51
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
52
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Steinman JB, Santarossa CC, Miller RM, Yu LS, Serpinskaya AS, Furukawa H, Morimoto S, Tanaka Y, Nishitani M, Asano M, Zalyte R, Ondrus AE, Johnson AG, Ye F, Nachury MV, Fukase Y, Aso K, Foley MA, Gelfand VI, Chen JK, Carter AP, Kapoor TM. Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. eLife 2017; 6. [PMID: 28524820 PMCID: PMC5478271 DOI: 10.7554/elife.25174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition. DOI:http://dx.doi.org/10.7554/eLife.25174.001
Collapse
Affiliation(s)
- Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Cristina C Santarossa
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Rand M Miller
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Lola S Yu
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| | - Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Hideki Furukawa
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Sachie Morimoto
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Yuta Tanaka
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | | | - Moriteru Asano
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Ruta Zalyte
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alison E Ondrus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Fan Ye
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Yoshiyuki Fukase
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Kazuyoshi Aso
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Michael A Foley
- Tri-Institutitional Therapeutics Discovery Institute, New York, United States
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, United States
| |
Collapse
|
54
|
Lechtreck KF, Van De Weghe JC, Harris JA, Liu P. Protein transport in growing and steady-state cilia. Traffic 2017; 18:277-286. [PMID: 28248449 DOI: 10.1111/tra.12474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss recent data on cues regulating the type, amount and timing of cargo transported by IFT. A regulation of IFT-cargo interactions is critical to establish, maintain and adjust ciliary length, protein composition and function.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | | | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
55
|
Lewis TR, Kundinger SR, Pavlovich AL, Bostrom JR, Link BA, Besharse JC. Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms. Dev Biol 2017; 425:176-190. [PMID: 28341548 PMCID: PMC5558849 DOI: 10.1016/j.ydbio.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
Zebrafish morphants of osm-3/kif17, a kinesin-2 family member and intraflagellar transport motor, have photoreceptor outer segments that are dramatically reduced in number and size. However, two genetic mutant lines, osm-3/kif17sa0119 and osm-3/kif17sa18340, reportedly lack any observable morphological outer segment defects. In this work, we use TALENs to generate an independent allele, osm-3/kif17mw405, and show that both osm-3/kif17sa0119 and osm-3/kif17mw405 have an outer segment developmental delay in both size and density that is fully recovered by 6 days post-fertilization. Additionally, we use CRISPRs to generate cos2/kif7mw406, a mutation in the kinesin-4 family member cos2/kif7 that has been implicated in controlling ciliary architecture and Hedgehog signaling to test whether it may be functioning redundantly with osm-3/kif17. We show that cos2/kif7mw406 has an outer segment developmental delay similar to the osm-3/kif17 mutants. Using a three-dimensional mathematical model of outer segments, we show that while cos2/kif7mw406 and osm-3/kif17mw405 outer segments are smaller throughout the first 6 days of development, the volumetric rates of outer segment morphogenesis are not different among wild-type, cos2/kif7mw406, and osm-3/kif17mw405 after 60hpf. Instead, our model suggests that cos2/kif7mw406 and osm-3/kif17mw405 impact outer segment morphogenesis through upstream events that that are different for each motor. In the case of cos2/kif7mw406 mutants, we show that early defects in Hedgehog signaling lead to a general, non-photoreceptor-specific delay of retinal neurogenesis, which in turn causes the secondary phenotype of delayed outer segment morphogenesis. In contrast, the osm-3/kif17mw405 outer segment morphogenesis delays are linked specifically to initial disc morphogenesis of photoreceptors rather than an upstream event. Further, we show that osm-3/kif17 mutant mice also exhibit a similarly delayed outer segment development, suggesting a role for osm-3/kif17 in early outer segment development that is conserved across species. In conclusion, we show that both osm-3/kif17 and cos2/kif7 have comparable outer segment developmental delays, although through independent mechanisms.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sean R Kundinger
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amira L Pavlovich
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
56
|
Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem Biol 2017; 24:252-280. [PMID: 28286127 DOI: 10.1016/j.chembiol.2017.02.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
The Hedgehog (HH) signaling pathway was discovered originally as a key pathway in embryonic patterning and development. Since its discovery, it has become increasingly clear that the HH pathway also plays important roles in a multitude of cancers. Therefore, HH signaling has emerged as a therapeutic target of interest for cancer therapy. In this review, we provide a brief overview of HH signaling and the key molecular players involved and offer an up-to-date summary of our current knowledge of endogenous and exogenous small molecules that modulate HH signaling. We discuss experiences and lessons learned from the decades-long efforts toward the development of cancer therapies targeting the HH pathway. Challenges to develop next-generation cancer therapies are highlighted.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
57
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
58
|
KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat Commun 2017; 8:14177. [PMID: 28134340 PMCID: PMC5290278 DOI: 10.1038/ncomms14177] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.
