51
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Visuomotor Adaptation Modulates the Clustering of Sleep Spindles Into Trains. Front Neurosci 2022; 16:803387. [PMID: 35368282 PMCID: PMC8966394 DOI: 10.3389/fnins.2022.803387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Sleep spindles are thought to promote memory consolidation. Recently, we have shown that visuomotor adaptation (VMA) learning increases the density of spindles and promotes the coupling between spindles and slow oscillations, locally, with the level of spindle-SO synchrony predicting overnight memory retention. Yet, growing evidence suggests that the rhythmicity in spindle occurrence may also influence the stabilization of declarative and procedural memories. Here, we examined if VMA learning promotes the temporal organization of sleep spindles into trains. We found that VMA increased the proportion of spindles and spindle-SO couplings in trains. In agreement with our previous work, this modulation was observed over the contralateral hemisphere to the trained hand, and predicted overnight memory retention. Interestingly, spindles grouped in a cluster showed greater amplitude and duration than isolated spindles. The fact that these features increased as a function of train length, provides evidence supporting a biological advantage of this temporal arrangement. Our work opens the possibility that the periodicity of NREM oscillations may be relevant in the stabilization of procedural memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Valeria Della-Maggiore,
| |
Collapse
|
52
|
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife 2022; 11:e66761. [PMID: 35188457 PMCID: PMC8860438 DOI: 10.7554/elife.66761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kathrin Bothe
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| |
Collapse
|
53
|
Becker LA, Penagos H, Flores FJ, Manoach DS, Wilson MA, Varela C. Eszopiclone and Zolpidem Produce Opposite Effects on Hippocampal Ripple Density. Front Pharmacol 2022; 12:792148. [PMID: 35087405 PMCID: PMC8787044 DOI: 10.3389/fphar.2021.792148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Clinical populations have memory deficits linked to sleep oscillations that can potentially be treated with sleep medications. Eszopiclone and zolpidem (two non-benzodiazepine hypnotics) both enhance sleep spindles. Zolpidem improved sleep-dependent memory consolidation in humans, but eszopiclone did not. These divergent results may reflect that the two drugs have different effects on hippocampal ripple oscillations, which correspond to the reactivation of neuronal ensembles that represent previous waking activity and contribute to memory consolidation. We used extracellular recordings in the CA1 region of rats and systemic dosing of eszopiclone and zolpidem to test the hypothesis that these two drugs differentially affect hippocampal ripples and spike activity. We report evidence that eszopiclone makes ripples sparser, while zolpidem increases ripple density. In addition, eszopiclone led to a drastic decrease in spike firing, both in putative pyramidal cells and interneurons, while zolpidem did not substantially alter spiking. These results provide an explanation of the different effects of eszopiclone and zolpidem on memory in human studies and suggest that sleep medications can be used to regulate hippocampal ripple oscillations, which are causally linked to sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Logan A Becker
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, United States.,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States
| | - Francisco J Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Matthew A Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States
| | - Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Brains Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States.,Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
54
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
55
|
Competitive dynamics underlie cognitive improvements during sleep. Proc Natl Acad Sci U S A 2021; 118:2109339118. [PMID: 34903651 PMCID: PMC8713802 DOI: 10.1073/pnas.2109339118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep facilitates both long-term episodic memory consolidation and short-term working memory functioning. However, the mechanism by which the sleeping brain performs both complex feats and which sleep features are associated with these processes remain unclear. Using a pharmacological approach, we demonstrate that long-term and working memory are served by distinct offline neural mechanisms and that these mechanisms are mutually antagonistic. We propose a sleep switch model in which the brain toggles between the two memory processes via a complex interaction at the synaptic, systems, and mechanistic level with implications for research on cognitive disturbances observed in neurodegenerative disorders such as Alzheimer’s and Parkinson's disease, both of which involve the decline of sleep. We provide evidence that human sleep is a competitive arena in which cognitive domains vie for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that long-term memory and working memory are served by distinct offline neural mechanisms that are mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we determined the central activity has greater causal influence over autonomic activity, and the magnitude of this influence during sleep produced a behavioral trade-off between offline long-term and working memory processing. These findings suggest a sleep switch mechanism that toggles between central sigma-dependent long-term memory and autonomic vagal-dependent working memory processing.
