951
|
Robson MI, Ringel AR, Mundlos S. Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Mol Cell 2020; 74:1110-1122. [PMID: 31226276 DOI: 10.1016/j.molcel.2019.05.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.
Collapse
Affiliation(s)
- Michael I Robson
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alessa R Ringel
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
952
|
Tian D, Zhang R, Zhang Y, Zhu X, Ma J. MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome. Genome Res 2020; 30:227-238. [PMID: 31907193 PMCID: PMC7050518 DOI: 10.1101/gr.250316.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof of principle to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that is in spatial contact more frequently than expected and that is regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm, MOCHI, to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and show distinct functional properties. Through integrative analysis, this work shows the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
Collapse
Affiliation(s)
- Dechao Tian
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Ruochi Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaopeng Zhu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
953
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
954
|
Millard PS, Bugge K, Marabini R, Boomsma W, Burow M, Kragelund BB. IDDomainSpotter: Compositional bias reveals domains in long disordered protein regions-Insights from transcription factors. Protein Sci 2020; 29:169-183. [PMID: 31642121 PMCID: PMC6933863 DOI: 10.1002/pro.3754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Protein domains constitute regions of distinct structural properties and molecular functions that are retained when removed from the rest of the protein. However, due to the lack of tertiary structure, the identification of domains has been largely neglected for long (>50 residues) intrinsically disordered regions. Here we present a sequence-based approach to assess and visualize domain organization in long intrinsically disordered regions based on compositional sequence biases. An online tool to find putative intrinsically disordered domains (IDDomainSpotter) in any protein sequence or sequence alignment using any particular sequence trait is available at http://www.bio.ku.dk/sbinlab/IDDomainSpotter. Using this tool, we have identified a putative domain enriched in hydrophilic and disorder-promoting residues (Pro, Ser, and Thr) and depleted in positive charges (Arg and Lys) bordering the folded DNA-binding domains of several transcription factors (p53, GCR, NAC46, MYB28, and MYB29). This domain, from two different MYB transcription factors, was characterized biophysically to determine its properties. Our analyses show the domain to be extended, dynamic and highly disordered. It connects the DNA-binding domain to other disordered domains and is present and conserved in several transcription factors from different families and domains of life. This example illustrates the potential of IDDomainSpotter to predict, from sequence alone, putative domains of functional interest in otherwise uncharacterized disordered proteins.
Collapse
Affiliation(s)
- Peter S. Millard
- DynaMo Center, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Riccardo Marabini
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Wouter Boomsma
- Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
955
|
Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering. Methods Mol Biol 2020; 2141:715-730. [PMID: 32696386 DOI: 10.1007/978-1-0716-0524-0_37] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The physical process of liquid-liquid phase separation (LLPS), where the drive to minimize global free energy causes a solution to demix into dense and light phases, plays many important roles in biology. It is implicated in the formation of so-called "membraneless organelles" such as nucleoli, nuclear speckles, promyelocytic leukemia protein bodies, P bodies, and stress granules along with the formation of biomolecular condensates involved in transcription, signaling, and transport. Quantitative studies of LLPS in vivo are complicated by the out-of-equilibrium, multicomponent cellular environment. While in vitro experiments with purified biomolecules are inherently an oversimplification of the cellular milieu, they allow probing of the rich physical chemistry underlying phase separation. Critically, with the application of suitable models, the thermodynamics of equilibrium LLPS can inform on the nature of the intermolecular interactions that mediate it. These same interactions are likely to exist in out-of-equilibrium condensates within living cells. Phase diagrams map the coexistence points between dense and light phases and quantitatively describe LLPS by mapping the local minima of free energy versus biomolecule concentration. Here, we describe a light scattering method that allows one to measure coexistence points around a high-temperature critical region using sample volumes as low as 10 μl.
