51
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2019. [PMID: 30542799 DOI: 10.1007/s12031-018-1229-5/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, Pecs, Hungary.
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
52
|
Garcia-Galiano D, Borges BC, Allen SJ, Elias CF. PI3K signalling in leptin receptor cells: Role in growth and reproduction. J Neuroendocrinol 2019; 31:e12685. [PMID: 30618188 PMCID: PMC6533139 DOI: 10.1111/jne.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110β catalytic subunits in leptin receptor cells (LRΔα+β ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+β mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Beatriz C. Borges
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan J. Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol F. Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
53
|
Yeo SH, Kyle V, Blouet C, Jones S, Colledge WH. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 2019; 14:e0213927. [PMID: 30917148 PMCID: PMC6436706 DOI: 10.1371/journal.pone.0213927] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The normal function of the mammalian reproductive axis is strongly influenced by physiological, metabolic and environmental factors. Kisspeptin neuropeptides, encoded by the Kiss1 gene, are potent regulators of the mammalian reproductive axis by stimulating gonadodropin releasing hormone secretion from the hypothalamus. To understand how the reproductive axis is modulated by higher order neuronal inputs we have mapped the afferent circuits into arcuate (ARC) Kiss1 neurons. We used a transgenic mouse that expresses the CRE recombinase in Kiss1 neurons for conditional viral tracing with genetically modified viruses. CRE-mediated activation of these viruses in Kiss1 neurons allows the virus to move transynaptically to label neurons with primary or secondary afferent inputs into the Kiss1 neurons. Several regions of the brain showed synaptic connectivity to arcuate Kiss1 neurons including proopiomelanocortin neurons in the ARC itself, kisspeptin neurons in the anteroventral periventricular nucleus, vasopressin neurons in the supraoptic and suprachiasmatic nuclei, thyrotropin releasing neurons in the paraventricular nucleus and unidentified neurons in other regions including the subfornical organ, amygdala, interpeduncular nucleus, ventral premammilary nucleus, basal nucleus of stria terminalis and the visual, somatosensory and piriform regions of the cortex. These data provide an insight into how the activity of Kiss1 neurons may be regulated by metabolic signals and provide a detailed neuroanatomical map for future functional studies.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Kyle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - William Henry Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
54
|
Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis. Brain Res 2019; 1714:210-217. [PMID: 30851245 DOI: 10.1016/j.brainres.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/21/2022]
Abstract
Growth hormone (GH) and prolactin (PRL) are known as pleiotropic hormones. Accordingly, the distribution of their receptors comprises several organs and tissues, including the central nervous system. The appropriate secretion of both hormones is essential for sexual maturation and maintenance of reproductive functions, while defects in their secretion affect puberty onset and can cause infertility. Conversely, GH therapy at a prepubertal age may accelerate puberty. On the other hand, hyperprolactinemia is a frequent cause of infertility. While the action of PRL in some central components of the Hypothalamic-Pituitary-Gonadal (HPG) axis, such as the kisspeptin neurons, has been well documented, the possible effects of GH in the hypothalamus are still elusive. Thus, the present study was designed to investigate whether somatomammotropin hormones are able to modulate the activity of critical neuronal components of the HPG axis, including kisspeptin neurons and cells of the ventral premammillary nucleus (PMv). Our results revealed that GH effects in kisspeptin neurons of the anteroventral periventricular and rostral periventricular nuclei or in PMv neurons relies predominantly on the recruitment of the signal transducer and activator of transcription 5 (STAT5) rather than through acute changes in resting membrane potential. Importantly, kisspeptin neurons located at the arcuate nucleus were not directly responsive to GH. Additionally, our findings further identified PMv neurons as potential targets of PRL, since PRL induces the phosphorylation of STAT5 and depolarizes PMv neurons. Combined, our data provide evidence that GH and PRL may affect the HPG axis via specific hypothalamic neurons.
Collapse
|
55
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
56
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front Endocrinol (Lausanne) 2019; 10:312. [PMID: 31164866 PMCID: PMC6536648 DOI: 10.3389/fendo.2019.00312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of pubertal onset in mammals is still an open question. Evidence accumulated in the last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now considered a part of GnRH pulse generator, in which neurokinin B facilitates and dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during childhood to juvenile varies from species to species: we envisage that negative feedback action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together, the timing of pubertal onset is postulated to be controlled by upstream regulators for kisspeptin biosynthesis and secretion in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshihisa Uenoyama
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
57
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2018; 68:397-407. [PMID: 30542799 PMCID: PMC6581923 DOI: 10.1007/s12031-018-1229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Pecs, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
58
|
Schafer D, Kane G, Colledge WH, Piet R, Herbison AE. Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol 2018; 30:e12660. [PMID: 30422333 DOI: 10.1111/jne.12660] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.
Collapse
Affiliation(s)
- Danielle Schafer
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Grace Kane
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
59
|
Han SY, Clarkson J, Piet R, Herbison AE. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology 2018; 159:3822-3833. [PMID: 30304401 DOI: 10.1210/en.2018-00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022]
Abstract
Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
60
|
Evans MC, Anderson GM. Integration of Circadian and Metabolic Control of Reproductive Function. Endocrinology 2018; 159:3661-3673. [PMID: 30304391 DOI: 10.1210/en.2018-00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Optimal fertility in humans and animals relies on the availability of sufficient metabolic fuels, information about which is communicated to the brain via levels of the hormones leptin and insulin. The circadian clock system is also critical; this input is especially evident in the precise timing of the female-specific surge of GnRH and LH secretion that triggers ovulation the next day. Chronodisruption and metabolic imbalance can both impair reproductive activity, and these two disruptions exacerbate each other, such that they often occur simultaneously. Kisspeptin neurons located in the anteroventral periventricular nucleus of the hypothalamus are able to integrate both circadian and metabolic afferent inputs and use this information to modulate the timing and magnitude of the preovulatory GnRH/LH surge. In an environment in which exposure to high caloric diets and chronodisruptors such as artificial night lighting, shift work, and transmeridian travel have become the norm, the implications of these factors for couples struggling to conceive deserve closer attention and more public education.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
61
|
Spergel DJ. Neuropeptidergic modulation of GnRH neuronal activity and GnRH secretion controlling reproduction: insights from recent mouse studies. Cell Tissue Res 2018; 375:179-191. [DOI: 10.1007/s00441-018-2893-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
|