Collapse
|
56
|
Klinzing JG, Tashiro L, Ruf S, Wolff M, Born J, Ngo HVV. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep Med 2021; 2:100432. [PMID: 34841286 PMCID: PMC8606903 DOI: 10.1016/j.xcrm.2021.100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common form of childhood epilepsy linked to diverse cognitive abnormalities. The electroencephalogram of patients shows focal interictal epileptic spikes, particularly during non-rapid eye movement (NonREM) sleep. Spike formation involves thalamocortical networks, which also contribute to the generation of sleep slow oscillations (SOs) and spindles. Motivated by evidence that SO-spindle activity can be controlled through closed-loop auditory stimulation, here, we show in seven patients that auditory stimulation also reduces spike rates in BECTS. Stimulation during NonREM sleep decreases spike rates, with most robust reductions when tones are presented 1.5 to 3.5 s after spikes. Stimulation further reduces the amplitude of spikes closely following tones. Sleep spindles are negatively correlated with spike rates, suggesting that tone-evoked spindle activity mediates the spike suppression. We hypothesize spindle-related refractoriness in thalamocortical circuits as a potential mechanism. Our results open an avenue for the non-pharmacological treatment of BECTS. Spikes in BECTS epilepsy and sleep spindles may share thalamocortical generation Auditory stimulation during sleep evokes sleep spindles and suppresses spikes Stimulation may reduce spiking by inducing thalamocortical refractoriness
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Lilian Tashiro
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Ruf
- University Children's Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
57
|
Tong APS, Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 2021; 10:68401. [PMID: 34779398 PMCID: PMC8716101 DOI: 10.7554/elife.68401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
Direct brain recordings have provided important insights into how high-frequency activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that fast oscillations within the previously identified 80-120 Hz ripple band contribute to broadband high-frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our data suggest that neural activity in the human temporal lobe is organized into transient bouts of ripple oscillations that reflect underlying bursts of spiking activity.
Collapse
Affiliation(s)
- Ai Phuong S Tong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Alex P Vaz
- Medical Scientist Training Program, Duke University School of Medicine, Durham, United States
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
58
|
Halonen R, Kuula L, Antila M, Pesonen AK. The Overnight Retention of Novel Metaphors Associates With Slow Oscillation-Spindle Coupling but Not With Respiratory Phase at Encoding. Front Behav Neurosci 2021; 15:712774. [PMID: 34531730 PMCID: PMC8439423 DOI: 10.3389/fnbeh.2021.712774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence emphasizes the relevance of oscillatory synchrony in memory consolidation during sleep. Sleep spindles promote memory retention, especially when occurring in the depolarized upstate of slow oscillation (SO). A less studied topic is the inter-spindle synchrony, i.e. the temporal overlap and phasic coherence between spindles perceived in different electroencephalography channels. In this study, we examined how synchrony between SOs and spindles, as well as between simultaneous spindles, is associated with the retention of novel verbal metaphors. Moreover, we combined the encoding of the metaphors with respiratory phase (inhalation/exhalation) with the aim of modulating the strength of memorized items, as previous studies have shown that inhalation entrains neural activity, thereby benefiting memory in a waking condition. In the current study, 27 young adults underwent a two-night mixed-design study with a 12-h delayed memory task during both sleep and waking conditions. As expected, we found better retention over the delay containing sleep, and this outcome was strongly associated with the timing of SO–spindle coupling. However, no associations were observed regarding inter-spindle synchrony or respiratory phase. These findings contribute to a better understanding of the importance of SO–spindle coupling for memory. In contrast, the observed lack of association with inter-spindle synchrony may emphasize the local nature of spindle-related plasticity.
Collapse
Affiliation(s)
- Risto Halonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kuula
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minea Antila
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
59
|
Cowan ET, Liu AA, Henin S, Kothare S, Devinsky O, Davachi L. Time-dependent transformations of memory representations differ along the long axis of the hippocampus. Learn Mem 2021; 28:329-340. [PMID: 34400534 PMCID: PMC8372564 DOI: 10.1101/lm.053438.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.
Collapse
Affiliation(s)
- Emily T Cowan
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Simon Henin
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Sanjeev Kothare
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Lila Davachi
- Psychology Department, Columbia University, New York, New York 10027, USA
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| |
Collapse
|
60
|
Carbone J, Bibián C, Reischl P, Born J, Forcato C, Diekelmann S. The effect of zolpidem on targeted memory reactivation during sleep. Learn Mem 2021; 28:307-318. [PMID: 34400532 PMCID: PMC8372567 DOI: 10.1101/lm.052787.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Carlos Bibián
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Reischl
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1106ACD, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
61
|
The essential role of hippocampo-cortical connections in temporal coordination of spindles and ripples. Neuroimage 2021; 243:118485. [PMID: 34425227 DOI: 10.1016/j.neuroimage.2021.118485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
The predominant activity of slow wave sleep is cortical slow oscillations (SOs), thalamic spindles and hippocampal sharp wave ripples. While the precise temporal nesting of these rhythms was shown to be essential for memory consolidation, the coordination mechanism is poorly understood. Here we develop a minimal hippocampo-cortico-thalamic network that can explain the mechanism underlying the SO-spindle-ripple coupling indicating of the succession of regional neuronal interactions. Further we verify the model predictions experimentally in naturally sleeping rodents showing our simple model provides a quantitative match to several experimental observations including the nesting of ripples in the spindle troughs and larger duration but lower amplitude of the ripples co-occurring with spindles or SOs compared to the isolated ripples. The model also predicts that the coupling of ripples to SOs and spindles monotonically enhances by increasing the strength of hippocampo-cortical connections while it is stronger at intermediate values of the cortico-hippocampal projections.
