51
|
Bar C, Cohen I, Zhao D, Pothula V, Litskevitch A, Koseki H, Zheng D, Ezhkova E. Polycomb Repressive Complex 1 Controls Maintenance of Fungiform Papillae by Repressing Sonic Hedgehog Expression. Cell Rep 2020; 28:257-266.e5. [PMID: 31269445 PMCID: PMC6921245 DOI: 10.1016/j.celrep.2019.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
How tissue patterns are formed and maintained are fundamental questions. The murine tongue epithelium, a paradigm for tissue patterning, consists of an array of specialized fungiform papillae structures that harbor taste cells. The formation of fungiform papillae is preceded by pronounced spatial changes in gene expression, in which taste cell genes such as Shh, initially diffused in lingual epithelial progenitors, become restricted to taste cells when their specification progresses. However, the requirement of spatial restriction of taste cell gene expression for patterning and formation of fungiform papillae is unknown. Here, we show that a chromatin regulator, Polycomb repressive complex (PRC) 1, is required for proper maintenance of fungiform papillae by repressing Shh and preventing ectopic SHH signaling in non-taste cells. Ablation of SHH signaling in PRC1-null non-taste cells rescues the maintenance of taste cells. Altogether, our studies exemplify how epigenetic regulation establishes spatial gene expression patterns necessary for specialized niche structures. Formation and maintenance of patterns are critical for tissue development. Bar et al. show that PRC1, an epigenetic regulator, is critical for lingual papillae development. Specifically, PRC1 regulates maintenance of the developing fungiform papillae, harboring taste cells, by repressing Shh expression in the non-gustatory epithelium surrounding taste cells.
Collapse
Affiliation(s)
- Carmit Bar
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Idan Cohen
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Venu Pothula
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Anna Litskevitch
- Department of Molecular & Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
52
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
53
|
RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat Cell Biol 2020; 22:439-452. [PMID: 32203418 DOI: 10.1038/s41556-020-0484-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Stable propagation of epigenetic information is important for maintaining cell identity in multicellular organisms. However, it remains largely unknown how mono-ubiquitinated histone H2A on lysine 119 (H2AK119ub1) is established and stably propagated during cell division. In this study, we found that the proteins RYBP and YAF2 each specifically bind H2AK119ub1 to recruit the RYBP-PRC1 or YAF2-PRC1 complex to catalyse the ubiquitination of H2A on neighbouring nucleosomes through a positive-feedback model. Additionally, we demonstrated that histone H1-compacted chromatin enhances the distal propagation of H2AK119ub1, thereby reinforcing the inheritance of H2AK119ub1 during cell division. Moreover, we showed that either disruption of RYBP/YAF2-PRC1 activity or impairment of histone H1-dependent chromatin compaction resulted in a significant defect of the maintenance of H2AK119ub1. Therefore, our results suggest that histone H1-dependent chromatin compaction plays a critical role in the stable propagation of H2AK119ub1 by RYBP/YAF2-PRC1 during cell division.
Collapse
|
54
|
Endoh M, Baba M, Endoh T, Hirayama A, Nakamura-Ishizu A, Umemoto T, Hashimoto M, Nagashima K, Soga T, Lang M, Schmidt LS, Linehan WM, Suda T. A FLCN-TFE3 Feedback Loop Prevents Excessive Glycogenesis and Phagocyte Activation by Regulating Lysosome Activity. Cell Rep 2020; 30:1823-1834.e5. [PMID: 32049013 PMCID: PMC8459211 DOI: 10.1016/j.celrep.2020.01.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor folliculin (FLCN) suppresses nuclear translocation of TFE3, a master transcription factor for lysosomal biogenesis, via regulation of amino-acid-sensing Rag GTPases. However, the importance of this lysosomal regulation in mammalian physiology remains unclear. Following hematopoietic-lineage-specific Flcn deletion in mice, we found expansion of vacuolated phagocytes that accumulate glycogen in their cytoplasm, phenotypes reminiscent of lysosomal storage disorder (LSD). We report that TFE3 acts in a feedback loop to transcriptionally activate FLCN expression, and FLCN loss disrupts this loop, augmenting TFE3 activity. Tfe3 deletion in Flcn knockout mice reduces the number of phagocytes and ameliorates LSD-like phenotypes. We further reveal that TFE3 stimulates glycogenesis by promoting the expression of glycogenesis genes, including Gys1 and Gyg, upon loss of Flcn. Taken together, we propose that the FLCN-TFE3 feedback loop acts as a rheostat to control lysosome activity and prevents excessive glycogenesis and LSD-like phagocyte activation.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Tamie Endoh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Ayako Nakamura-Ishizu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Michihiro Hashimoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kunio Nagashima
