51
|
Taylor JA, Seol Y, Budhathoki J, Neuman KC, Mizuuchi K. CTP and parS coordinate ParB partition complex dynamics and ParA-ATPase activation for ParABS-mediated DNA partitioning. eLife 2021; 10:65651. [PMID: 34286695 PMCID: PMC8357417 DOI: 10.7554/elife.65651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
ParABS partition systems, comprising the centromere-like DNA sequence parS, the parS-binding ParB-CTPase, and the nucleoid-binding ParA-ATPase, ensure faithful segregation of bacterial chromosomes and low-copy-number plasmids. F-plasmid partition complexes containing ParBF and parSF move by generating and following a local concentration gradient of nucleoid-bound ParAF. However, the process through which ParBF activates ParAF-ATPase has not been defined. We studied CTP- and parSF-modulated ParAF-ParBF complex assembly, in which DNA-bound ParAF-ATP dimers are activated for ATP hydrolysis by interacting with two ParBF N-terminal domains. CTP or parSF enhances the ATPase rate without significantly accelerating ParAF-ParBF complex assembly. Together, parSF and CTP accelerate ParAF-ParBF assembly without further significant increase in ATPase rate. Magnetic-tweezers experiments showed that CTP promotes multiple ParBF loading onto parSF-containing DNA, generating condensed partition complex-like assemblies. We propose that ParBF in the partition complex adopts a conformation that enhances ParBF-ParBF and ParAF-ParBF interactions promoting efficient partitioning.
Collapse
Affiliation(s)
- James A Taylor
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jagat Budhathoki
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
52
|
Taylor JA, Seol Y, Budhathoki J, Neuman KC, Mizuuchi K. CTP and parS coordinate ParB partition complex dynamics and ParA-ATPase activation for ParABS-mediated DNA partitioning. eLife 2021; 10:65651. [PMID: 34286695 DOI: 10.1101/2021.01.24.427996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/20/2021] [Indexed: 05/25/2023] Open
Abstract
ParABS partition systems, comprising the centromere-like DNA sequence parS, the parS-binding ParB-CTPase, and the nucleoid-binding ParA-ATPase, ensure faithful segregation of bacterial chromosomes and low-copy-number plasmids. F-plasmid partition complexes containing ParBF and parSF move by generating and following a local concentration gradient of nucleoid-bound ParAF. However, the process through which ParBF activates ParAF-ATPase has not been defined. We studied CTP- and parSF-modulated ParAF-ParBF complex assembly, in which DNA-bound ParAF-ATP dimers are activated for ATP hydrolysis by interacting with two ParBF N-terminal domains. CTP or parSF enhances the ATPase rate without significantly accelerating ParAF-ParBF complex assembly. Together, parSF and CTP accelerate ParAF-ParBF assembly without further significant increase in ATPase rate. Magnetic-tweezers experiments showed that CTP promotes multiple ParBF loading onto parSF-containing DNA, generating condensed partition complex-like assemblies. We propose that ParBF in the partition complex adopts a conformation that enhances ParBF-ParBF and ParAF-ParBF interactions promoting efficient partitioning.
Collapse
Affiliation(s)
- James A Taylor
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jagat Budhathoki
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
53
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 PMCID: PMC8429893 DOI: 10.1016/j.molcel.2021.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity. CTP is required for Noc to form a higher-order nucleoprotein complex on DNA CTP binding switches DNA-entrapped Noc to a membrane-active state CTP hydrolysis likely reverses the association between Noc-DNA and the membrane The membrane-targeting helix adopts an autoinhibitory conformation in apo-Noc
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
54
|
Guzzo M, Sanderlin AG, Castro LK, Laub MT. Activation of a signaling pathway by the physical translocation of a chromosome. Dev Cell 2021; 56:2145-2159.e7. [PMID: 34242584 DOI: 10.1016/j.devcel.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
In every organism, the cell cycle requires the execution of multiple processes in a strictly defined order. However, the mechanisms used to ensure such order remain poorly understood, particularly in bacteria. Here, we show that the activation of the essential CtrA signaling pathway that triggers cell division in Caulobacter crescentus is intrinsically coupled to the initiation of DNA replication via the physical translocation of a newly replicated chromosome, powered by the ParABS system. We demonstrate that ParA accumulation at the new cell pole during chromosome segregation recruits ChpT, an intermediate component of the CtrA signaling pathway. ChpT is normally restricted from accessing the selective PopZ polar microdomain until the new chromosome and ParA arrive. Consequently, any disruption to DNA replication initiation prevents ChpT polarization and, in turn, cell division. Collectively, our findings reveal how major cell-cycle events are coordinated in Caulobacter and, importantly, how chromosome translocation triggers an essential signaling pathway.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lennice K Castro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
55
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
56
|
Gogou C, Japaridze A, Dekker C. Mechanisms for Chromosome Segregation in Bacteria. Front Microbiol 2021; 12:685687. [PMID: 34220773 PMCID: PMC8242196 DOI: 10.3389/fmicb.2021.685687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
57
|
Jalal ASB, Tran NT, Stevenson CE, Chan EW, Lo R, Tan X, Noy A, Lawson DM, Le TBK. Diversification of DNA-Binding Specificity by Permissive and Specificity-Switching Mutations in the ParB/Noc Protein Family. Cell Rep 2021; 32:107928. [PMID: 32698006 PMCID: PMC7383237 DOI: 10.1016/j.celrep.2020.107928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Specific interactions between proteins and DNA are essential to many biological processes. Yet, it remains unclear how the diversification in DNA-binding specificity was brought about, and the mutational paths that led to changes in specificity are unknown. Using a pair of evolutionarily related DNA-binding proteins, each with a different DNA preference (ParB [Partitioning Protein B] and Noc [Nucleoid Occlusion Factor], which both play roles in bacterial chromosome maintenance), we show that specificity is encoded by a set of four residues at the protein-DNA interface. Combining X-ray crystallography and deep mutational scanning of the interface, we suggest that permissive mutations must be introduced before specificity-switching mutations to reprogram specificity and that mutational paths to new specificity do not necessarily involve dual-specificity intermediates. Overall, our results provide insight into the possible evolutionary history of ParB and Noc and, in a broader context, might be useful for understanding the evolution of other classes of DNA-binding proteins. DNA-binding specificity for parS and NBS is conserved within ParB and Noc family Specificity is encoded by a set of four residues at the protein-DNA interface Mutations must be introduced in a defined order to reprogram specificity