Collapse
|
956
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
957
|
Methods for mapping three-dimensional genome architecture. Methods 2020; 170:1-3. [PMID: 31669352 DOI: 10.1016/j.ymeth.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
958
|
Newman SA. Cell differentiation: What have we learned in 50 years? J Theor Biol 2020; 485:110031. [DOI: 10.1016/j.jtbi.2019.110031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
959
|
Zhou R, Gao YQ. Polymer models for the mechanisms of chromatin 3D folding: review and perspective. Phys Chem Chem Phys 2020; 22:20189-20201. [DOI: 10.1039/d0cp01877e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this perspective paper, classical physical models for mammalian interphase chromatin folding are reviewed.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
- Beijing Advanced Innovation Center for Genomics
| |
Collapse
|
960
|
Saravanan B, Soota D, Islam Z, Majumdar S, Mann R, Meel S, Farooq U, Walavalkar K, Gayen S, Singh AK, Hannenhalli S, Notani D. Ligand dependent gene regulation by transient ERα clustered enhancers. PLoS Genet 2020; 16:e1008516. [PMID: 31905229 PMCID: PMC6975561 DOI: 10.1371/journal.pgen.1008516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/22/2020] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Unliganded Estrogen receptor alpha (ERα) has been implicated in ligand-dependent gene regulation. Upon ligand exposure, ERα binds to several EREs relatively proximal to the pre-marked, unliganded ERα-bound sites and affects transient but robust gene expression. However, the underlying mechanisms are not fully understood. Here we demonstrate that upon ligand stimulation, persistent sites interact extensively, via chromatin looping, with the proximal transiently ERα-bound sites, forming Ligand Dependent ERα Enhancer Cluster in 3D (LDEC). The E2-target genes are regulated by these clustered enhancers but not by the H3K27Ac super-enhancers. Further, CRISPR-based deletion of TFF1 persistent site disrupts the formation of its LDEC resulting in the loss of E2-dependent expression of TFF1 and its neighboring genes within the same TAD. The LDEC overlap with nuclear ERα condensates that coalesce in a ligand and persistent site dependent manner. Furthermore, formation of clustered enhancers, as well as condensates, coincide with the active phase of signaling and their later disappearance results in the loss of gene expression even though persistent sites remain bound by ERα. Our results establish, at TFF1 and NRIP1 locus, a direct link between ERα condensates, ERα enhancer clusters, and transient, but robust, gene expression in a ligand-dependent fashion.
Collapse
Affiliation(s)
- Bharath Saravanan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Deepanshu Soota
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Zubairul Islam
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sudeshna Majumdar
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Rajat Mann
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sweety Meel
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Umer Farooq
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Centre for Functional Genomics and Bio-informatics, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Kaivalya Walavalkar
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Srimonta Gayen
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Anurag Kumar Singh
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Dimple Notani
- Cellular Organization and Signalling, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
961
|
Kumar Y, Sengupta D, Bickmore W. Recent advances in the spatial organization of the mammalian genome. J Biosci 2020; 45:18. [PMID: 31965996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mammalian genome is complex and presents a dynamic structural organization that reflects function. Organization of the genome inside the mammalian nucleus impacts all nuclear processes including but not limited to transcription, replication and repair, and in many biological contexts such as early development, differentiation and physiological adaptations. However, there is limited understating of how 3D organization of the mammalian genome regulates different nuclear processes. Recent advances in microscopy and a myriad of genomics methods -- ropelled by next-generation sequencing -- have advanced our knowledge of genome organization to a great extent. In this review, we discuss nuclear compartments in general and recent advances in the understanding of how mammalian genome is organized in these compartments with an emphasis on dynamics at the nuclear periphery.
Collapse
Affiliation(s)
- Yatendra Kumar
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Crewe Road South, Edinburgh EH42XU, UK
| | | | | |
Collapse
|
962
|
Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ 2019; 62:4-14. [PMID: 31886523 DOI: 10.1111/dgd.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
963
|
Chen L, Liu Z. Multifaceted function of YAP/TEAD on chromatin:prospects of 'A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer'. J Mol Cell Biol 2019; 11:1101-1103. [PMID: 31774121 PMCID: PMC6934152 DOI: 10.1093/jmcb/mjz106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/09/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
964
|
Lesne A, Baudement MO, Rebouissou C, Forné T. Exploring Mammalian Genome within Phase-Separated Nuclear Bodies: Experimental Methods and Implications for Gene Expression. Genes (Basel) 2019; 10:E1049. [PMID: 31861077 PMCID: PMC6947181 DOI: 10.3390/genes10121049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
The importance of genome organization at the supranucleosomal scale in the control of gene expression is increasingly recognized today. In mammals, Topologically Associating Domains (TADs) and the active/inactive chromosomal compartments are two of the main nuclear structures that contribute to this organization level. However, recent works reviewed here indicate that, at specific loci, chromatin interactions with nuclear bodies could also be crucial to regulate genome functions, in particular transcription. They moreover suggest that these nuclear bodies are membrane-less organelles dynamically self-assembled and disassembled through mechanisms of phase separation. We have recently developed a novel genome-wide experimental method, High-salt Recovered Sequences sequencing (HRS-seq), which allows the identification of chromatin regions associated with large ribonucleoprotein (RNP) complexes and nuclear bodies. We argue that the physical nature of such RNP complexes and nuclear bodies appears to be central in their ability to promote efficient interactions between distant genomic regions. The development of novel experimental approaches, including our HRS-seq method, is opening new avenues to understand how self-assembly of phase-separated nuclear bodies possibly contributes to mammalian genome organization and gene expression.