Collapse
|
59
|
Madugula V, Lu L. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci 2016; 129:3922-3934. [PMID: 27633000 PMCID: PMC5087665 DOI: 10.1242/jcs.194019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
The sensory functions of cilia are dependent on the enrichment of cilium-resident proteins. Although it is known that ciliary targeting signals (CTSs) specifically target ciliary proteins to cilia, it is still unclear how CTSs facilitate the entry and retention of cilium-resident proteins at the molecular level. We found that non-ciliary membrane reporters can passively diffuse into cilia through the lateral transport pathway, and the translocation of membrane reporters through the ciliary diffusion barrier is facilitated by importin binding motifs and domains. Screening known CTSs of ciliary membrane residents uncovered that fibrocystin, photoreceptor retinol dehydrogenase, rhodopsin and retinitis pigmentosa 2 interact with transportin1 (TNPO1) through previously identified CTSs. We further discovered that a new ternary complex, comprising TNPO1, Rab8 and a CTS, can assemble or disassemble under the guanine nucleotide exchange activity of Rab8. Our study suggests a new mechanism in which the TNPO1-Rab8-CTS complex mediates selective entry into and retention of cargos within cilia.
Collapse
Affiliation(s)
- Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
60
|
Pedersen LB, Mogensen JB, Christensen ST. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci 2016; 41:784-797. [DOI: 10.1016/j.tibs.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
|
61
|
Abstract
The Hedgehog (Hh) signalling pathway is one of the key regulators of metazoan development. Hh proteins have been shown to play roles in many developmental processes and have become paradigms for classical morphogens. Dysfunction of the Hh pathway underlies a number of human developmental abnormalities and diseases, making it an important therapeutic target. Interest in Hh signalling thus extends across many fields, from evo-devo to cancer research and regenerative medicine. Here, and in the accompanying poster, we provide an outline of the current understanding of Hh signalling mechanisms, highlighting the similarities and differences between species.
Collapse
Affiliation(s)
- Raymond Teck Ho Lee
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A* STAR), Singapore, 138673 Singapore
| | - Zhonghua Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| | - Philip W Ingham
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A* STAR), Singapore, 138673 Singapore Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore Department of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
62
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
63
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
64
|
Fort C, Bonnefoy S, Kohl L, Bastin P. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J Cell Sci 2016; 129:3026-41. [PMID: 27343245 DOI: 10.1242/jcs.188227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed.
Collapse
Affiliation(s)
- Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France Université Pierre et Marie Curie Paris 6, Cellule Pasteur-UPMC, 25 rue du docteur Roux, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS; CP52, 61 rue Buffon, Paris 75005, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
65
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
66
|
Calderon CP. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory. Phys Rev E 2016; 93:053303. [PMID: 27301001 DOI: 10.1103/physreve.93.053303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010)PLEEE81539-375510.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be consistent over a wide range of exposure times (5 to 100 ms), diffusion coefficients (1×10^{-3} to 1μm^{2}/s), and confinement widths (100 nm to 2μm). We demonstrate that neglecting motion blur or confinement can substantially bias estimation of kinetic parameters of interest to researchers. The technique also permits one to check statistical model assumptions against measured individual trajectories without "ground truth." The ability to reliably and consistently extract motion parameters in trajectories exhibiting confined and/or non-stationary dynamics, without exposure time artifacts corrupting estimates, is expected to aid in directly comparing trajectories obtained from different experiments or imaging modalities. A Python implementation is provided (open-source code will be maintained on GitHub; see also the Supplemental Material with this paper).