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Elliot W Chan
- Department of Physics, Biological Physical Sciences Institute, University of York, York YO10, UK
| | - Rebecca Lo
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Xiao Tan
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York YO10, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
58
|
Walter JC, Lepage T, Dorignac J, Geniet F, Parmeggiani A, Palmeri J, Bouet JY, Junier I. Supercoiled DNA and non-equilibrium formation of protein complexes: A quantitative model of the nucleoprotein ParBS partition complex. PLoS Comput Biol 2021; 17:e1008869. [PMID: 33861734 PMCID: PMC8092679 DOI: 10.1371/journal.pcbi.1008869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/03/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
ParABS, the most widespread bacterial DNA segregation system, is composed of a centromeric sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding proteins. Hundreds of ParB proteins assemble dynamically to form nucleoprotein parS-anchored complexes that serve as substrates for ParA molecules to catalyze positioning and segregation events. The exact nature of this ParBS complex has remained elusive, what we address here by revisiting the Stochastic Binding model (SBM) introduced to explain the non-specific binding profile of ParB in the vicinity of parS. In the SBM, DNA loops stochastically bring loci inside a sharp cluster of ParB. However, previous SBM versions did not include the negative supercoiling of bacterial DNA, leading to use unphysically small DNA persistences to explain the ParB binding profiles. In addition, recent super-resolution microscopy experiments have revealed a ParB cluster that is significantly smaller than previous estimations and suggest that it results from a liquid-liquid like phase separation. Here, by simulating the folding of long (≥ 30 kb) supercoiled DNA molecules calibrated with realistic DNA parameters and by considering different possibilities for the physics of the ParB cluster assembly, we show that the SBM can quantitatively explain the ChIP-seq ParB binding profiles without any fitting parameter, aside from the supercoiling density of DNA, which, remarkably, is in accord with independent measurements. We also predict that ParB assembly results from a non-equilibrium, stationary balance between an influx of produced proteins and an outflux of excess proteins, i.e., ParB clusters behave like liquid-like protein condensates with unconventional “leaky” boundaries. In bacteria, faithful genome inheritance requires the two replicated DNA molecules to be segregated at the opposite halves of the cell. ParABS, the most widespread bacterial DNA segregation system, is composed of a centromere sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding protein. Hundreds of ParB assemble dynamically to form clusters around parS, which then serve as substrates for ParA molecules to catalyze the positioning and segregation events. The nature of these clusters and their interaction with DNA have remained elusive. Here, we propose a realistic minimal model that captures quantitatively the peculiar DNA binding profile of ParB in the vicinity of parS in Escherichia coli. From the viewpoint of DNA, the only fitting parameter is the in vivo supercoiling density resulting from the removal of DNA helices by toposiomerases, which is in accord with previous independent estimations. From the viewpoint of ParB clusters, we predict that they behave like liquid-like protein condensates with unconventional boundaries. Namely, we predict boundaries to be leaky (i.e. not sharp) as a result of the non-equilibrium protein production, diffusion and dilution. Altogether, our work provides novel insights into bacterial DNA organization and intracellular liquid-liquid phase separation.
Collapse
Affiliation(s)
- Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- * E-mail: (J-CW); (IJ)
| | | | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- LPHI, Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | | | - Ivan Junier
- CNRS, Univ. Grenoble Alpes, TIMC, Grenoble, France
- * E-mail: (J-CW); (IJ)
| |
Collapse
|
59
|
Azaldegui CA, Vecchiarelli AG, Biteen JS. The emergence of phase separation as an organizing principle in bacteria. Biophys J 2021; 120:1123-1138. [PMID: 33186556 PMCID: PMC8059088 DOI: 10.1016/j.bpj.2020.09.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recent investigations in bacteria suggest that membraneless organelles play a crucial role in the subcellular organization of bacterial cells. However, the biochemical functions and assembly mechanisms of these compartments have not yet been completely characterized. This article assesses the current methodologies used in the study of membraneless organelles in bacteria, highlights the limitations in determining the phase of complexes in cells that are typically an order of magnitude smaller than a eukaryotic cell, and identifies gaps in our current knowledge about the functional role of membraneless organelles in bacteria. Liquid-liquid phase separation (LLPS) is one proposed mechanism for membraneless organelle assembly. Overall, we outline the framework to evaluate LLPS in vivo in bacteria, we describe the bacterial systems with proposed LLPS activity, and we comment on the general role LLPS plays in bacteria and how it may regulate cellular function. Lastly, we provide an outlook for super-resolution microscopy and single-molecule tracking as tools to assess condensates in bacteria.
Collapse
Affiliation(s)
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
60
|
Schumacher D, Harms A, Bergeler S, Frey E, Søgaard-Andersen L. PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus. eLife 2021; 10:66160. [PMID: 33734087 PMCID: PMC7993993 DOI: 10.7554/elife.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| |
Collapse
|
61
|
Szafran MJ, Jakimowicz D, Elliot MA. Compaction and control-the role of chromosome-organizing proteins in Streptomyces. FEMS Microbiol Rev 2021; 44:725-739. [PMID: 32658291 DOI: 10.1093/femsre/fuaa028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.