Collapse
|
62
|
Helfrich RF, Lendner JD, Knight RT. Aperiodic sleep networks promote memory consolidation. Trends Cogn Sci 2021; 25:648-659. [PMID: 34127388 PMCID: PMC9017392 DOI: 10.1016/j.tics.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|
63
|
Norman Y, Raccah O, Liu S, Parvizi J, Malach R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 2021; 109:2767-2780.e5. [PMID: 34297916 DOI: 10.1016/j.neuron.2021.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal ripples are prominent synchronization events generated by hippocampal neuronal assemblies. To date, ripples have been primarily associated with navigational memory in rodents and short-term episodic recollections in humans. Here, we uncover different profiles of ripple activity in the human hippocampus during the retrieval of recent and remote autobiographical events and semantic facts. We found that the ripple rate increased significantly before reported recall compared to control conditions. Patterns of ripple activity across multiple hippocampal sites demonstrated remarkable specificity for memory type. Intriguingly, these ripple patterns revealed a semantization dimension, in which patterns associated with autobiographical contents become similar to those of semantic memory as a function of memory age. Finally, widely distributed sites across the neocortex exhibited ripple-coupled activations during recollection, with the strongest activation found within the default mode network. Our results thus reveal a key role for hippocampal ripples in orchestrating hippocampal-cortical communication across large-scale networks involved in conscious recollection.
Collapse
Affiliation(s)
- Yitzhak Norman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Omri Raccah
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Su Liu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
64
|
Stability of ripple events during task engagement in human hippocampus. Cell Rep 2021; 35:109304. [PMID: 34192546 PMCID: PMC8288441 DOI: 10.1016/j.celrep.2021.109304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
High-frequency activity bursts in the hippocampus, known as ripples, are thought to support memory consolidation during “offline” states, such as sleep. Recently, human hippocampal ripples have been observed during “online” episodic memory tasks. It remains unclear whether similar ripple activity occurs during other cognitive states, including different types of episodic memory. However, identifying genuine ripple events in the human hippocampus is challenging. To address these questions, spectro-temporal ripple identification was applied to human hippocampal recordings across a variety of cognitive tasks. Overall, ripple attributes were stable across tasks of visual perception and associative memory, with mean rates lower than offline states of rest and sleep. In contrast, while more complex visual attention tasks did not modulate ripple attributes, rates were enhanced for more complex autobiographical memory conditions. Therefore, hippocampal ripples reliably occur across cognitive states but are specifically enhanced during offline states and complex memory processes, consistent with a role in consolidation. Hippocampal ripples are high-frequency activity bursts proposed to support “offline” memory consolidation. Chen et al. identify that human hippocampal ripples occur with stable properties across tasks of visual perception and associative memory but are enhanced for autobiographical memory retrieval and non-REM sleep, supporting their “online” role in establishing and strengthening memory traces.
Collapse
|
65
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat Commun 2021; 12:3112. [PMID: 34035303 PMCID: PMC8149676 DOI: 10.1038/s41467-021-23520-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Sleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
66
|
Mason GM, Lokhandwala S, Riggins T, Spencer RMC. Sleep and human cognitive development. Sleep Med Rev 2021; 57:101472. [PMID: 33827030 DOI: 10.1016/j.smrv.2021.101472] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Emerging studies across learning domains have shed light on mechanisms underlying sleep's benefits during numerous developmental periods. In this conceptual review, we survey recent studies of sleep and cognition across infancy, childhood, and adolescence. By summarizing recent findings and integrating across studies with disparate approaches, we provide a novel understanding of sleep's role in human cognitive function. Collectively, these studies point to an interrelation between brain development, sleep, and cognition. Moreover, we point to gaps in our understanding, which inform the agenda for future research in developmental and sleep science.