Collapse
Affiliation(s)
- Annick Lesne
- IGMM, Univ. Montpellier, CNRS, F-34293 Montpellier, France; (M.-O.B.); (C.R.)
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252 Paris, France
| | - Marie-Odile Baudement
- IGMM, Univ. Montpellier, CNRS, F-34293 Montpellier, France; (M.-O.B.); (C.R.)
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Cosette Rebouissou
- IGMM, Univ. Montpellier, CNRS, F-34293 Montpellier, France; (M.-O.B.); (C.R.)
| | - Thierry Forné
- IGMM, Univ. Montpellier, CNRS, F-34293 Montpellier, France; (M.-O.B.); (C.R.)
| |
Collapse
|
965
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
966
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
967
|
Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019; 20:890-911. [PMID: 31606941 DOI: 10.1111/tra.12704] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Collapse
Affiliation(s)
- Stephanie Spannl
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean J Ihn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Canada Research Chairs Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
968
|
Cai D, Feliciano D, Dong P, Flores E, Gruebele M, Porat-Shliom N, Sukenik S, Liu Z, Lippincott-Schwartz J. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol 2019; 21:1578-1589. [PMID: 31792379 PMCID: PMC8259329 DOI: 10.1038/s41556-019-0433-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional co-activator that regulates cell proliferation and survival by binding to a select set of enhancers for target gene activation. How YAP coordinates these transcriptional responses is unknown. Here, we demonstrate that YAP forms liquid-like condensates in the nucleus. Formed within seconds of hyperosmotic stress, YAP condensates compartmentalized the YAP transcription factor TEAD1 and other YAP-related co-activators, including TAZ, and subsequently induced the transcription of YAP-specific proliferation genes. Super-resolution imaging using assay for transposase-accessible chromatin with photoactivated localization microscopy revealed that the YAP nuclear condensates were areas enriched in accessible chromatin domains organized as super-enhancers. Initially devoid of RNA polymerase II, the accessible chromatin domains later acquired RNA polymerase II, transcribing RNA. The removal of the intrinsically-disordered YAP transcription activation domain prevented the formation of YAP condensates and diminished downstream YAP signalling. Thus, dynamic changes in genome organization and gene activation during YAP reprogramming is mediated by liquid-liquid phase separation.
Collapse
Affiliation(s)
- Danfeng Cai
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Feliciano
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Thoracic and Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eduardo Flores
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Natalie Porat-Shliom
- Thoracic and Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | |
Collapse
|
969
|
McSwiggen DT, Mir M, Darzacq X, Tjian R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 2019; 33:1619-1634. [PMID: 31594803 PMCID: PMC6942051 DOI: 10.1101/gad.331520.119] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that liquid-liquid phase separation (LLPS) may be a general mechanism by which molecules in the complex cellular milieu may self-organize has generated much excitement and fervor in the cell biology community. While this concept is not new, its rise to preeminence has resulted in renewed interest in the mechanisms that shape and drive diverse cellular self-assembly processes from gene expression to cell division to stress responses. In vitro biochemical data have been instrumental in deriving some of the fundamental principles and molecular grammar by which biological molecules may phase separate, and the molecular basis of these interactions. Definitive evidence is lacking as to whether the same principles apply in the physiological environment inside living cells. In this Perspective, we analyze the evidence supporting phase separation in vivo across multiple cellular processes. We find that the evidence for in vivo LLPS is often phenomenological and inadequate to discriminate between phase separation and other possible mechanisms. Moreover, the causal relationship and functional consequences of LLPS in vivo are even more elusive. We underscore the importance of performing quantitative measurements on proteins in their endogenous state and physiological abundance, as well as make recommendations for experiments that may yield more conclusive results.
Collapse
Affiliation(s)
- David T McSwiggen
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California Berkeley, California 94720, USA
| |
Collapse
|
970
|
Zhang Y, Kutateladze TG. Liquid-liquid phase separation is an intrinsic physicochemical property of chromatin. Nat Struct Mol Biol 2019; 26:1085-1086. [PMID: 31695191 PMCID: PMC11514442 DOI: 10.1038/s41594-019-0333-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin is compartmentalized spatially and temporally at multiple levels, but the precise organization of chromatin and mechanisms underlying its restructuring remain unclear. Two studies published in Cell and Nature now demonstrate the ability of chromatin to undergo liquid–liquid phase separation under physiological conditions and show that this intrinsic physicochemical property of chromatin can be regulated.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
971
|
Peran I, Mittag T. Molecular structure in biomolecular condensates. Curr Opin Struct Biol 2019; 60:17-26. [PMID: 31790873 DOI: 10.1016/j.sbi.2019.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Evidence accumulated over the past decade provides support for liquid-liquid phase separation as the mechanism underlying the formation of biomolecular condensates, which include not only 'membraneless' organelles such as nucleoli and RNA granules, but additional assemblies involved in transcription, translation and signaling. Understanding the molecular mechanisms of condensate function requires knowledge of the structures of their constituents. Current knowledge suggests that structures formed via multivalent domain-motif interactions remain largely unchanged within condensates. Two different viewpoints exist regarding structures of disordered low-complexity domains within condensates; one argues that low-complexity domains remain largely disordered in condensates and their multivalency is encoded in short motifs called 'stickers', while the other argues that the sequences form cross-β structures resembling amyloid fibrils. We review these viewpoints and highlight outstanding questions that will inform structure-function relationships for biomolecular condensates.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
972
|
Oudelaar AM, Harrold CL, Hanssen LLP, Telenius JM, Higgs DR, Hughes JR. A revised model for promoter competition based on multi-way chromatin interactions at the α-globin locus. Nat Commun 2019; 10:5412. [PMID: 31776347 PMCID: PMC6881440 DOI: 10.1038/s41467-019-13404-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Specific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.
