-38 for four of the seven cases. Two patients (28.6%) had abnormal chest radiographic findings of bilateral infiltration. One patient (14.3%) required ventilator support, and two patients (28.6%) required oxygen supplementation. All the seven patients were discharged without complications.
Collapse
Affiliation(s)
- Sarah H Alfaraj
- University of British Columbia, Vancouver, V6T 1Z4, Canada.,Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Talal A Altuwaijri
- Department of Surgery, King Saud University, Riyadh, 11692, Saudi Arabia
| | - Ziad A Memish
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia. .,Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia. .,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
56
|
MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018; 10:v10020093. [PMID: 29495250 PMCID: PMC5850400 DOI: 10.3390/v10020093] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development.
Collapse
|
57
|
Arrington AS. Biocontainment Principles for Pediatric Patients. BIOEMERGENCY PLANNING 2018. [PMCID: PMC7123203 DOI: 10.1007/978-3-319-77032-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The need for medical communities to prepare for highly hazardous communicable disease outbreaks was perhaps best exemplified in the 2014–2016 Ebola virus outbreak. To date, most efforts of preparedness have focused on adult medical providers, though it is critical that pediatric institutions achieve the same level of preparedness for children who may present with these illnesses. Care of pediatric patients exposed and/or infected with these unique pathogens requires advanced planning and training in order to offer the highest level of care while at the same time being able to ensure the safety of both the hospital staff and the community. In this chapter, we will discuss the basic principles of biocontainment and care in a unique pediatric setting and offer guidelines on how to navigate the identification, isolation, family-centered care, and clinical care of children with highly hazardous communicable diseases.
Collapse
|
58
|
Green RJ. Viral Lower Respiratory Tract Infections. VIRAL INFECTIONS IN CHILDREN, VOLUME II 2017. [PMCID: PMC7122336 DOI: 10.1007/978-3-319-54093-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lower respiratory tract infections in children are often viral in origin. Unfortunately in this time of significant antimicrobial resistance of infectious organisms, especially bacteria, there is still a tendency for clinicians to manage a child who coughs with antibiotics. In addition, the World Health Organization (WHO) has defined “pneumonia” as a condition that only occurs in children who have “fast breathing or chest wall indrawing”. That would delineate upper respiratory tract infections from those in the lower airway. However, in addition to pneumonia another important entity exists in the lower respiratory tract that is almost always viral in origin. This condition is acute viral bronchiolitis. The concept of “acute lower respiratory tract infection” (ALRTI) has emerged and it is becoming increasing evident from a number of studies that the infectious base of both acute pneumonia (AP) and acute bronchiolitis in children has a mixed etiology of microorganisms. Therefore, whilst certain clinical phenotypes do not require antibiotics the actual microbial etiology is much less distinct.
Collapse
Affiliation(s)
- Robin J. Green
- Department of Paediatrics and Child Health, University of Pretoria, School of Medicine, Pretoria, ZA, South Africa
| |
Collapse
|