Collapse
|
67
|
Beletkaia E, Fenz SF, Pomp W, Snaar-Jagalska BE, Hogendoorn PW, Schmidt T. CXCR4 signaling is controlled by immobilization at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:607-16. [DOI: 10.1016/j.bbamcr.2015.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
|
68
|
Cellular Mechanisms of Ciliary Length Control. Cells 2016; 5:cells5010006. [PMID: 26840332 PMCID: PMC4810091 DOI: 10.3390/cells5010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT) system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Collapse
|
69
|
Abstract
In the last decade highly conserved cellular appendages called cilia have enjoyed a renewed interest from basic, biomedical scientists, and clinicians alike. This interest has grown upon the elucidation that cilia throughout the body serve as important sensory and signaling centers in both development and adult homeostasis. Furthermore, the identification of several rare genetic disorders associated with cilia dysfunction has broadened the field. However, even though their potential role in human health and disease is now recognized many basic questions about their functions remain. This chapter seeks to explore the trafficking of cilia-specific G protein-coupled receptors (GPCRs) and discusses several model systems in which this has been explored. We open the chapter by briefly discussing cilia and GPCRs then begin discussing some aspects of rhodopsin trafficking, arguably the most well studied of cilia GPCRs. We continue with sections on neuronal cilia and olfactory cilia receptor trafficking. Finally, we conclude with the emerging area of dynamic ciliary GPCR trafficking and speculate about future directions and some of the questions that remain for ciliary GPCRs.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Mellisa M Hege
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
70
|
See SK, Hoogendoorn S, Chung AH, Ye F, Steinman JB, Sakata-Kato T, Miller RM, Cupido T, Zalyte R, Carter AP, Nachury MV, Kapoor TM, Chen JK. Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity. ACS Chem Biol 2016; 11:53-60. [PMID: 26555042 PMCID: PMC4715766 DOI: 10.1021/acschembio.5b00895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Cytoplasmic dyneins
1 and 2 are related members of the AAA+ superfamily
(ATPases associated with diverse cellular activities) that function
as the predominant minus-end-directed microtubule motors in eukaryotic
cells. Dynein 1 controls mitotic spindle assembly, organelle movement,
axonal transport, and other cytosolic, microtubule-guided processes,
whereas dynein 2 mediates retrograde trafficking within motile and
primary cilia. Small-molecule inhibitors are important tools for investigating
motor protein-dependent mechanisms, and ciliobrevins were recently
discovered as the first dynein-specific chemical antagonists. Here,
we demonstrate that ciliobrevins directly target the heavy chains
of both dynein isoforms and explore the structure–activity
landscape of these inhibitors in vitro and in cells.
In addition to identifying chemical motifs that are essential for
dynein blockade, we have discovered analogs with increased potency
and dynein 2 selectivity. These antagonists effectively disrupt Hedgehog
signaling, intraflagellar transport, and ciliogenesis, making them
useful probes of these and other cytoplasmic dynein 2-dependent cellular
processes.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan B. Steinman
- Laboratory
of Chemistry and Cell Biology, Rockefeller University, New York City, New York 10065, United States
| | | | - Rand M. Miller
- Laboratory
of Chemistry and Cell Biology, Rockefeller University, New York City, New York 10065, United States
| | - Tommaso Cupido
- Laboratory
of Chemistry and Cell Biology, Rockefeller University, New York City, New York 10065, United States
| | - Ruta Zalyte
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Cambridge CB2 0QH, United Kingdom
| | - Andrew P. Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Cambridge CB2 0QH, United Kingdom
| | | | - Tarun M. Kapoor
- Laboratory
of Chemistry and Cell Biology, Rockefeller University, New York City, New York 10065, United States
| | | |
Collapse
|
71
|
Takao D, Verhey KJ. Gated entry into the ciliary compartment. Cell Mol Life Sci 2016; 73:119-27. [PMID: 26472341 PMCID: PMC4959937 DOI: 10.1007/s00018-015-2058-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
Cilia and flagella play important roles in cell motility and cell signaling. These functions require that the cilium establishes and maintains a unique lipid and protein composition. Recent work indicates that a specialized region at the base of the cilium, the transition zone, serves as both a barrier to entry and a gate for passage of select components. For at least some cytosolic proteins, the barrier and gate functions are provided by a ciliary pore complex (CPC) that shares molecular and mechanistic properties with nuclear gating. Specifically, nucleoporins of the CPC limit the diffusional entry of cytosolic proteins in a size-dependent manner and enable the active transport of large molecules and complexes via targeting signals, importins, and the small G protein Ran. For membrane proteins, the septin protein SEPT2 is part of the barrier to entry whereas the gating function is carried out and/or regulated by proteins associated with ciliary diseases (ciliopathies) such as nephronophthisis, Meckel–Gruber syndrome and Joubert syndrome. Here, we discuss the evidence behind these models of ciliary gating as well as the similarities to and differences from nuclear gating.
Collapse
Affiliation(s)
- Daisuke Takao
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109 USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109 USA
| |
Collapse
|
72
|
Abstract
Cilia and flagella are microtubule-based organelles that play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in cilia formation and function cause a broad class of human genetic diseases called ciliopathies. To carry out their specialized functions, cilia contain a unique complement of proteins that must be imported into the ciliary compartment. In this chapter, we describe methods to measure the permeability barrier of the ciliary gate by microinjection of fluorescent proteins and dextrans of different sizes into ciliated cells. We also describe a fluorescence recovery after photobleaching (FRAP) assay to measure the entry of ciliary proteins into the ciliary compartment. These assays can be used to determine the molecular mechanisms that regulate the formation and function of cilia in mammalian cells.