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
55
|
MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Dev Cell 2020; 52:429-445.e10. [DOI: 10.1016/j.devcel.2020.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 01/12/2023]
|
56
|
Wang Q, Zhang Q, Gan Z, Li H, Yang Y, Zhang Y, Zhao X. Screening for reproductive biomarkers in Bactrian camel via iTRAQ analysis of proteomes. Reprod Domest Anim 2020; 55:189-199. [PMID: 31840896 DOI: 10.1111/rda.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
Bactrian camel is an ancient and precious species of livestock; that is, unique resources exist in the desert and have important economic and scientific value. In recent years, the number of Bactrian camels has declined sharply. Due to its long reproductive cycle and seasonal oestrus, the mechanism of oestrus is unknown. To identify candidate biomarkers of reproduction, we performed a comprehensive proteomic analysis of serum from Bactrian camel in oestrus and non-oestrus, using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. We identified 359 proteins, of which 32 were differentially expressed: 11 were up-regulated and 21 were down-regulated in samples from camels in oestrus. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes, metabolic processes and immune system processes. Notably, five of the differentially expressed proteins, PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2, are involved in reproductive regulatory processes in other animals. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as 'dilated cardiomyopathy', 'hypertrophic cardiomyopathy', 'cardiac muscle contraction' and 'adrenergic signalling in cardiomyopathy'. Our results suggest that candidate biomarker (PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2) discovery can aid in understanding reproduction in Bactrian camels. We conclude that the profiling of serum proteomes, followed by the measurement of selected proteins using more targeted methods, offers a promising approach for studying mechanisms of oestrus.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Ze Gan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yang Yang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
57
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
58
|
Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development 2019; 146:dev181180. [PMID: 31540910 PMCID: PMC6803365 DOI: 10.1242/dev.181180] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone modification that is best known for its role in constitutive heterochromatin formation and the repression of repetitive DNA elements. More recently, it has become evident that H3K9me3 is also deposited at certain loci in a tissue-specific manner and plays important roles in regulating cell identity. Notably, H3K9me3 can repress genes encoding silencing factors, pointing to a fundamental principle of repressive chromatin auto-regulation. Interestingly, recent studies have shown that H3K9me3 deposition requires protein SUMOylation in different contexts, suggesting that the SUMO pathway functions as an important module in gene silencing and heterochromatin formation. In this Review, we discuss the role of H3K9me3 in gene regulation in various systems and the molecular mechanisms that guide the silencing machinery to target loci.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
59
|
Abstract
Though genetic data suggest that Polycomb group proteins (PcGs) are central chromatin modifiers and repressors that have been implicated in control of embryonic stem cell (ESC) pluripotency, the precise mechanism of PcG complex recruitment remains elusive, especially in mammals. We now report that the first and second MBT repeats of L3mbtl2 are important structural and functional features that are necessary and sufficient for L3mbtl2-mediated recruitment of PRC1.6 complex to target promoters. Interestingly, this region of L3mbtl2 harbors the evolutionarily conserved Pho-binding pocket also present in Drosophila Sfmbt, and mutation of the critical residues within this pocket completely abolishes its interaction with target promoters. Additionally, decreased PRC1.6 chromatin occupancy was observed following loss of individual components (L3mbtl2, Pcgf6, and Max) of the complex. Our findings suggest that the recruitment of noncanonical PRC1.6 complex in ESCs might be the result of L3mbtl2's interaction with multiple components of the complex.