Collapse
Affiliation(s)
- A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline L Harrold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
973
|
Quan H, Yang Y, Liu S, Tian H, Xue Y, Gao YQ. Chromatin structure changes during various processes from a DNA sequence view. Curr Opin Struct Biol 2019; 62:1-8. [PMID: 31765966 DOI: 10.1016/j.sbi.2019.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Chromatin mainly consists of protein and DNA, and the sequence information of DNA contributes to controlling the spatial structure of chromatin. Genome-wide contact patterns of chromosome at high precision uncover fine structural properties, conductive to exploring underlying mechanisms on structure establishment and function realization for chromatin. In this short review, we describe changes of chromatin structure during various biological processes from a DNA sequence view, with an increase of the overall domain segregation from birth to senescence and establishment of cell identity related cross-domain contacts. Segregation patterns vary with cell stage and genomic distance. Meanwhile, possible effects of cell cycle, temperature, nuclear lamina and nucleolus on chromatin structure are discussed. At last, important roles of transcription factors and other proteins in proper chromatin organization are also discussed.
Collapse
Affiliation(s)
- Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
974
|
Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF. A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Mol Cell 2019; 77:251-265.e9. [PMID: 31757755 PMCID: PMC6980676 DOI: 10.1016/j.molcel.2019.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Spatiotemporal gene regulation is often driven by RNA-binding proteins that harbor long intrinsically disordered regions in addition to folded RNA-binding domains. We report that the disordered region of the evolutionarily ancient developmental regulator Vts1/Smaug drives self-assembly into gel-like condensates. These proteinaceous particles are not composed of amyloid, yet they are infectious, allowing them to act as a protein-based epigenetic element: a prion [SMAUG+]. In contrast to many amyloid prions, condensation of Vts1 enhances its function in mRNA decay, and its self-assembly properties are conserved over large evolutionary distances. Yeast cells harboring [SMAUG+] downregulate a coherent network of mRNAs and exhibit improved growth under nutrient limitation. Vts1 condensates formed from purified protein can transform naive cells to acquire [SMAUG+]. Our data establish that non-amyloid self-assembly of RNA-binding proteins can drive a form of epigenetics beyond the chromosome, instilling adaptive gene expression programs that are heritable over long biological timescales.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Tina Smejkal
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Alan K Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
975
|
Miura M, Dey S, Ramanayake S, Singh A, Rueda DS, Bangham CRM. Kinetics of HTLV-1 reactivation from latency quantified by single-molecule RNA FISH and stochastic modelling. PLoS Pathog 2019; 15:e1008164. [PMID: 31738810 PMCID: PMC6886867 DOI: 10.1371/journal.ppat.1008164] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/02/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023] Open
Abstract
The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1+ individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo. We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1+ PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1+ clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1+ cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ-negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.
Collapse
Affiliation(s)
- Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - David S. Rueda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
976
|
Hidden Aspects of Valency in Immune System Regulation. Trends Immunol 2019; 40:1082-1094. [PMID: 31734148 DOI: 10.1016/j.it.2019.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
Valency can be defined as the number of discrete interactions a biomolecule can engage in. Valency can be critical for function, such as determining whether a molecule acts as a scaffold for assembling large supramolecular complexes or forms a functional dimer. Here, we highlight the importance of the role of valency in regulating immune responses, with a focus on innate immunity. We discuss some of the ways in which valency itself is regulated through transcriptional, post-transcriptional, and post-translational modifications. Finally, we propose that the valency model can be applied at the whole cell level to study differences in individual cell responses with relevance to putative therapeutic applications.