Collapse
Affiliation(s)
- Daisuke Takao
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
73
|
Lechtreck KF. IFT-Cargo Interactions and Protein Transport in Cilia. Trends Biochem Sci 2015; 40:765-778. [PMID: 26498262 PMCID: PMC4661101 DOI: 10.1016/j.tibs.2015.09.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, 635C Biological Science Building, 1000 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
74
|
Recruitment of β-Arrestin into Neuronal Cilia Modulates Somatostatin Receptor Subtype 3 Ciliary Localization. Mol Cell Biol 2015; 36:223-35. [PMID: 26503786 DOI: 10.1128/mcb.00765-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Primary cilia are essential sensory and signaling organelles present on nearly every mammalian cell type. Defects in primary cilia underlie a class of human diseases collectively termed ciliopathies. Primary cilia are restricted subcellular compartments, and specialized mechanisms coordinate the localization of proteins to cilia. Moreover, trafficking of proteins into and out of cilia is required for proper ciliary function, and this process is disrupted in ciliopathies. The somatostatin receptor subtype 3 (Sstr3) is selectively targeted to primary cilia on neurons in the mammalian brain and is implicated in learning and memory. Here, we show that Sstr3 localization to cilia is dynamic and decreases in response to somatostatin treatment. We further show that somatostatin treatment stimulates β-arrestin recruitment into Sstr3-positive cilia and this recruitment can be blocked by mutations in Sstr3 that impact agonist binding or phosphorylation. Importantly, somatostatin treatment fails to decrease Sstr3 ciliary localization in neurons lacking β-arrestin 2. Together, our results implicate β-arrestin in the modulation of Sstr3 ciliary localization and further suggest a role for β-arrestin in the mediation of Sstr3 ciliary signaling.
Collapse
|
75
|
Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. FASEB J 2015; 29:4866-80. [PMID: 26229057 DOI: 10.1096/fj.15-275677] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023]
Abstract
In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3.
Collapse
Affiliation(s)
- Li Jiang
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Beatrice M Tam
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Guoxing Ying
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Sen Wu
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - William W Hauswirth
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Jeanne M Frederick
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Orson L Moritz
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Wolfgang Baehr
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
76
|
Milenkovic L, Weiss LE, Yoon J, Roth TL, Su YS, Sahl SJ, Scott MP, Moerner WE. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc Natl Acad Sci U S A 2015; 112:8320-5. [PMID: 26100903 PMCID: PMC4500289 DOI: 10.1073/pnas.1510094112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accumulation of the signaling protein Smoothened (Smo) in the membrane of primary cilia is an essential step in Hedgehog (Hh) signal transduction, yet the molecular mechanisms of Smo movement and localization are poorly understood. Using ultrasensitive single-molecule tracking with high spatial/temporal precision (30 nm/10 ms), we discovered that binding events disrupt the primarily diffusive movement of Smo in cilia at an array of sites near the base. The affinity of Smo for these binding sites was modulated by the Hh pathway activation state. Activation, by either a ligand or genetic loss of the negatively acting Hh receptor Patched-1 (Ptch), reduced the affinity and frequency of Smo binding at the base. Our findings quantify activation-dependent changes in Smo dynamics in cilia and highlight a previously unknown step in Hh pathway activation.
Collapse
Affiliation(s)
- Ljiljana Milenkovic
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Lucien E Weiss
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua Yoon
- Department of Chemistry, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Theodore L Roth
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - YouRong S Su
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Steffen J Sahl
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Matthew P Scott
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
77
|
Abstract
Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein.
Collapse
Affiliation(s)
- Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University East Lansing, MI, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
78
|
Abstract
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.
Collapse
Affiliation(s)
- Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
79
|
Trimble WS, Grinstein S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. ACTA ACUST UNITED AC 2015; 208:259-71. [PMID: 25646084 PMCID: PMC4315255 DOI: 10.1083/jcb.201410071] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization.