Collapse
|
60
|
The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019; 20:590-607. [PMID: 31399642 DOI: 10.1038/s41580-019-0159-6] [Citation(s) in RCA: 1170] [Impact Index Per Article: 234.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Collapse
|
61
|
Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM, King HW, Koseki H, Klose RJ. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell 2019; 74:1020-1036.e8. [PMID: 31029541 PMCID: PMC6561741 DOI: 10.1016/j.molcel.2019.03.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 01/30/2023]
Abstract
The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Anca M Farcas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; AMED-CREST, Japanese Agency for Medical Research and Development, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
62
|
Huang X, Wei C, Li F, Jia L, Zeng P, Li J, Tan J, Sun T, Jiang S, Wang J, Tang X, Zhao Q, Liu B, Rong L, Li C, Ding J. PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions. Protein Cell 2019; 10:709-725. [PMID: 31041782 PMCID: PMC6776568 DOI: 10.1007/s13238-019-0629-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Polycomb group (PcG) ring finger protein 6 (PCGF6), though known as a member of the transcription-repressing complexes, PcG, also has activation function in regulating pluripotency gene expression. However, the mechanism underlying the activation function of PCGF6 is poorly understood. Here, we found that PCGF6 co-localizes to gene activation regions along with pluripotency factors such as OCT4. In addition, PCGF6 was recruited to a subset of the super-enhancer (SE) regions upstream of cell cycle-associated genes by OCT4, and increased their expression. By combining with promoter capture Hi-C data, we found that PCGF6 activates cell cycle genes by regulating SE-promoter interactions via 3D chromatin. Our findings highlight a novel mechanism of PcG protein in regulating pluripotency, and provide a research basis for the therapeutic application of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiaona Huang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fenjie Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lumeng Jia
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahe Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin Tan
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tuanfeng Sun
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Wang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingquan Zhao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
63
|
Scelfo A, Fernández-Pérez D, Tamburri S, Zanotti M, Lavarone E, Soldi M, Bonaldi T, Ferrari KJ, Pasini D. Functional Landscape of PCGF Proteins Reveals Both RING1A/B-Dependent-and RING1A/B-Independent-Specific Activities. Mol Cell 2019; 74:1037-1052.e7. [PMID: 31029542 PMCID: PMC6561742 DOI: 10.1016/j.molcel.2019.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 01/24/2023]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) control cell identity by establishing facultative heterochromatin repressive domains at common sets of target genes. PRC1, which deposits H2Aub1 through the E3 ligases RING1A/B, forms six biochemically distinct subcomplexes depending on the assembled PCGF protein (PCGF1–PCGF6); however, it is yet unclear whether these subcomplexes have also specific activities. Here we show that PCGF1 and PCGF2 largely compensate for each other, while other PCGF proteins have high levels of specificity for distinct target genes. PCGF2 associates with transcription repression, whereas PCGF3 and PCGF6 associate with actively transcribed genes. Notably, PCGF3 and PCGF6 complexes can assemble and be recruited to several active sites independently of RING1A/B activity (therefore, of PRC1). For chromatin recruitment, the PCGF6 complex requires the combinatorial activities of its MGA-MAX and E2F6-DP1 subunits, while PCGF3 requires an interaction with the USF1 DNA binding transcription factor. PRC1 complexes retain high target specificity with little compensatory functions PCGF2 defines repressive signatures and PCGF3 and PCGF6 transcription active states RING1A/B is dispensable for the assembly and recruitment of PCGF3 and PCGF6 complexes PCGF3 and PCGF6 complexes bind target genes through specific DNA binding activities
Collapse
Affiliation(s)
- Andrea Scelfo
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Daniel Fernández-Pérez
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Simone Tamburri
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marika Zanotti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Lavarone
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Monica Soldi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Karin Johanna Ferrari
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Diego Pasini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy.
| |
Collapse
|
64
|
Brand M, Nakka K, Zhu J, Dilworth FJ. Polycomb/Trithorax Antagonism: Cellular Memory in Stem Cell Fate and Function. Cell Stem Cell 2019; 24:518-533. [PMID: 30951661 PMCID: PMC6866673 DOI: 10.1016/j.stem.2019.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are continuously challenged with the decision to either self-renew or adopt a new fate. Self-renewal is regulated by a system of cellular memory, which must be bypassed for differentiation. Previous studies have identified Polycomb group (PcG) and Trithorax group (TrxG) proteins as key modulators of cellular memory. In this Perspective, we draw from embryonic and adult stem cell studies to discuss the complex roles played by PcG and TrxG in maintaining cell identity while allowing for microenvironment-mediated alterations in cell fate. Finally, we discuss the potential for targeting these proteins as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - Jiayu Zhu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| |
Collapse
|
65
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
66
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
67
|
Isshiki Y, Iwama A. Emerging role of noncanonical polycomb repressive complexes in normal and malignant hematopoiesis. Exp Hematol 2018; 68:10-14. [DOI: 10.1016/j.exphem.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/09/2022]
|
68
|
Tatsumi D, Hayashi Y, Endo M, Kobayashi H, Yoshioka T, Kiso K, Kanno S, Nakai Y, Maeda I, Mochizuki K, Tachibana M, Koseki H, Okuda A, Yasui A, Kono T, Matsui Y. DNMTs and SETDB1 function as co-repressors in MAX-mediated repression of germ cell-related genes in mouse embryonic stem cells. PLoS One 2018; 13:e0205969. [PMID: 30403691 PMCID: PMC6221296 DOI: 10.1371/journal.pone.0205969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
In embryonic stem cells (ESCs), the expression of development-related genes, including germ cell-related genes, is globally repressed. The transcription factor MAX represses germ cell-related gene expression in ESCs via PCGF6-polycomb repressive complex 1 (PRC1), which consists of several epigenetic factors. However, we predicted that MAX represses germ cell-related gene expression through several additional mechanisms because PCGF6-PRC1 regulates the expression of only a subset of genes repressed by MAX. Here, we report that MAX associated with DNA methyltransferases (DNMTs) and the histone methyltransferase SETDB1 cooperatively control germ cell-related gene expression in ESCs. Both DNA methylation and histone H3 lysine 9 tri-methylation of the promoter regions of several germ cell-related genes were not affected by knockout of the PRC1 components, indicating that the MAX-DNMT and MAX-SETDB1 pathways are independent of the PCGF6-PRC1 pathway. Our findings provide insights into our understanding of MAX-based repressive mechanisms of germ cell-related genes in ESCs.