Collapse
Affiliation(s)
- Marcin J Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
62
|
Adamczyk M, Lewicka E, Szatkowska R, Nieznanska H, Ludwiczak J, Jasiński M, Dunin-Horkawicz S, Sitkiewicz E, Swiderska B, Goch G, Jagura-Burdzy G. Revealing biophysical properties of KfrA-type proteins as a novel class of cytoskeletal, coiled-coil plasmid-encoded proteins. BMC Microbiol 2021; 21:32. [PMID: 33482722 PMCID: PMC7821693 DOI: 10.1186/s12866-020-02079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02079-w.
Collapse
Affiliation(s)
- M Adamczyk
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - E Lewicka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - R Szatkowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - H Nieznanska
- Nencki Institute of Experimental Biology PAS, Laboratory of Electron Microscopy, Pasteura 3, 02-093, Warsaw, Poland
| | - J Ludwiczak
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland.,Nencki Institute of Experimental Biology, Laboratory of Bioinformatics, Pasteura 3, 02-093, Warsaw, Poland
| | - M Jasiński
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - S Dunin-Horkawicz
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - E Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - B Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Goch
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
63
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
64
|
Mishra D, Pahujani S, Mitra N, Srivastava A, Srinivasan R. Identification of a Potential Membrane-Targeting Sequence in the C-Terminus of the F Plasmid Segregation Protein SopA. J Membr Biol 2021; 254:243-257. [PMID: 33427942 DOI: 10.1007/s00232-020-00157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Stable maintenance and partitioning of the 'Fertility' plasmid or the F plasmid in its host Escherichia coli require the function of a ParA superfamily of proteins known as SopA. The mechanism by which SopA mediates plasmid segregation is well studied. SopA is a nucleoid-binding protein and binds DNA in an ATP-dependent but sequence non-specific manner. ATP hydrolysis stimulated by the binding of the SopBC complex mediates the release of SopA from the nucleoid. Cycles of ATP-binding and hydrolysis generate an ATPase gradient that moves the plasmid through a chemophoresis force. Nucleoid binding of SopA thus assumes a central role in its plasmid-partitioning function. However, earlier work also suggests that the F plasmid can be partitioned into anucleate cells, thus implicating nucleoid independent partitioning. Interestingly, SopA is also reported to be associated with the inner membrane of the bacteria. Here, we report the identification of a possible membrane-targeting sequence, a predicted amphipathic helix, at the C-terminus of SopA. Molecular dynamics simulations indicate that the predicted amphipathic helical motif of SopA has weak affinity for membranes. Moreover, we experimentally show that SopA can associate with bacterial membranes, is detectable in the membrane fractions of bacterial lysates, and is sensitive to the membrane potential. Further, unlike the wild-type SopA, a deletion of the C-terminal 29 amino acids results in the loss of F plasmids from bacterial cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India
| | - Sakshi Pahujani
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India.,Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science-Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institutes, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
65
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
66
|
Baxter JC, Waples WG, Funnell BE. Nonspecific DNA binding by P1 ParA determines the distribution of plasmid partition and repressor activities. J Biol Chem 2020; 295:17298-17309. [PMID: 33055234 PMCID: PMC7863886 DOI: 10.1074/jbc.ra120.015642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
The faithful segregation, or "partition," of many low-copy number bacterial plasmids is driven by plasmid-encoded ATPases that are represented by the P1 plasmid ParA protein. ParA binds to the bacterial nucleoid via an ATP-dependent nonspecific DNA (nsDNA)-binding activity, which is essential for partition. ParA also has a site-specific DNA-binding activity to the par operator (parOP), which requires either ATP or ADP, and which is essential for it to act as a transcriptional repressor but is dispensable for partition. Here we examine how DNA binding by ParA contributes to the relative distribution of its plasmid partition and repressor activities, using a ParA with an alanine substitution at Arg351, a residue previously predicted to participate in site-specific DNA binding. In vivo, the parAR351A allele is compromised for partition, but its repressor activity is dramatically improved so that it behaves as a "super-repressor." In vitro, ParAR351A binds and hydrolyzes ATP, and undergoes a specific conformational change required for nsDNA binding, but its nsDNA-binding activity is significantly damaged. This defect in turn significantly reduces the assembly and stability of partition complexes formed by the interaction of ParA with ParB, the centromere-binding protein, and DNA. In contrast, the R351A change shows only a mild defect in site-specific DNA binding. We conclude that the partition defect is due to altered nsDNA binding kinetics and affinity for the bacterial chromosome. Furthermore, the super-repressor phenotype is explained by an increased pool of non-nucleoid bound ParA that is competent to bind parOP and repress transcription.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - William G Waples
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
67
|
Physical Modeling of a Sliding Clamp Mechanism for the Spreading of ParB at Short Genomic Distance from Bacterial Centromere Sites. iScience 2020; 23:101861. [PMID: 33319179 PMCID: PMC7725951 DOI: 10.1016/j.isci.2020.101861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial ParB partitioning proteins involved in chromosomes and low-copy-number plasmid segregation are cytosine triphosphate (CTP)-dependent molecular switches. CTP-binding converts ParB dimers to DNA clamps, allowing unidimensional diffusion along the DNA. This sliding property has been proposed to explain the ParB spreading over large distances from parS centromere sites where ParB is specifically loaded. We modeled such a "clamping and sliding" mechanism as a typical reaction-diffusion system, compared it to the F plasmid ParB DNA binding pattern, and found that it can account neither for the long range of ParB binding to DNA nor for the rapid assembly kinetics observed in vivo after parS duplication. Also, it predicts a strong effect on the F plasmid ParB binding pattern from the presence of a roadblock that is not observed in ChIP-sequencing (ChIP-seq). We conclude that although "clamping and sliding" can occur at short distances from parS, another mechanism must apply for ParB recruitment at larger genomic distances.
Collapse
|
68
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
69
|
Segregation of four Agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proc Natl Acad Sci U S A 2020; 117:26366-26373. [PMID: 33024016 DOI: 10.1073/pnas.2014371117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens C58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.