Collapse
Affiliation(s)
- William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5C 1N8, Canada
| |
Collapse
|
80
|
Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 2015; 4. [PMID: 25688564 PMCID: PMC4362204 DOI: 10.7554/elife.05242] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/14/2015] [Indexed: 12/22/2022] Open
Abstract
The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes. DOI:http://dx.doi.org/10.7554/eLife.05242.001 Nearly every cell in the human body has slender, hair-like structures known as cilia that project outwards from its surface. These structures can sense and respond to light, chemicals and touch, and they are required for normal development. Failure of cilia to form or function in the correct manner can lead to severe diseases—such as kidney disorders, deafness and loss of vision. A major puzzle for researchers who study cilia has been to understand how cells change the composition of these structures as part of their response to a sensory input. Cilia are ancient structures that were present in early single-celled organisms and researchers interested in cilia have often used a single-celled green alga called Chlamydomonas reinhardtii as a model system for their studies. When these algae reproduce sexually, the two types of sex cells sense the presence of each other when their cilia touch and then stick together. This ciliary touching activates signals that are sent into the cells to get them ready to fuse together, much like sperm and egg cells do in animals. Both ciliary touching and signaling depend on a protein called SAG1, a part of which (known as SAG1-C65) is normally found mostly over the surface membrane of C. reinhardtii. Only very small amounts of SAG1-C65 are normally found on cilia; but, when the sex cells' cilia touch, this protein rapidly moves to the end of the cell nearest the cilia via a previously unknown mechanism. SAG1-C65 then becomes much more enriched in the cilia. Cao, Ning, Hernandez-Lara et al. investigated this process and found that SAG1-C65 movement requires a molecular motor called ‘cytoplasmic dynein’. This motor protein typically walks along the inside of cilia to transport other molecules away from the tip and towards the cell membrane. However, Cao, Ning, Hernandez-Lara et al. found that this dynein also carries SAG1-C65 from the membrane of the cells towards the base of the cilia in preparation for it to enter into these structures. As part of an effort to understand the fate of the protein after it entered cilia, Cao, Ning, Hernandez-Lara et al. discovered that the SAG1-C65 disappeared from the structures without returning to the cell membrane. Instead, SAG1-C65 was packaged within tiny bubble-like structures near the tips of cilia and these packages were then shed from cilia into the external environment. This discovery challenges a widely held view that proteins are only removed from cilia by returning to the cell. Future work will be required to understand more of the molecular details of these processes, which are likely to be present in most cells with cilia. DOI:http://dx.doi.org/10.7554/eLife.05242.002
Collapse
Affiliation(s)
- Muqing Cao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jue Ning
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carmen I Hernandez-Lara
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Olivier Belzile
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, United States
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
81
|
Breslow DK, Nachury MV. Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods Cell Biol 2015; 127:203-21. [PMID: 25837393 DOI: 10.1016/bs.mcb.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The primary cilium is a protrusion from the cell surface that serves as a specialized compartment for signal transduction. Many signaling factors are known to be dynamically concentrated within cilia and to require cilia for their function. Yet protein entry into primary cilia remains poorly understood. To enable a mechanistic analysis of soluble protein entry into cilia, we developed a method for semipermeabilization of mammalian cells in which the plasma membrane is permeabilized while the ciliary membrane remains intact. Using semipermeabilized cells as the basis for an in vitro diffusion-to-capture assay, we uncovered a size-dependent diffusion barrier that restricts soluble protein exchange between the cytosol and the cilium. The manipulability of this in vitro system enabled an extensive characterization of the ciliary diffusion barrier and led us to show that the barrier is mechanistically distinct from those at the axon initial segment and the nuclear pore complex. Because semipermeabilized cells enable a range of experimental perturbations that would not be easily feasible in intact cells, we believe this methodology will provide a unique resource for investigating primary cilium function in development and disease.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
82
|
Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. ACTA ACUST UNITED AC 2015; 208:223-37. [PMID: 25583998 PMCID: PMC4298693 DOI: 10.1083/jcb.201409036] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In Chlamydomonas cilia, IFT concentrates soluble tubulin by regulating IFT train occupancy and thereby promotes elongation of axonemal microtubules. The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules.
Collapse
Affiliation(s)
- Julie M Craft
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - J Aaron Harris
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Sebastian Hyman
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Peter Kner
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| |
Collapse
|
83
|
Williams CL, McIntyre JC, Norris SR, Jenkins PM, Zhang L, Pei Q, Verhey K, Martens JR. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat Commun 2014; 5:5813. [PMID: 25504142 PMCID: PMC4284812 DOI: 10.1038/ncomms6813] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/07/2014] [Indexed: 01/16/2023] Open
Abstract
Cilia dysfunction underlies a class of human diseases with variable penetrance in different organ systems. Across eukaryotes, intraflagellar transport (IFT) facilitates cilia biogenesis and cargo trafficking, but our understanding of mammalian IFT is insufficient. Here we perform live analysis of cilia ultrastructure, composition and cargo transport in native mammalian tissue using olfactory sensory neurons. Proximal and distal axonemes of these neurons show no bias towards IFT kinesin-2 choice, and Kif17 homodimer is dispensable for distal segment IFT. We identify Bardet-Biedl syndrome proteins (BBSome) as bona fide constituents of IFT in olfactory sensory neurons, and show that they exist in 1:1 stoichiometry with IFT particles. Conversely, subpopulations of peripheral membrane proteins, as well as transmembrane olfactory signalling pathway components, are capable of IFT but with significantly less frequency and/or duration. Our results yield a model for IFT and cargo trafficking in native mammalian cilia and may explain the penetrance of specific ciliopathy phenotypes in olfactory neurons.