Collapse
|
977
|
Femia MR, Evans RM, Zhang J, Sun X, Lebegue CJ, Roggero VR, Allison LA. Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. J Cell Biochem 2019; 121:2909-2926. [PMID: 31692077 DOI: 10.1002/jcb.29532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The thyroid hormone receptors (TRs) mediate thyroid hormone (T3 )-dependent gene expression. The nuclear import and export signals that direct TR shuttling are well characterized, but little is known about factors modulating nuclear retention. We used fluorescence-based nucleocytoplasmic scoring and fluorescence recovery after photobleaching in transfected cells to investigate whether Mediator subunits MED1 and MED13 play a role in nuclear retention of TR. When MED1 was overexpressed, there was a striking shift towards a greater nuclear localization of TRβ1 and the oncoprotein v-ErbA, subtypes with cytosolic populations at steady-state, and TRβ1 intranuclear mobility was reduced. For TRα1, there was no observable change in its predominantly nuclear distribution pattern or mobility. Consistent with a role for MED1 in nuclear retention, the cytosolic TRα1 and TRβ1 population were significantly greater in MED1-/- cells, compared with MED1+/+ cells. Exposure to T3 and epidermal growth factor, which induces MED1 phosphorylation, also altered TR intranuclear dynamics. Overexpression of miR-208a, which downregulates MED13, led to a more cytosolic distribution of nuclear-localized TRα1; however, overexpression of MED13 had no effect on TRβ1 localization. The known binding site of MED1 overlaps with a transactivation domain and nuclear export signal in helix 12 of TR's ligand-binding domain (LBD). Coimmunoprecipitation assays demonstrated that TR's LBD interacts directly with exportins 5 and 7, suggesting that binding of exportins and MED1 to TR may be mutually exclusive. Collectively, our data provide evidence that MED1 promotes nuclear retention of TR, and highlight the dual functionality of helix 12 in TR transactivation and nuclear export.
Collapse
Affiliation(s)
- Matthew R Femia
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | - Jibo Zhang
- Department of Biology, William and Mary, Williamsburg, Viginia
| | - Xiaopeng Sun
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | | | | |
Collapse
|
978
|
rDNA Clusters Make Contact with Genes that Are Involved in Differentiation and Cancer and Change Contacts after Heat Shock Treatment. Cells 2019; 8:cells8111393. [PMID: 31694324 PMCID: PMC6912461 DOI: 10.3390/cells8111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022] Open
Abstract
Human rDNA clusters form numerous contacts with different chromosomal regions as evidenced by chromosome conformation capture data. Heterochromatization of rDNA genes leads to heterochromatization in different chromosomal regions coupled with the activation of the transcription of genes related to differentiation. These data suggest a role for rDNA clusters in the regulation of many human genes. However, the genes that reside within the rDNA-contacting regions have not been identified. The purpose of this study was to detect and characterize the regions where rDNA clusters make frequent contacts and to identify and categorize genes located in these regions. We analyzed the regions that contact rDNA using 4C data and show that these regions are enriched with genes specifying transcription factors and non-coding RNAs involved in differentiation and development. The rDNA-contacting genes are involved in neuronal development and are associated with different cancers. Heat shock treatment led to dramatic changes in the pattern of rDNA-contacting sites, especially in the regions possessing long stretches of H3K27ac marks. Whole-genome analysis of rDNA-contacting sites revealed specific epigenetic marks and the transcription sites of 20–100 nt non-coding RNAs in these regions. The rDNA-contacting genes jointly regulate many genes that are involved in the control of transcription by RNA polymerase II and the development of neurons. Our data suggest a role for rDNA clusters in the differentiation of human cells and carcinogenesis.
Collapse
|
979
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
980
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
981
|
Rasool RU, Natesan R, Deng Q, Aras S, Lal P, Sander Effron S, Mitchell-Velasquez E, Posimo JM, Carskadon S, Baca SC, Pomerantz MM, Siddiqui J, Schwartz LE, Lee DJ, Palanisamy N, Narla G, Den RB, Freedman ML, Brady DC, Asangani IA. CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. Cancer Discov 2019; 9:1538-1555. [PMID: 31466944 PMCID: PMC7202356 DOI: 10.1158/2159-8290.cd-19-0189] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priti Lal
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel Sander Effron
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Javed Siddiqui
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lauren E Schwartz
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Lee
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
982
|
Palikyras S, Papantonis A. Modes of phase separation affecting chromatin regulation. Open Biol 2019; 9:190167. [PMID: 31615334 PMCID: PMC6833219 DOI: 10.1098/rsob.190167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
It has become evident that chromatin in cell nuclei is organized at multiple scales. Significant effort has been devoted to understanding the connection between the nuclear environment and the diverse biological processes taking place therein. A fundamental question is how cells manage to orchestrate these reactions, both spatially and temporally. Recent insights into phase-separated membraneless organelles may be the key for answering this. Of the two models that have been proposed for phase-separated entities, one largely depends on chromatin-protein interactions and the other on multivalent protein-protein and/or protein-RNA ones. Each has its own characteristics, but both would be able to, at least in part, explain chromatin and transcriptional organization. Here, we attempt to give an overview of these two models and their studied examples to date, before discussing the forces that could govern phase separation and prevent it from arising unrestrainedly.