Collapse
|
70
|
Corrales-Guerrero L, He B, Refes Y, Panis G, Bange G, Viollier PH, Steinchen W, Thanbichler M. Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Res 2020; 48:4769-4779. [PMID: 32232335 PMCID: PMC7229837 DOI: 10.1093/nar/gkaa192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Collapse
Affiliation(s)
| | - Binbin He
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Yacine Refes
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Gert Bange
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Wieland Steinchen
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, D-35043 Marburg, Germany.,Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
71
|
Wu LJ, Lee S, Park S, Eland LE, Wipat A, Holden S, Errington J. Geometric principles underlying the proliferation of a model cell system. Nat Commun 2020; 11:4149. [PMID: 32811832 PMCID: PMC7434903 DOI: 10.1038/s41467-020-17988-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.
Collapse
Affiliation(s)
- Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| | - Seoungjun Lee
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.13097.3c0000 0001 2322 6764Present Address: Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX UK
| | - Sungshic Park
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Lucy E. Eland
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Anil Wipat
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Séamus Holden
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|
72
|
Anand D, Schumacher D, Søgaard-Andersen L. SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus. Mol Microbiol 2020; 114:839-856. [PMID: 32738827 DOI: 10.1111/mmi.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
73
|
Caccamo M, Dobruk-Serkowska A, Rodríguez-Castañeda F, Pennica C, Barillà D, Hayes F. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein. Front Mol Biosci 2020; 7:108. [PMID: 32613008 PMCID: PMC7308502 DOI: 10.3389/fmolb.2020.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a “Venus flytrap” mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.
Collapse
Affiliation(s)
- Marisa Caccamo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Aneta Dobruk-Serkowska
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Cecilia Pennica
- Department of Biology, University of York, York, United Kingdom
| | - Daniela Barillà
- Department of Biology, University of York, York, United Kingdom
| | - Finbarr Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
74
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
75
|
Chromosome Segregation in Bacillus subtilis Follows an Overall Pattern of Linear Movement and Is Highly Robust against Cell Cycle Perturbations. mSphere 2020; 5:5/3/e00255-20. [PMID: 32554717 PMCID: PMC7300352 DOI: 10.1128/msphere.00255-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle. Although several proteins have been identified that facilitate chromosome segregation in bacteria, no clear analogue of the mitotic machinery in eukaryotic cells has been identified. In order to investigate if recognizable patterns of segregation exist during the cell cycle, we tracked the segregation of duplicated origin regions in Bacillus subtilis for 60 min in the fastest practically achievable resolution, achieving 10-s intervals. We found that while separation occurred in random patterns, often including backwards movement, overall, segregation of loci near the origins of replication was linear for the entire cell cycle. Thus, the process of partitioning can be best described as directed motion. Simulations with entropy-driven separation of polymers synthesized by two polymerases show sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, showing that for Bacillus, segregation patterns can be modeled based on entropic forces. To test if obstacles for replication forks lead to an alteration of the partitioning pattern, we challenged cells with chemicals inducing DNA damage or blocking of topoisomerase activity. Both treatments led to a moderate slowing down of separation, but linear segregation was retained, showing that chromosome segregation is highly robust against cell cycle perturbation. IMPORTANCE We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle.
Collapse
|
76
|
Osorio-Valeriano M, Altegoer F, Steinchen W, Urban S, Liu Y, Bange G, Thanbichler M. ParB-type DNA Segregation Proteins Are CTP-Dependent Molecular Switches. Cell 2020; 179:1512-1524.e15. [PMID: 31835030 DOI: 10.1016/j.cell.2019.11.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
During cell division, newly replicated DNA is actively segregated to the daughter cells. In most bacteria, this process involves the DNA-binding protein ParB, which condenses the centromeric regions of sister DNA molecules into kinetochore-like structures that recruit the DNA partition ATPase ParA and the prokaroytic SMC/condensin complex. Here, we report the crystal structure of a ParB-like protein (PadC) that emerges to tightly bind the ribonucleotide CTP. The CTP-binding pocket of PadC is conserved in ParB and composed of signature motifs known to be essential for ParB function. We find that ParB indeed interacts with CTP and requires nucleotide binding for DNA condensation in vivo. We further show that CTP-binding modulates the affinity of ParB for centromeric parS sites, whereas parS recognition stimulates its CTPase activity. ParB proteins thus emerge as a new class of CTP-dependent molecular switches that act in concert with ATPases and GTPases to control fundamental cellular functions.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Svenja Urban
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Ying Liu
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
77
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
78
|
Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria. Cell 2020; 177:1632-1648.e20. [PMID: 31150626 DOI: 10.1016/j.cell.2019.05.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.
Collapse
Affiliation(s)
- William T Gray
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yingjie Xiang
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
79
|
Jalal AS, Tran NT, Le TB. ParB spreading on DNA requires cytidine triphosphate in vitro. eLife 2020; 9:53515. [PMID: 32077854 PMCID: PMC7053999 DOI: 10.7554/elife.53515] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-parS system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on parS sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at parS sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a parS-dependent ParB spreading event using purified proteins from Caulobacter crescentus and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-parS with ParA and SMC.
Collapse
Affiliation(s)
- Adam Sb Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Tung Bk Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
80
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
|
81
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
82
|
Miermans CA, Broedersz CP. A lattice kinetic Monte-Carlo method for simulating chromosomal dynamics and other (non-)equilibrium bio-assemblies. SOFT MATTER 2020; 16:544-556. [PMID: 31808764 DOI: 10.1039/c9sm01835b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies in living cells such as chromosomes constitute large many-body systems that operate in a fluctuating, out-of-equilibrium environment. Since a brute-force simulation of that many degrees of freedom is currently computationally unfeasible, it is necessary to perform coarse-grained stochastic simulations. Here, we develop all tools necessary to write a lattice kinetic Monte-Carlo (LKMC) algorithm capable of performing such simulations. We discuss the validity and limits of this approach by testing the results of the simulation method in simple settings. Importantly, we illustrate how at large external forces Metropolis-Hastings kinetics violate the fluctuation-dissipation and steady-state fluctuation theorems and discuss better alternatives. Although this simulation framework is rather general, we demonstrate our approach using a DNA polymer with interacting SMC condensin loop-extruding enzymes. Specifically, we show that the scaling behavior of the loop-size distributions that we obtain in our LKMC simulations of this SMC-DNA system is consistent with that reported in other studies using Brownian dynamics simulations and analytic approaches. Moreover, we find that the irreversible dynamics of these enzymes under certain conditions result in frozen, sterically jammed polymer configurations, highlighting a potential pitfall of this approach.