Collapse
Affiliation(s)
- Corey L. Williams
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, PO Box 100267, Gainesville, Florida 32610, USA
| | - Jeremy C. McIntyre
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, PO Box 100267, Gainesville, Florida 32610, USA
| | - Stephen R. Norris
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, 3041 Biomedical Science Research Building (BSRB), Ann Arbor, Michigan 48109, USA
| | - Paul M. Jenkins
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5632, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, PO Box 100267, Gainesville, Florida 32610, USA
| | - Qinglin Pei
- Department of Biostatistics, University of Florida, RM5225, 2004 Mowry Road, Gainesville, Florida 32611, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, 3041 Biomedical Science Research Building (BSRB), Ann Arbor, Michigan 48109, USA
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, PO Box 100267, Gainesville, Florida 32610, USA
| |
Collapse
|
84
|
Liew GM, Ye F, Nager AR, Murphy JP, Lee JS, Aguiar M, Breslow DK, Gygi SP, Nachury MV. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev Cell 2014; 31:265-278. [PMID: 25443296 DOI: 10.1016/j.devcel.2014.09.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 01/02/2023]
Abstract
The sorting of signaling receptors into and out of cilia relies on the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, and on the intraflagellar transport (IFT) machinery. GTP loading onto the Arf-like GTPase ARL6/BBS3 drives assembly of a membrane-apposed BBSome coat that promotes cargo entry into cilia, yet how and where ARL6 is activated remains elusive. Here, we show that the Rab-like GTPase IFT27/RABL4, a known component of IFT complex B, promotes the exit of BBSome and associated cargoes from cilia. Unbiased proteomics and biochemical reconstitution assays show that, upon disengagement from the rest of IFT-B, IFT27 directly interacts with the nucleotide-free form of ARL6. Furthermore, IFT27 prevents aggregation of nucleotide-free ARL6 in solution. Thus, we propose that IFT27 separates from IFT-B inside cilia to promote ARL6 activation, BBSome coat assembly, and subsequent ciliary exit, mirroring the process by which BBSome mediates cargo entry into cilia.
Collapse
Affiliation(s)
- Gerald M Liew
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fan Ye
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew R Nager
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Patrick Murphy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jaclyn S Lee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David K Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
85
|
Takao D, Dishinger JF, Kee HL, Pinskey JM, Allen BL, Verhey KJ. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr Biol 2014; 24:2288-94. [PMID: 25264252 DOI: 10.1016/j.cub.2014.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023]
Abstract
As a cellular organelle, the cilium contains a unique protein composition. Entry of both membrane and cytosolic components is tightly regulated by gating mechanisms at the cilium base; however, the mechanistic details of ciliary gating are largely unknown. We previously proposed that entry of cytosolic components is regulated by mechanisms similar to those of nuclear transport and is dependent on nucleoporins (NUPs), which comprise a ciliary pore complex (CPC). To investigate ciliary gating mechanisms, we developed a system to clog the pore by inhibiting NUP function via forced dimerization. We targeted NUP62, a component of the central channel of the nuclear pore complex (NPC), for forced dimerization by tagging it with the homodimerizing Fv domain. As proof of principle, we show that forced dimerization of NUP62-Fv attenuated (1) active transport of BSA into the nuclear compartment and (2) the kinesin-2 motor KIF17 into the ciliary compartment. Using the pore-clogging technique, we find that forced dimerization of NUP62 attenuated the gated entry of cytosolic proteins but did not affect entry of membrane proteins or diffusional entry of small cytosolic proteins. We propose a model in which active transport of cytosolic proteins into both nuclear and ciliary compartments requires functional NUPs of the central pore, whereas lateral entry of membrane proteins utilizes a different mechanism that is likely specific to each organelle's limiting membrane.