Collapse
Affiliation(s)
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
983
|
Sidor C, Borreguero-Munoz N, Fletcher GC, Elbediwy A, Guillermin O, Thompson BJ. Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. eLife 2019; 8:e48601. [PMID: 31661072 PMCID: PMC6861002 DOI: 10.7554/elife.48601] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Mask family proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving formation of liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction.
Collapse
Affiliation(s)
- Clara Sidor
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | | | | | - Ahmed Elbediwy
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Oriane Guillermin
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
- EMBL Australia, ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| |
Collapse
|
984
|
Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019; 20:E5306. [PMID: 31653121 PMCID: PMC6862971 DOI: 10.3390/ijms20215306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The bHLH proteins are a family of eukaryotic transcription factors regulating expression of a wide range of genes involved in cell differentiation and development. They contain the Helix-Loop-Helix (HLH) domain, preceded by a stretch of basic residues, which are responsible for dimerization and binding to E-box sequences. In addition to the well-preserved DNA-binding bHLH domain, these proteins may contain various additional domains determining the specificity of performed transcriptional regulation. According to this, the family has been divided into distinct classes. Our aim was to emphasize the significance of existing disordered regions within the bHLH transcription factors for their functionality. Flexible, intrinsically disordered regions containing various motives and specific sequences allow for multiple interactions with transcription co-regulators. Also, based on in silico analysis and previous studies, we hypothesize that the bHLH proteins have a general ability to undergo spontaneous phase separation, forming or participating into liquid condensates which constitute functional centers involved in transcription regulation. We shortly introduce recent findings on the crucial role of the thermodynamically liquid-liquid driven phase separation in transcription regulation by disordered regions of regulatory proteins. We believe that further experimental studies should be performed in this field for better understanding of the mechanism of gene expression regulation (among others regarding oncogenes) by important and linked to many diseases the bHLH transcription factors.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
985
|
Yamamoto T, Schiessel H. Dilution of contact frequency between superenhancers by loop extrusion at interfaces. SOFT MATTER 2019; 15:7635-7643. [PMID: 31482924 DOI: 10.1039/c9sm01454c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The loop extrusion theory predicts that cohesin acts as a molecular motor that extrudes chromatin fibers to produce loops. Hi-C experiments have detected relatively high contact frequencies between superenhancers. These probably result from the fact that superenhancers are localized at condensates of transcriptional activators and coactivators. The contact frequency between superenhancers is enhanced by auxin treatment that removes cohesin from chromatin. Motivated by these experimental results, we here treat chromatin at the surface of a condensate as a loop extruding polymer brush. Our theory predicts that the lateral pressure generated by the brush decreases with decreasing the loading rate of cohesin. This is because loop extrusion actively transfers chain segments at the vicinity of the interface. Our theory thus predicts that the increase of contact frequency by auxin treatment results from the fact that suppressing the loop extrusion process induces the dissolution of molecular components to the nucleoplasm, decreasing the average distance between superenhancers.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Materials Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan. and PRESTO, Japan Science and Technology Agency (JST) - 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Helmut Schiessel
- Instituut-Lorentz for Theoretical Physics, Leiden University - Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands
| |
Collapse
|
986
|
Jabbari K, Chakraborty M, Wiehe T. DNA sequence-dependent chromatin architecture and nuclear hubs formation. Sci Rep 2019; 9:14646. [PMID: 31601866 PMCID: PMC6787200 DOI: 10.1038/s41598-019-51036-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
In this study, by exploring chromatin conformation capture data, we show that the nuclear segregation of Topologically Associated Domains (TADs) is contributed by DNA sequence composition. GC-peaks and valleys of TADs strongly influence interchromosomal interactions and chromatin 3D structure. To gain insight on the compositional and functional constraints associated with chromatin interactions and TADs formation, we analysed intra-TAD and intra-loop GC variations. This led to the identification of clear GC-gradients, along which, the density of genes, super-enhancers, transcriptional activity, and CTCF binding sites occupancy co-vary non-randomly. Further, the analysis of DNA base composition of nucleolar aggregates and nuclear speckles showed strong sequence-dependant effects. We conjecture that dynamic DNA binding affinity and flexibility underlay the emergence of chromatin condensates, their growth is likely promoted in mechanically soft regions (GC-rich) of the lowest chromatin and nucleosome densities. As a practical perspective, the strong linear association between sequence composition and interchromosomal contacts can help define consensus chromatin interactions, which in turn may be used to study alternative states of chromatin architecture.