Collapse
Affiliation(s)
- Christiaan A Miermans
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | | |
Collapse
|
83
|
Physical Views on ParABS-Mediated DNA Segregation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:45-58. [PMID: 32894476 DOI: 10.1007/978-3-030-46886-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this chapter, we will focus on ParABS: an apparently simple, three-component system, required for the segregation of bacterial chromosomes and plasmids. We will specifically describe how biophysical measurements combined with physical modeling advanced our understanding of the mechanism of ParABS-mediated complex assembly, segregation and positioning.
Collapse
|
84
|
Abstract
The notion that graded distributions of signals underlie the spatial organization of biological systems has long been a central pillar in the fields of cell and developmental biology. During morphogenesis, morphogens spread across tissues to guide development of the embryo. Similarly, a variety of dynamic gradients and pattern-forming networks have been discovered that shape subcellular organization. Here we discuss the principles of intracellular pattern formation by these intracellular morphogens and relate them to conceptually similar processes operating at the tissue scale. We will specifically review mechanisms for generating cellular asymmetry and consider how intracellular patterning networks are controlled and adapt to cellular geometry. Finally, we assess the general concept of intracellular gradients as a mechanism for positional control in light of current data, highlighting how the simple readout of fixed concentration thresholds fails to fully capture the complexity of spatial patterning processes occurring inside cells.
Collapse
Affiliation(s)
- Lars Hubatsch
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
85
|
Kisner JR, Kuwada NJ. Nucleoid-mediated positioning and transport in bacteria. Curr Genet 2019; 66:279-291. [PMID: 31691024 DOI: 10.1007/s00294-019-01041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Precise management of the spatiotemporal position of subcellular components is critical to a number of essential processes in the bacterial cell. The bacterial nucleoid is a highly structured yet dynamic object that undergoes significant reorganization during the relatively short cell cycle, e.g. during gene expression, chromosome replication, and segregation. Although the nucleoid takes up a large fraction of the volume of the cell, the mobility of macromolecules within these dense regions is relatively high and recent results suggest that the nucleoid plays an integral role of dynamic localization in a host of seemingly disparate cellular processes. Here, we review a number of recent reports of nucleoid-mediated positioning and transport in the model bacteria Escherichia coli. These results viewed as a whole suggest that the dynamic, cellular-scale structure of the nucleoid may be a key driver of positioning and transport within the cell. This model of a global, default positioning and transport system may help resolve many unanswered questions about the mechanisms of partitioning and segregation in bacteria.
Collapse
Affiliation(s)
- Jessica R Kisner
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA.
| |
Collapse
|
86
|
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell Mol Life Sci 2019; 76:4245-4273. [PMID: 31317204 PMCID: PMC6803595 DOI: 10.1007/s00018-019-03218-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Molecular self-organziation, also regarded as pattern formation, is crucial for the correct distribution of cellular content. The processes leading to spatiotemporal patterns often involve a multitude of molecules interacting in complex networks, so that only very few cellular pattern-forming systems can be regarded as well understood. Due to its compositional simplicity, the Escherichia coli MinCDE system has, thus, become a paradigm for protein pattern formation. This biological reaction diffusion system spatiotemporally positions the division machinery in E. coli and is closely related to ParA-type ATPases involved in most aspects of spatiotemporal organization in bacteria. The ATPase MinD and the ATPase-activating protein MinE self-organize on the membrane as a reaction matrix. In vivo, these two proteins typically oscillate from pole-to-pole, while in vitro they can form a variety of distinct patterns. MinC is a passenger protein supposedly operating as a downstream cue of the system, coupling it to the division machinery. The MinCDE system has helped to extract not only the principles underlying intracellular patterns, but also how they are shaped by cellular boundaries. Moreover, it serves as a model to investigate how patterns can confer information through specific and non-specific interactions with other molecules. Here, we review how the three Min proteins self-organize to form patterns, their response to geometric boundaries, and how these patterns can in turn induce patterns of other molecules, focusing primarily on experimental approaches and developments.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamara Heermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
87
|
Soh YM, Davidson IF, Zamuner S, Basquin J, Bock FP, Taschner M, Veening JW, De Los Rios P, Peters JM, Gruber S. Self-organization of parS centromeres by the ParB CTP hydrolase. Science 2019; 366:1129-1133. [PMID: 31649139 DOI: 10.1126/science.aay3965] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
ParABS systems facilitate chromosome segregation and plasmid partitioning in bacteria and archaea. ParB protein binds centromeric parS DNA sequences and spreads to flanking DNA. We show that ParB is an enzyme that hydrolyzes cytidine triphosphate (CTP) to cytidine diphosphate (CDP). parS DNA stimulates cooperative CTP binding by ParB and CTP hydrolysis. A nucleotide cocrystal structure elucidates the catalytic center of the dimerization-dependent ParB CTPase. Single-molecule imaging and biochemical assays recapitulate features of ParB spreading from parS in the presence but not absence of CTP. These findings suggest that centromeres assemble by self-loading of ParB DNA sliding clamps at parS ParB CTPase is not related to known nucleotide hydrolases and might be a promising target for developing new classes of antibiotics.