Collapse
Affiliation(s)
- Daiki Tatsumi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
| | - Mai Endo
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takumi Yoshioka
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kohei Kiso
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shinichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Ikuma Maeda
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Center for Environmental Conservation and Research Safety, Tohoku University, Sendai, Miyagi, Japan
| | - Makoto Tachibana
- Department of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Shinkura-cho, Tokushima, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology, Yokohama, Kanagawa, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
69
|
Sun X, Chen J, Zhang Y, Munisha M, Dougan S, Sun Y. Mga Modulates Bmpr1a Activity by Antagonizing Bs69 in Zebrafish. Front Cell Dev Biol 2018; 6:126. [PMID: 30324105 PMCID: PMC6172302 DOI: 10.3389/fcell.2018.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
MAX giant associated protein (MGA) is a dual transcriptional factor containing both T-box and bHLHzip DNA binding domains. In vitro studies have shown that MGA functions as a transcriptional repressor or activator to regulate transcription of promotors containing either E-box or T-box binding sites. BS69 (ZMYND11), a multidomain-containing (i.e., PHD, BROMO, PWWP, and MYND) protein, has been shown to selectively recognizes histone variant H3.3 lysine 36 trimethylation (H3.3K36me3), modulates RNA Polymerase II elongation, and functions as RNA splicing regulator. Mutations in MGA or BS69 have been linked to multiple cancers or neural developmental disorders. Here, by TALEN and CRISPR/Cas9-mediated loss of gene function assays, we show that zebrafish Mga and Bs69 are required to maintain proper Bmp signaling during early embryogenesis. We found that Mga protein localized in the cytoplasm modulates Bmpr1a activity by physical association with Zmynd11/Bs69. The Mynd domain of Bs69 specifically binds the kinase domain of Bmpr1a and interferes with its phosphorylation and activation of Smad1/5/8. Mga acts to antagonize Bs69 and facilitate the Bmp signaling pathway by disrupting the Bs69–Bmpr1a association. Functionally, Bmp signaling under control of Mga and Bs69 is required for properly specifying the ventral tailfin cell fate.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yanyong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Scott Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
70
|
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12:412-425. [PMID: 30054853 PMCID: PMC7358075 DOI: 10.1007/s11684-018-0650-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022]
Abstract
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Collapse
|
71
|
Yao M, Zhou X, Zhou J, Gong S, Hu G, Li J, Huang K, Lai P, Shi G, Hutchins AP, Sun H, Wang H, Yao H. PCGF5 is required for neural differentiation of embryonic stem cells. Nat Commun 2018; 9:1463. [PMID: 29765032 PMCID: PMC5954019 DOI: 10.1038/s41467-018-03781-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is an important regulator of gene expression and development. PRC1 contains the E3 ligases RING1A/B, which monoubiquitinate lysine 119 at histone H2A (H2AK119ub1), and has been sub-classified into six major complexes based on the presence of a PCGF subunit. Here, we report that PCGF5, one of six PCGF paralogs, is an important requirement in the differentiation of mouse embryonic stem cells (mESCs) towards a neural cell fate. Although PCGF5 is not required for mESC self-renewal, its loss blocks mESC neural differentiation by activating the SMAD2/TGF-β signaling pathway. PCGF5 loss-of-function impairs the reduction of H2AK119ub1 and H3K27me3 around neural specific genes and keeps them repressed. Our results suggest that PCGF5 might function as both a repressor for SMAD2/TGF-β signaling pathway and a facilitator for neural differentiation. Together, our findings reveal a critical context-specific function for PCGF5 in directing PRC1 to control cell fate. Polycomb-group proteins are key regulators of transcriptional programs that maintain cell identity. Here the authors provide evidence that PCGF5, a subunit of Polycomb Repressor Complex 1, is important for the differentiation of mouse embryonic stem cells towards a neural cell fate.