Collapse
Affiliation(s)
- Kamel Jabbari
- Institute for Genetics, Biocenter Cologne, University of Cologne, Zülpicher Straße 47a, 50674, Köln, Germany.
| | - Maharshi Chakraborty
- Institute for Genetics, Biocenter Cologne, University of Cologne, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Thomas Wiehe
- Institute for Genetics, Biocenter Cologne, University of Cologne, Zülpicher Straße 47a, 50674, Köln, Germany
| |
Collapse
|
987
|
Ashwin SS, Nozaki T, Maeshima K, Sasai M. Organization of fast and slow chromatin revealed by single-nucleosome dynamics. Proc Natl Acad Sci U S A 2019; 116:19939-19944. [PMID: 31527274 PMCID: PMC6778247 DOI: 10.1073/pnas.1907342116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding chromatin organization and dynamics is important, since they crucially affect DNA functions. In this study, we investigate chromatin dynamics by statistically analyzing single-nucleosome movement in living human cells. Bimodal nature of the mean square displacement distribution of nucleosomes allows for a natural categorization of the nucleosomes as fast and slow. Analyses of the nucleosome-nucleosome correlation functions within these categories along with the density of vibrational modes show that the nucleosomes form dynamically correlated fluid regions (i.e., dynamic domains of fast and slow nucleosomes). Perturbed nucleosome dynamics by global histone acetylation or cohesin inactivation indicate that nucleosome-nucleosome interactions along with tethering of chromatin chains organize nucleosomes into fast and slow dynamic domains. A simple polymer model is introduced, which shows the consistency of this dynamic domain picture. Statistical analyses of single-nucleosome movement provide rich information on how chromatin is dynamically organized in a fluid manner in living cells.
Collapse
Affiliation(s)
- S S Ashwin
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Tadasu Nozaki
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, SOKENDAI, Shizuoka 411-8540, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan;
| |
Collapse
|
988
|
Millard PS, Kragelund BB, Burow M. R2R3 MYB Transcription Factors - Functions outside the DNA-Binding Domain. TRENDS IN PLANT SCIENCE 2019; 24:934-946. [PMID: 31358471 DOI: 10.1016/j.tplants.2019.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 05/20/2023]
Abstract
Several transcription factor (TF) families, including the MYB family, regulate a wide array of biological processes. TFs contain DNA-binding domains (DBDs) and regulatory regions; although information on protein structure is scarce for plant MYB TFs, various in silico methods suggest that the non-MYB regions contain extensive intrinsically disordered regions (IDRs). Although IDRs do not fold into stable globular structures, they comprise functional regions including interaction motifs, and recent research has shown that IDRs perform crucial biological roles. We map here domain organization, disorder predictions, and functional regions across the entire Arabidopsis thaliana R2R3 MYB TF family, and highlight where an increased research focus will be necessary to shape a new understanding of structure-function relationships in plant TFs.
Collapse
Affiliation(s)
- Peter S Millard
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
989
|
Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, Abuhashem A, Cavaliere P, Aronson B, Shah V, Dephoure N, Stadtfeld M, Tsirigos A, Apostolou E. KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol 2019; 21:1179-1190. [PMID: 31548608 PMCID: PMC7339746 DOI: 10.1038/s41556-019-0390-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/16/2019] [Indexed: 01/24/2023]
Abstract
Cell fate transitions are accompanied by global transcriptional, epigenetic and topological changes driven by transcription factors, as is exemplified by reprogramming somatic cells to pluripotent stem cells through the expression of OCT4, KLF4, SOX2 and cMYC. How transcription factors orchestrate the complex molecular changes around their target gene loci remains incompletely understood. Here, using KLF4 as a paradigm, we provide a transcription-factor-centric view of chromatin reorganization and its association with three-dimensional enhancer rewiring and transcriptional changes during the reprogramming of mouse embryonic fibroblasts to pluripotent stem cells. Inducible depletion of KLF factors in PSCs caused a genome-wide decrease in enhancer connectivity, whereas disruption of individual KLF4 binding sites within pluripotent-stem-cell-specific enhancers was sufficient to impair enhancer-promoter contacts and reduce the expression of associated genes. Our study provides an integrative view of the complex activities of a lineage-specifying transcription factor and offers novel insights into the nature of the molecular events that follow transcription factor binding.