Collapse
Affiliation(s)
- Young-Min Soh
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Iain Finley Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) and Medical University of Vienna, Vienna, Austria
| | - Stefano Zamuner
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jérôme Basquin
- Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) and Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
88
|
Blanchard AT, Bazrafshan AS, Yi J, Eisman JT, Yehl KM, Bian T, Mugler A, Salaita K. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis. NANO LETTERS 2019; 19:6977-6986. [PMID: 31402671 DOI: 10.1021/acs.nanolett.9b02311] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor proteins such as myosin, kinesin, and dynein are essential to eukaryotic life and power countless processes including muscle contraction, wound closure, cargo transport, and cell division. The design of synthetic nanomachines that can reproduce the functions of these motors is a longstanding goal in the field of nanotechnology. DNA walkers, which are programmed to "walk" along defined tracks via the burnt bridge Brownian ratchet mechanism, are among the most promising synthetic mimics of these motor proteins. While these DNA-based motors can perform useful tasks such as cargo transport, they have not been shown to be capable of cooperating to generate large collective forces for tasks akin to muscle contraction. In this work, we demonstrate that highly polyvalent DNA motors (HPDMs), which can be viewed as cooperative teams of thousands of DNA walkers attached to a microsphere, can generate and sustain substantial forces in the 100+ pN regime. Specifically, we show that HPDMs can generate forces that can unzip and shear DNA duplexes (∼12 and ∼50 pN, respectively) and rupture biotin-streptavidin bonds (∼100-150 pN). To help explain these results, we present a variant of the burnt-bridge Brownian ratchet mechanism that we term autochemophoresis, wherein many individual force generating units generate a self-propagating chemomechanical gradient that produces large collective forces. In addition, we demonstrate the potential of this work to impact future engineering applications by harnessing HPDM autochemophoresis to deposit "molecular ink" via mechanical bond rupture. This work expands the capabilities of synthetic DNA motors to mimic the force-generating functions of biological motors. Our work also builds upon previous observations of autochemophoresis in bacterial transport processes, indicating that autochemophoresis may be a fundamental mechanism of pN-scale force generation in living systems.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30322 , United States
| | - Alisina S Bazrafshan
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Jacob Yi
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Julia T Eisman
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Kevin M Yehl
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Teng Bian
- Department of Physics , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Andrew Mugler
- Department of Physics , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30322 , United States
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
89
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
90
|
Chu CH, Yen CY, Chen BW, Lin MG, Wang LH, Tang KZ, Hsiao CD, Sun YJ. Crystal structures of HpSoj-DNA complexes and the nucleoid-adaptor complex formation in chromosome segregation. Nucleic Acids Res 2019; 47:2113-2129. [PMID: 30544248 PMCID: PMC6393308 DOI: 10.1093/nar/gky1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
ParABS, an important DNA partitioning process in chromosome segregation, includes ParA (an ATPase), ParB (a parS binding protein) and parS (a centromere-like DNA). The homologous proteins of ParA and ParB in Helicobacter pylori are HpSoj and HpSpo0J, respectively. We analyzed the ATPase activity of HpSoj and found that it is enhanced by both DNA and HpSpo0J. Crystal structures of HpSoj and its DNA complexes revealed a typical ATPase fold and that it is dimeric. DNA binding by HpSoj is promoted by ATP. The HpSoj–ATP–DNA complex non-specifically binds DNA through a continuous basic binding patch formed by lysine residues, with a single DNA-binding site. This complex exhibits a DNA-binding adept state with an active ATP-bound conformation, whereas the HpSoj–ADP–DNA complex may represent a transient DNA-bound state. Based on structural comparisons, HpSoj exhibits a similar DNA binding surface to the bacterial ParA superfamily, but the archaeal ParA superfamily exhibits distinct non-specific DNA-binding via two DNA-binding sites. We detected the HpSpo0J–HpSoj–DNA complex by electron microscopy and show that this nucleoid-adaptor complex (NAC) is formed through HpSoj and HpSpo0J interaction and parS DNA binding. NAC formation is promoted by HpSoj participation and specific parS DNA facilitation.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Cheng-Yi Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bo-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Lyu-Han Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kai-Zhi Tang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
91
|
Hofmann A, Mäkelä J, Sherratt DJ, Heermann D, Murray SM. Self-organised segregation of bacterial chromosomal origins. eLife 2019; 8:e46564. [PMID: 31397672 PMCID: PMC6701925 DOI: 10.7554/elife.46564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023] Open
Abstract
The chromosomal replication origin region (ori) of characterised bacteria is dynamically positioned throughout the cell cycle. In slowly growing Escherichia coli, ori is maintained at mid-cell from birth until its replication, after which newly replicated sister oris move to opposite quarter positions. Here, we provide an explanation for ori positioning based on the self-organisation of the Structural Maintenance of Chromosomes complex, MukBEF, which forms dynamically positioned clusters on the chromosome. We propose that a non-trivial feedback between the self-organising gradient of MukBEF complexes and the oris leads to accurate ori positioning. We find excellent agreement with quantitative experimental measurements and confirm key predictions. Specifically, we show that oris exhibit biased motion towards MukBEF clusters, rather than mid-cell. Our findings suggest that MukBEF and oris act together as a self-organising system in chromosome organisation-segregation and introduces protein self-organisation as an important consideration for future studies of chromosome dynamics.