Collapse
Affiliation(s)
- Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xueke Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shixin Gong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiao Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kaimeng Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ping Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guang Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
72
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
73
|
Stielow B, Finkernagel F, Stiewe T, Nist A, Suske G. MGA, L3MBTL2 and E2F6 determine genomic binding of the non-canonical Polycomb repressive complex PRC1.6. PLoS Genet 2018; 14:e1007193. [PMID: 29381691 PMCID: PMC5806899 DOI: 10.1371/journal.pgen.1007193] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 01/09/2018] [Indexed: 02/02/2023] Open
Abstract
Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger protein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue experiments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6 colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression of germ cell-related genes. Our findings unveil strikingly different genomic recruitment mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-specific regulatory functions. Polycomb group proteins assemble in two major repressive multi-subunit complexes (PRC1 and PRC2), which play important roles in many physiological processes, including stem cell maintenance, differentiation, cell cycle control and cancer. In mammals, six different groups of PRC1 complexes exist (PRC1.1 to PRC1.6), which differ in their subunit composition. The mechanisms that target the different PRC1 complexes to specific genomic sites appear diverse and are poorly understood. In this study, we have investigated the genomic targeting mechanisms of the non-canonical PRC1.6 complex. In PRC1.6, the defining subunit PCGF6 is specifically associated with several proteins including the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2. We found that MGA is absolutely essential for targeting PRC1.6. MGA executes recruitment of PRC1.6 to its target sites through two distinct functions. On the one hand it acts as a sequence-specific DNA-binding factor; on the other hand it has a scaffolding function, which is independent of its DNA binding capacity. E2F6 and L3MBTL2 are also important in genomic targeting of PRC1.6 as they promote binding of PRC1.6 to different sets of genes associated with distinct functions. Our finding that different components specify loading of PRC1.6 to distinct sets of genes could establish a paradigm for other chromatin-associated complexes.
Collapse
Affiliation(s)
- Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, Marburg, Germany
| | - Guntram Suske
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
74
|
Yakushiji-Kaminatsui N, Kondo T, Hironaka KI, Sharif J, Endo TA, Nakayama M, Masui O, Koseki Y, Kondo K, Ohara O, Vidal M, Morishita Y, Koseki H. Variant PRC1 competes with retinoic acid-related signals to repress Meis2 in distal forelimb bud. Development 2018; 145:dev.166348. [DOI: 10.1242/dev.166348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Suppression of Meis genes in the distal limb bud is required for Proximal-Distal (PD) specification of the forelimb. Polycomb group (PcG) factors play a role in downregulation of retinoic acid (RA)-related signals in the distal forelimb bud, causing Meis repression. It is, however, not known if downregulation of RA-related signals and PcG-mediated proximal genes repression are functionally linked. Here, we reveal that PcG factors and RA-related signals antagonize each other to polarize Meis2 expression along the PD axis. With mathematical modeling and simulation, we propose that PcG factors are required to adjust the threshold for RA-related signaling to regulate Meis2 expression. Finally, we show that a variant Polycomb repressive complex 1 (PRC1), incorporating PCGF3 and PCGF5, represses Meis2 expression in the distal limb bud. Taken together, we reveal a previously unknown link between PcG proteins and downregulation of RA-related signals to mediate the phase transition of Meis2 transcriptional status during forelimb specification.