Collapse
Affiliation(s)
- Dafne Campigli Di Giammartino
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yiyuan Liu
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daleum Kim
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dylan Murphy
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Abderhman Abuhashem
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Paola Cavaliere
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Boaz Aronson
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Veevek Shah
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Noah Dephoure
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Skirball Institute of Biomolecular Medicine, Department of Cell Biology and Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA.
| | - Effie Apostolou
- Sanford I Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
990
|
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d'Adda di Fagagna F. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 2019; 21:1286-1299. [PMID: 31570834 PMCID: PMC6859070 DOI: 10.1038/s41556-019-0392-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ubaldo Gioia
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valerio Vitelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Amanda Oldani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Roberto Cerbino
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Dario Parazzoli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
991
|
Zamudio AV, Dall'Agnese A, Henninger JE, Manteiga JC, Afeyan LK, Hannett NM, Coffey EL, Li CH, Oksuz O, Sabari BR, Boija A, Klein IA, Hawken SW, Spille JH, Decker TM, Cisse II, Abraham BJ, Lee TI, Taatjes DJ, Schuijers J, Young RA. Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol Cell 2019; 76:753-766.e6. [PMID: 31563432 DOI: 10.1016/j.molcel.2019.08.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-β, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator β-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.
Collapse
Affiliation(s)
- Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - John C Manteiga
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin R Sabari
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Susana W Hawken
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jan-Hendrik Spille
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tim-Michael Decker
- Department of Biochemistry, University of Colorado, Boulder, Boulder, CO 80303, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Boulder, CO 80303, USA
| | - Jurian Schuijers
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
992
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
993
|
Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell 2019; 179:470-484.e21. [PMID: 31543265 DOI: 10.1016/j.cell.2019.08.037] [Citation(s) in RCA: 617] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Eukaryotic chromatin is highly condensed but dynamically accessible to regulation and organized into subdomains. We demonstrate that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets. Linker histone H1 and internucleosome linker lengths shared across eukaryotes promote phase separation of chromatin, tune droplet properties, and coordinate to form condensates of consistent density in manners that parallel chromatin behavior in cells. Histone acetylation by p300 antagonizes chromatin phase separation, dissolving droplets in vitro and decreasing droplet formation in nuclei. In the presence of multi-bromodomain proteins, such as BRD4, highly acetylated chromatin forms a new phase-separated state with droplets of distinct physical properties, which can be immiscible with unmodified chromatin droplets, mimicking nuclear chromatin subdomains. Our data suggest a framework, based on intrinsic phase separation of the chromatin polymer, for understanding the organization and regulation of eukaryotic genomes.
Collapse
Affiliation(s)
- Bryan A Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lynda K Doolittle
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maximillian W G Schneider
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Liv E Jensen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
994
|
Mechanisms of Interplay between Transcription Factors and the 3D Genome. Mol Cell 2019; 76:306-319. [PMID: 31521504 DOI: 10.1016/j.molcel.2019.08.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.
Collapse
|
995
|
Yamamoto T, Sakaue T, Schiessel H. Loop extrusion drives very different dynamics for Rouse chains in bulk solutions and at interfaces. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/127/38002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
996
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
997
|
Bashkirova E, Lomvardas S. Olfactory receptor genes make the case for inter-chromosomal interactions. Curr Opin Genet Dev 2019; 55:106-113. [PMID: 31491591 DOI: 10.1016/j.gde.2019.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
Abstract
The partitioning of the interphase nucleus into chromosome territories generally precludes DNA from making specific and reproducible inter-chromosomal contacts. However, with the development of powerful genomic and imaging tools for the analysis of the 3D genome, and with their application on an increasing number of cell types, it becomes apparent that regulated, specific, and functionally important inter-chromosomal contacts exist. Widespread and stereotypic inter-chromosomal interactions are at the center of chemosensation, where they regulate the singular and stochastic expression of olfactory receptor genes. In olfactory sensory neurons (OSNs) coalescence of multiple intergenic enhancers to a multi-chromosomal hub orchestrates the expression of a single OR allele, whereas convergence of the remaining OR genes from 18 chromosomes into a few heterochromatic compartments mediates their effective transcriptional silencing. In this review we describe the role of interchromosomal interactions in OR gene choice, and we describe other biological systems where such genomic interactions may contribute to regulatory robustness and transcriptional diversification.
Collapse
Affiliation(s)
- Elizaveta Bashkirova
- Department of Biochemistry and Molecular Biophysics, Roy Vangelos Columbia University Medical Center, New York, NY 10032, United States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Roy Vangelos Columbia University Medical Center, New York, NY 10032, United States; Department of Neuroscience, Roy Vangelos Columbia University Medical Center, Columbia University, New York, NY 10032, United States; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, United States; Kavli Institute for Neurosciences at Columbia University, New York, NY 10027, United States.
| |
Collapse
|
998
|
The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194407. [DOI: 10.1016/j.bbagrm.2019.194407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
|
999
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
1000
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|