Collapse
Affiliation(s)
- Andreas Hofmann
- Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
| | - Jarno Mäkelä
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - David J Sherratt
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Dieter Heermann
- Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
92
|
Tarnopol RL, Bowden S, Hinkle K, Balakrishnan K, Nishii A, Kaczmarek CJ, Pawloski T, Vecchiarelli AG. Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch? Chembiochem 2019; 20:2535-2545. [DOI: 10.1002/cbic.201900249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Rebecca L. Tarnopol
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Sierra Bowden
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Kevin Hinkle
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Krithika Balakrishnan
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Akira Nishii
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Caleb J. Kaczmarek
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Tara Pawloski
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
93
|
Kober M, Bergeler S, Frey E. Can a Flux-Based Mechanism Explain Protein Cluster Positioning in a Three-Dimensional Cell Geometry? Biophys J 2019; 117:420-428. [PMID: 31349992 DOI: 10.1016/j.bpj.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
The plane of bacterial cell division must be precisely positioned. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a large cluster, which is tethered to the nucleoid by the ATPase PomZ and moves in a stochastic but biased manner toward midcell where it initiates cell division. Previously, a positioning mechanism based on the fluxes of PomZ on the nucleoid was proposed. However, the cluster dynamics was analyzed in a reduced, one-dimensional geometry. Here, we introduce a mathematical model that accounts for the three-dimensional shape of the nucleoid, such that nucleoid-bound PomZ dimers can diffuse past the cluster without interacting with it. Using stochastic simulations, we find that the cluster still moves to and localizes at midcell. Redistribution of PomZ by diffusion in the cytosol is essential for this cluster dynamics. Our mechanism also positions two clusters equidistantly on the nucleoid, as observed for low-copy-number plasmid partitioning. We conclude that a flux-based mechanism allows for cluster positioning in a biologically realistic three-dimensional cell geometry.
Collapse
Affiliation(s)
- Matthias Kober
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
94
|
Meléndez AB, Menikpurage IP, Mera PE. Chromosome Dynamics in Bacteria: Triggering Replication at the Opposite Location and Segregation in the Opposite Direction. mBio 2019; 10:e01002-19. [PMID: 31363028 PMCID: PMC6667618 DOI: 10.1128/mbio.01002-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Maintaining the integrity of the genome is essential to cell survival. In the bacterium Caulobacter crescentus, the single circular chromosome exhibits a specific orientation in the cell, with the replication origin (ori) residing at the pole of the cell bearing a stalk. Upon initiation of replication, the duplicated centromere-like region parS and ori move rapidly to the opposite pole where parS is captured by a microdomain hosting a unique set of proteins that contribute to the identity of progeny cells. Many questions remain as to how this organization is maintained. In this study, we constructed strains of Caulobacter in which ori and the parS centromere can be induced to move to the opposite cell pole in the absence of chromosome replication, allowing us to ask whether once these chromosomal foci were positioned at the wrong pole, replication initiation and chromosome segregation can proceed in the opposite orientation. Our data reveal that DnaA can initiate replication and ParA can orchestrate segregation from either cell pole. The cell reconstructs the organization of its ParA gradient in the opposite orientation to segregate one replicated centromere from the new pole toward the stalked pole (i.e., opposite direction), while displaying no detectable viability defects. Thus, the unique polar microdomains exhibit remarkable flexibility in serving as a platform for directional chromosome segregation along the long axis of the cell.IMPORTANCE Bacteria can accomplish surprising levels of organization in the absence of membrane organelles by constructing subcellular asymmetric protein gradients. These gradients are composed of regulators that can either trigger or inhibit cell cycle events from distinct cell poles. In Caulobacter crescentus, the onset of chromosome replication and segregation from the stalked pole are regulated by asymmetric protein gradients. We show that the activators of chromosome replication and segregation are not restricted to the stalked pole and that their organization and directionality can be flipped in orientation. Our results also indicate that the subcellular location of key chromosomal loci play important roles in the establishment of the asymmetric organization of cell cycle regulators.
Collapse
Affiliation(s)
- Ady B Meléndez
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Inoka P Menikpurage
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Paola E Mera
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
95
|
A DNA-Binding Protein Tunes Septum Placement during Bacillus subtilis Sporulation. J Bacteriol 2019; 201:JB.00287-19. [PMID: 31160399 PMCID: PMC6657595 DOI: 10.1128/jb.00287-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Bacillus subtilis is a bacterium capable of differentiating into a spore form more resistant to environmental stress. Early in sporulation, each cell possesses two copies of a circular chromosome. A polar FtsZ ring (Z ring) directs septation over one of the chromosomes, generating two cell compartments. The smaller "forespore" compartment initially contains only 25 to 30% of one chromosome, and this transient genetic asymmetry is required for differentiation. Timely assembly of polar Z rings and precise capture of the chromosome in the forespore both require the DNA-binding protein RefZ. To mediate its role in chromosome capture, RefZ must bind to specific DNA motifs (RBMs) that localize near the poles at the time of septation. Cells artificially induced to express RefZ during vegetative growth cannot assemble Z rings, an effect that also requires DNA binding. We hypothesized that RefZ-RBM complexes mediate precise chromosome capture by modulating FtsZ function. To investigate, we isolated 10 RefZ loss-of-function (rLOF) variants unable to inhibit cell division yet still capable of binding RBMs. Sporulating cells expressing the rLOF variants in place of wild-type RefZ phenocopied a ΔrefZ mutant, suggesting that RefZ acts through an FtsZ-dependent mechanism. The crystal structure of RefZ was solved, and wild-type RefZ and the rLOF variants were further characterized. Our data suggest that RefZ's oligomerization state and specificity for the RBMs are critical determinants influencing RefZ's ability to affect FtsZ dynamics. We propose that RBM-bound RefZ complexes function as a developmentally regulated nucleoid occlusion system for fine-tuning the position of the septum relative to the chromosome during sporulation.IMPORTANCE The bacterial nucleoid forms a large, highly organized structure. Thus, in addition to storing the genetic code, the nucleoid harbors positional information that can be leveraged by DNA-binding proteins to spatially constrain cellular activities. During B. subtilis sporulation, the nucleoid undergoes reorganization, and the cell division protein FtsZ assembles polarly to direct septation over one chromosome. The TetR family protein RefZ binds DNA motifs (RBMs) localized near the poles at the time of division and is required for both timely FtsZ assembly and precise capture of DNA in the future spore compartment. Our data suggest that RefZ exploits nucleoid organization by associating with polarly localized RBMs to modulate the positioning of FtsZ relative to the chromosome during sporulation.