Collapse
Affiliation(s)
- Daisuke Takao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John F Dishinger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - H Lynn Kee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justine M Pinskey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ben L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
86
|
Alford LM, Mattheyses AL, Hunter EL, Lin H, Dutcher SK, Sale WS. The Chlamydomonas mutant pf27 reveals novel features of ciliary radial spoke assembly. Cytoskeleton (Hoboken) 2014; 70:804-18. [PMID: 24124175 DOI: 10.1002/cm.21144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 01/05/2023]
Abstract
To address the mechanisms of ciliary radial spoke assembly, we took advantage of the Chlamydomonas pf27 mutant. The radial spokes that assemble in pf27 are localized to the proximal quarter of the axoneme, but otherwise are fully assembled into 20S radial spoke complexes competent to bind spokeless axonemes in vitro. Thus, pf27 is not defective in radial spoke assembly or docking to the axoneme. Rather, our results suggest that pf27 is defective in the transport of spoke complexes. During ciliary regeneration in pf27, radial spoke assembly occurs asynchronously from other axonemal components. In contrast, during ciliary regeneration in wild-type Chlamydomonas, radial spokes and other axonemal components assemble concurrently as the axoneme grows. Complementation in temporary dikaryons between wild-type and pf27 reveals rescue of radial spoke assembly that begins at the distal tip, allowing further assembly to proceed from tip to base of the axoneme. Notably, rescued assembly of radial spokes occurred independently of the established proximal radial spokes in pf27 axonemes in dikaryons. These results reveal that 20S radial spokes can assemble proximally in the pf27 cilium but as the cilium lengthens, spoke assembly requires transport. We postulate that PF27 encodes an adaptor or modifier protein required for radial spoke–IFT interaction.
Collapse
|
87
|
Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One 2014; 9:e108470. [PMID: 25243405 PMCID: PMC4171540 DOI: 10.1371/journal.pone.0108470] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.
Collapse
Affiliation(s)
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
88
|
Abstract
Cilia grow by assembling structural precursors delivered to their tips by intraflagellar transport. New work on ciliary length control indicates that, during ciliary growth, cilia send a length signal to the cytoplasm that regulates cargo loading onto the constitutively trafficking intraflagellar transport machinery.
Collapse
Affiliation(s)
- Junmin Pan
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| |
Collapse
|
89
|
Kim J, Hsia EYC, Kim J, Sever N, Beachy PA, Zheng X. Simultaneous measurement of smoothened entry into and exit from the primary cilium. PLoS One 2014; 9:e104070. [PMID: 25119726 PMCID: PMC4132089 DOI: 10.1371/journal.pone.0104070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/05/2014] [Indexed: 11/19/2022] Open
Abstract
Ciliary accumulation of signaling proteins must result from a rate of ciliary entry that exceeds ciliary exit, but approaches for distinguishing ciliary entry vs. exit are lacking. Using a photoconvertible fluorescent protein tag, we establish an assay that allows a separate but simultaneous examination of ciliary entry and exit of the Hedgehog signaling protein Smoothened in individual cells. We show that KAAD-cyclopamine selectively blocks entry, whereas ciliobrevin interferes initially with exit and eventually with both entry and exit of ciliary Smoothened. Our study provides an approach to understanding regulation of ciliary entry vs. exit of Hedgehog signaling components as well as other ciliary proteins.
Collapse
Affiliation(s)
- Jynho Kim
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Elaine Y. C. Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - James Kim
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Division of Hematology-Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX, United States of America
| | - Navdar Sever
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Philip A. Beachy
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail: (PAB); (XZ)
| | - Xiaoyan Zheng
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- * E-mail: (PAB); (XZ)
| |
Collapse
|
90
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
91
|
|
92
|
Calderon CP, Weiss LE, Moerner WE. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052705. [PMID: 25353827 DOI: 10.1103/physreve.89.052705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 06/04/2023]
Abstract
Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x,y (or x,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).
Collapse
Affiliation(s)
| | - Lucien E Weiss
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
93
|
Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 2014; 3:e01948. [PMID: 24668170 PMCID: PMC3965213 DOI: 10.7554/elife.01948] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia-glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - James R Anderson
- Department of Ophthalmology, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
94
|
Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia. Genetics 2014; 197:667-84. [PMID: 24646679 DOI: 10.1534/genetics.114.161349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The localization of signaling molecules such as G protein-coupled receptors (GPCRs) to primary cilia is essential for correct signal transduction. Detailed studies over the past decade have begun to elucidate the diverse sequences and trafficking mechanisms that sort and transport GPCRs to the ciliary compartment. However, a systematic analysis of the pathways required for ciliary targeting of multiple GPCRs in different cell types in vivo has not been reported. Here we describe the sequences and proteins required to localize GPCRs to the cilia of the AWB and ASK sensory neuron types in Caenorhabditis elegans. We find that GPCRs expressed in AWB or ASK utilize conserved and novel sequences for ciliary localization, and that the requirement for a ciliary targeting sequence in a given GPCR is different in different neuron types. Consistent with the presence of multiple ciliary targeting sequences, we identify diverse proteins required for ciliary localization of individual GPCRs in AWB and ASK. In particular, we show that the TUB-1 Tubby protein is required for ciliary localization of a subset of GPCRs, implying that defects in GPCR localization may be causal to the metabolic phenotypes of tub-1 mutants. Together, our results describe a remarkable complexity of mechanisms that act in a protein- and cell-specific manner to localize GPCRs to cilia, and suggest that this diversity allows for precise regulation of GPCR-mediated signaling as a function of external and internal context.