Collapse
Affiliation(s)
- Gina M Mason
- Department of Psychological & Brain Sciences, USA; Neuroscience & Behavior Program, University of Massachusetts, Amherst, USA
| | | | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, USA
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, USA; Neuroscience & Behavior Program, University of Massachusetts, Amherst, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
67
|
Ferraris M, Cassel JC, Pereira de Vasconcelos A, Stephan A, Quilichini PP. The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation. Neurosci Biobehav Rev 2021; 125:339-354. [PMID: 33631314 DOI: 10.1016/j.neubiorev.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations. Recent studies suggest the involvement of a third partner, the nucleus reuniens, in memory consolidation. Its bidirectional connections with the hippocampus and medial prefrontal cortex place the reuniens in a key position to relay information between the two structures. Indeed, many topical works reveal the original role that the nucleus reuniens occupies in different recent and remote memories consolidation. This review aimed to examine these contributions, as well as its functional embedment in this complex memory network, and provide some insights on the possible mechanisms.
Collapse
Affiliation(s)
- Maëva Ferraris
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Jean-Christophe Cassel
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Aline Stephan
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | | |
Collapse
|
68
|
Paller KA, Creery JD, Schechtman E. Memory and Sleep: How Sleep Cognition Can Change the Waking Mind for the Better. Annu Rev Psychol 2020; 72:123-150. [PMID: 32946325 DOI: 10.1146/annurev-psych-010419-050815] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The memories that we retain can serve many functions. They guide our future actions, form a scaffold for constructing the self, and continue to shape both the self and the way we perceive the world. Although most memories we acquire each day are forgotten, those integrated within the structure of multiple prior memories tend to endure. A rapidly growing body of research is steadily elucidating how the consolidation of memories depends on their reactivation during sleep. Processing memories during sleep not only helps counteract their weakening but also supports problem solving, creativity, and emotional regulation. Yet, sleep-based processing might become maladaptive, such as when worries are excessively revisited. Advances in research on memory and sleep can thus shed light on how this processing influences our waking life, which can further inspire the development of novel strategies for decreasing detrimental rumination-like activity during sleep and for promoting beneficial sleep cognition.
Collapse
Affiliation(s)
- Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Jessica D Creery
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Eitan Schechtman
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| |
Collapse
|
69
|
Cox R, Rüber T, Staresina BP, Fell J. Sharp Wave-Ripples in Human Amygdala and Their Coordination with Hippocampus during NREM Sleep. Cereb Cortex Commun 2020; 1:tgaa051. [PMID: 33015623 PMCID: PMC7521160 DOI: 10.1093/texcom/tgaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cooperative interactions between the amygdala and hippocampus are widely regarded as critical for overnight emotional processing of waking experiences, but direct support from the human brain for such a dialog is absent. Using overnight intracranial recordings in 4 presurgical epilepsy patients (3 female), we discovered ripples within human amygdala during nonrapid eye movement (NREM) sleep, a brain state known to contribute to affective processing. Like hippocampal ripples, amygdala ripples are associated with sharp waves, linked to sleep spindles, and tend to co-occur with their hippocampal counterparts. Moreover, sharp waves and ripples are temporally linked across the 2 brain structures, with amygdala ripples occurring during hippocampal sharp waves and vice versa. Combined with further evidence of interregional sharp-wave and spindle synchronization, these findings offer a potential physiological substrate for the NREM-sleep-dependent consolidation and regulation of emotional experiences.
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| |
Collapse
|
70
|
Ngo HV, Fell J, Staresina B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. eLife 2020; 9:57011. [PMID: 32657268 PMCID: PMC7363445 DOI: 10.7554/elife.57011] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Sleep is pivotal for memory consolidation. According to two-stage accounts, memory traces are gradually translocated from hippocampus to neocortex during non-rapid-eye-movement (NREM) sleep. Mechanistically, this information transfer is thought to rely on interactions between thalamocortical spindles and hippocampal ripples. To test this hypothesis, we analyzed intracranial and scalp Electroencephalography sleep recordings from pre-surgical epilepsy patients. We first observed a concurrent spindle power increase in hippocampus (HIPP) and neocortex (NC) time-locked to individual hippocampal ripple events. Coherence analysis confirmed elevated levels of hippocampal-neocortical spindle coupling around ripples, with directionality analyses indicating an influence from NC to HIPP. Importantly, these hippocampal-neocortical dynamics were particularly pronounced during long-duration compared to short-duration ripples. Together, our findings reveal a potential mechanism underlying active consolidation, comprising a neocortical-hippocampal-neocortical reactivation loop initiated by the neocortex. This hippocampal-cortical dialogue is mediated by sleep spindles and is enhanced during long-duration hippocampal ripples.
Collapse
Affiliation(s)
- Hong-Viet Ngo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Bernhard Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|