Collapse
|
96
|
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun 2019; 10:3290. [PMID: 31337764 PMCID: PMC6650430 DOI: 10.1038/s41467-019-11242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation typically occurs after replication has finished in eukaryotes but during replication in bacteria. Here, we show that the alphaproteobacterium Hyphomonas neptunium, which proliferates by bud formation at the tip of a stalk-like cellular extension, segregates its chromosomes in a unique two-step process. First, the two sister origin regions are targeted to opposite poles of the mother cell, driven by the ParABS partitioning system. Subsequently, once the bulk of chromosomal DNA has been replicated and the bud exceeds a certain threshold size, the cell initiates a second segregation step during which it transfers the stalk-proximal origin region through the stalk into the nascent bud compartment. Thus, while chromosome replication and segregation usually proceed concurrently in bacteria, the two processes are largely uncoupled in H. neptunium, reminiscent of eukaryotic mitosis. These results indicate that stalked budding bacteria have evolved specific mechanisms to adjust chromosome segregation to their unusual life cycle.
Collapse
|
97
|
Kawalek A, Bartosik AA, Glabski K, Jagura-Burdzy G. Pseudomonas aeruginosa partitioning protein ParB acts as a nucleoid-associated protein binding to multiple copies of a parS-related motif. Nucleic Acids Res 2019; 46:4592-4606. [PMID: 29648658 PMCID: PMC5961200 DOI: 10.1093/nar/gky257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
ParA and ParB homologs are involved in accurate chromosome segregation in bacteria. ParBs participate in the separation of ori domains by binding to parS palindromes, mainly localized close to oriC. In Pseudomonas aeruginosa neither ParB deficiency nor modification of all 10 parSs is lethal. However, such mutants show not only defects in chromosome segregation but also growth retardation and motility dysfunctions. Moreover, a lack of parB alters expression of over 1000 genes, suggesting that ParB could interact with the chromosome outside its canonical parS targets. Here, we show that indeed ParB binds specifically to hundreds of sites in the genome. ChIP-seq analysis revealed 420 ParB-associated regions in wild-type strain and around 1000 in a ParB-overproducing strain and in various parS mutants. The vast majority of the ParB-enriched loci contained a heptanucleotide motif corresponding to one arm of the parS palindrome. All previously postulated parSs, except parS5, interacted with ParB in vivo. Whereas the ParB binding to the four parS sites closest to oriC, parS1-4, is involved in chromosome segregation, its genome-wide interactions with hundreds of parS half-sites could affect chromosome topology, compaction and gene expression, thus allowing P. aeruginosa ParB to be classified as a nucleoid-associated protein.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
98
|
Abstract
The spatial organization of DNA is mediated by the Par protein system in some bacteria. ParB binds specifically to the parS sequence on DNA and orchestrates its motion by interacting with ParA bound to the nucleoid. In the case of plasmids, a single ParB bound plasmid is observed to execute oscillations between cell poles while multiple plasmids eventually settle at equal distances from each other along the cell's length. While the potential mechanism underlying the ParA-ParB interaction has been discussed, it remains unclear whether ParB-complex oscillations are stable limit cycles or merely decaying transients to a fixed point. How are dynamics affected by substrate length and the number of complexes? We present a deterministic model for ParA-ParB driven DNA segregation where the transition between stable arrangements and oscillatory behaviour depends only on five parameters: ParB-complex number, substrate length, ParA concentration, ParA hydrolysis rate and the ratio of the lengthscale over which the ParB complex stimulates ParA hydrolysis to the lengthscale over which ParA interacts with the ParB complex. When the system is buffered and the ParA rebinding rate is constant we find that ParB-complex dynamics is independent of substrate length and complex number above a minimum system size. Conversely, when ParA resources are limited, we find that changing substrate length and increasing complex number leads to counteracting mechanisms that can both generate or subdue oscillatory dynamics. We argue that cells may be poised near a critical level of ParA so that they can transition from oscillatory to fixed point dynamics as the cell cycle progresses so that they can both measure their size and faithfully partition their genetic material. Lastly, we show that by modifying the availability of ParA or depletion zone size, we can capture some of the observed differences in ParB-complex positioning between replicating chromosomes in B. subtilis cells and low-copy plasmids in E. coli cells.
Collapse
|
99
|
Tran NT, Stevenson CE, Som NF, Thanapipatsiri A, Jalal ASB, Le TBK. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome. Nucleic Acids Res 2019; 46:1196-1209. [PMID: 29186514 PMCID: PMC5815017 DOI: 10.1093/nar/gkx1192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA–ParB–parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicolle F Som
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
100
|
Wang H, Bowman GR. SpbR overproduction reveals the importance of proteolytic degradation for cell pole development and chromosome segregation in Caulobacter crescentus. Mol Microbiol 2019; 111:1700-1714. [PMID: 30891828 DOI: 10.1111/mmi.14247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
In most rod-shaped bacteria, DNA replication is quickly followed by chromosome segregation, when one of the newly duplicated centromeres moves across the cell to the opposite (or 'new') pole. Two proteins in Caulobacter crescentus, PopZ and TipN, provide directional cues at the new pole that guide the translocating chromosome to its destination. We show that centromere translocation can be inhibited by an evolutionarily conserved pole-localized protein that we have named SpbR. When overproduced, SpbR exhibits aberrant accumulation at the old pole, where it physically interacts with PopZ. This prevents the relocation of PopZ to the new pole, thereby eliminating a positional cue for centromere translocation. Consistent with this, the centromere translocation phenotype of SpbR overproducing cells is strongly enhanced in a ∆tipN mutant background. We find that pole-localized SpbR is normally cleared by ClpXP-mediated proteolysis before the time of chromosome segregation, indicating that SpbR turnover is part of the cell cycle-dependent program of polar development. This work demonstrates the importance of proteolysis as a housekeeping activity that removes outgoing factors from the developing cell pole, and provides an example of a substrate that can inhibit polar functions if it is insufficiently cleared.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82072, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82072, USA
| |
Collapse
|