Collapse
|
95
|
Sengupta P, Barr MM. New insights into an old organelle: meeting report on biology of cilia and flagella. Traffic 2014; 15:717-26. [PMID: 24612344 DOI: 10.1111/tra.12166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/20/2022]
Abstract
The rising interest of the scientific community in cilia biology was evident from the fact that registration for the third FASEB conference on 'The Biology of Cilia and Flagella' closed out before the early bird deadline. Cilia and flagella are organelles of profound medical importance; defects in their structure or function result in a plethora of human diseases called ciliopathies. 240 clinicians and basic scientists from around the world gathered from 23 June 2013 to 28 June 2013 at Sheraton at the Falls, Niagara Falls, NY to present and discuss their research on this intensely studied subcellular structure. The meeting was organized by Gregory Pazour (University of Massachusetts Medical School), Bradley Yoder (University of Alabama-Birmingham), and Maureen Barr (Rutgers University) and was sponsored by the Federation of American Societies for Experimental Biology (FASEB). Here, we report highlights, points of discussion, and emerging themes from this exciting meeting.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | | |
Collapse
|
96
|
Sung CH, Leroux MR. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 2014; 15:1387-97. [PMID: 24296415 DOI: 10.1038/ncb2888] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms.
Collapse
Affiliation(s)
- Ching-Hwa Sung
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
97
|
Dutcher SK. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2013; 71:79-94. [PMID: 24272949 DOI: 10.1002/cm.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022]
Abstract
Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins' function and assembly that have been discovered using dikaryons and discusses the potential for further analyses.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
98
|
Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK, Smith EF, Porter ME, Kner P, Lechtreck KF. A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 2013; 23:2463-71. [PMID: 24316207 DOI: 10.1016/j.cub.2013.10.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/23/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND During the assembly and maintenance of cilia, precursor proteins need to be transported from the cell body into the organelle. Intraflagellar transport (IFT) is assumed to be the predominant protein transport pathway in cilia, but it remains largely unknown how ciliary proteins use IFT to reach their destination sites in the cilium and whether the amount of cargo transported by IFT is regulated. RESULTS Single-particle imaging showed that DRC4, a structural protein of the axoneme, moves in association with IFT particles inside Chlamydomonas reinhardtii cilia. IFT is required for DRC4 transport both into and within the cilium. DRC4 cargoes dissociate from IFT trains at the tip as well as at various sites along the length of the cilium. Unloaded DRC4 diffuses before docking at its axonemal assembly site. In growing cilia, DRC4 transport by IFT was strongly increased over the steady-state level, and the frequency decreased linearly with the increasing ciliary length. The frequency of DRC4 transport was similarly elevated in short growth-arrested cilia and remained high even when the amount of DRC4 available in the cell body was reduced. CONCLUSIONS DRC4 is a bona fide cargo of IFT. Incompletely assembled cilia trigger an increase in the amount of DRC4 cargo transported by IFT particles, and DRC4 transport is downregulated as cilia approach their steady-state length. We propose a model in which ciliary length is controlled by regulating the amount of cargo transported by IFT particles.
Collapse
Affiliation(s)
- Kathryne N Wren
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN 55455, USA
| | - Alexandria Schauer
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN 55455, USA
| | - Deep K Patel
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth F Smith
- Department of Biological Science, Dartmouth College, Hanover, NH 03755, USA
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN 55455, USA
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
99
|
|
100
|
Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, Nachury MV. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. ACTA ACUST UNITED AC 2013; 203:129-47. [PMID: 24100294 PMCID: PMC3798247 DOI: 10.1083/jcb.201212024] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ciliary permeability barrier is mechanistically distinct from other cellular diffusion barriers and allows soluble proteins under ∼100 kD in size to enter cilia in the absence of active transport. Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology and 2 Department of Chemical Engineering, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | |
Collapse
|