Collapse
Affiliation(s)
- Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Ken-ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takaho A. Endo
- Laboratory for Integrative Genomics, RIKEN-IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Masui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kaori Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- KAST, Project on Health and Anti-aging, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN-IMS, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas, Department of Cellular and Molecular Biology, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
75
|
Gill ME, Peters AH. Initiating meiosis in a dish. EMBO J 2017; 36:3097-3099. [PMID: 28978668 DOI: 10.15252/embj.201798101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
76
|
Santanach A, Blanco E, Jiang H, Molloy KR, Sansó M, LaCava J, Morey L, Di Croce L. The Polycomb group protein CBX6 is an essential regulator of embryonic stem cell identity. Nat Commun 2017; 8:1235. [PMID: 29089522 PMCID: PMC5663739 DOI: 10.1038/s41467-017-01464-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022] Open
Abstract
Polycomb group proteins (PcG) are transcriptional repressors that control cell identity and development. In mammals, five different CBX proteins associate with the core Polycomb repressive complex 1 (PRC1). In mouse embryonic stem cells (ESCs), CBX6 and CBX7 are the most highly expressed CBX family members. CBX7 has been recently characterized, but little is known regarding the function of CBX6. Here, we show that CBX6 is essential for ESC identity. Its depletion destabilizes the pluripotency network and triggers differentiation. Mechanistically, we find that CBX6 is physically and functionally associated to both canonical PRC1 (cPRC1) and non-canonical PRC1 (ncPRC1) complexes. Notably, in contrast to CBX7, CBX6 is recruited to chromatin independently of H3K27me3. Taken together, our findings reveal that CBX6 is an essential component of ESC biology that contributes to the structural and functional complexity of the PRC1 complex.
Collapse
Affiliation(s)
- Alexandra Santanach
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| | - Miriam Sansó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Lluis Morey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
77
|
Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, Del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y, Barco A. Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Rep 2017; 21:47-59. [PMID: 28978483 PMCID: PMC5679733 DOI: 10.1016/j.celrep.2017.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/29/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
During development, chromatin-modifying enzymes regulate both the timely establishment of cell-type-specific gene programs and the coordinated repression of alternative cell fates. To dissect the role of one such enzyme, the intellectual-disability-linked lysine demethylase 5C (Kdm5c), in the developing and adult brain, we conducted parallel behavioral, transcriptomic, and epigenomic studies in Kdm5c-null and forebrain-restricted inducible knockout mice. Together, genomic analyses and functional assays demonstrate that Kdm5c plays a critical role as a repressor responsible for the developmental silencing of germline genes during cellular differentiation and in fine-tuning activity-regulated enhancers during neuronal maturation. Although the importance of these functions declines after birth, Kdm5c retains an important genome surveillance role preventing the incorrect activation of non-neuronal and cryptic promoters in adult neurons.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Alejandro Medrano-Fernandez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maria T Lopez-Cascales
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Eva Benito
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI 48109, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
78
|
Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andreassen PR, Vidal M, Koseki H, Barski A, Namekawa SH. Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev 2017; 31:1693-1703. [PMID: 28924034 PMCID: PMC5647939 DOI: 10.1101/gad.302000.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Maezawa et al. show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. During spermatogenesis, a large number of germline genes essential for male fertility are coordinately activated. However, it remains unknown how timely activation of this group of germline genes is accomplished. Here we show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. Inactivation of PRC1 in male germ cells results in the gradual loss of a stem cell population and severe differentiation defects, leading to male infertility. In the stem cell population, RNF2, the dominant catalytic subunit of PRC1, activates transcription of Sall4, which codes for a transcription factor essential for subsequent spermatogenic differentiation. Furthermore, RNF2 and SALL4 together occupy transcription start sites of germline genes in the stem cell population. Once differentiation commences, these germline genes are activated to enable the progression of spermatogenesis. Our study identifies a novel mechanism by which Polycomb directs the developmental process by activating a group of lineage-specific genes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | - Haruhiko Koseki
- Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
79
|
Srivastava A, McGrath B, Bielas SL. Histone H2A Monoubiquitination in Neurodevelopmental Disorders. Trends Genet 2017; 33:566-578. [PMID: 28669576 PMCID: PMC5562288 DOI: 10.1016/j.tig.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022]
Abstract
Covalent histone modifications play an essential role in gene regulation and cellular specification required for multicellular organism development. Monoubiquitination of histone H2A (H2AUb1) is a reversible transcriptionally repressive mark. Exchange of histone H2A monoubiquitination and deubiquitination reflects the succession of transcriptional profiles during development required to produce cellular diversity from pluripotent cells. Germ-line pathogenic variants in components of the H2AUb1 regulatory axis are being identified as the genetic basis of congenital neurodevelopmental disorders. Here, we review the human genetics findings coalescing on molecular mechanisms that alter the genome-wide distribution of this histone modification required for development.
Collapse
Affiliation(s)
- Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|