951
|
Köcher T, Pichler P, De Pra M, Rieux L, Swart R, Mechtler K. Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up. Proteomics 2014; 14:1999-2007. [DOI: 10.1002/pmic.201300418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Köcher
- Research Institute of Molecular Pathology (IMP); Vienna Austria
| | - Peter Pichler
- Research Institute of Molecular Pathology (IMP); Vienna Austria
| | | | | | - Remco Swart
- Thermo Fisher Scientific; Amsterdam Netherlands
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP); Vienna Austria
- Institute of Molecular Biotechnology (IMBA); Vienna Austria
| |
Collapse
|
952
|
Zhang Y, Shan B, Boyle M, Liu J, Liao L, Xu T, Yates JR. Brain Proteome Changes Induced by Olfactory Learning in Drosophila. J Proteome Res 2014; 13:3763-3770. [PMID: 24983411 DOI: 10.1021/pr500325q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For more than 30 years, the study of learning and memory in Drosophila melanogaster (fruit fly) has used an olfactory learning paradigm and has resulted in the discovery of many genes involved in memory formation. By varying learning programs, the creation of different memory types can be achieved, from short-term memory formation to long-term. Previous studies in the fruit fly used gene mutation methods to identify genes involved in memory formation. Presumably, memory creation involves a combination of genes, pathways, and neural circuits. To examine memory formation at the protein level, a quantitative proteomic analysis was performed using olfactory learning and 15N-labeled fruit flies. Differences were observed in protein expression and relevant pathways between different learning programs. Our data showed major protein expression changes occurred between short-term memory (STM) and long-lasting memory, and only minor changes were found between long-term memory (LTM) and anesthesia-resistant memory (ARM).
Collapse
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Monica Boyle
- Dart NeuroScience LLC , San Diego, California 92121, United States
| | - Jacqueline Liu
- Dart NeuroScience LLC , San Diego, California 92121, United States
| | - Lujian Liao
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Tao Xu
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
953
|
Liu F, Ye M, Pan Y, Zhang Y, Bian Y, Sun Z, Zhu J, Cheng K, Zou H. Integration of cell lysis, protein extraction, and digestion into one step for ultrafast sample preparation for phosphoproteome analysis. Anal Chem 2014; 86:6786-91. [PMID: 24958348 DOI: 10.1021/ac5002146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional sample preparation protocols for phosphoproteome analysis require multiple time-consuming and labor-intensive steps, including cell lysis, protein extraction, protein digestion, and phosphopeptide enrichment. In this study, we found that the presence of a large amount of trypsin in the sample did not interfere with phosphopeptide enrichment and subsequent LC-MS/MS analysis. Taking advantage of fast digestion achieved with high trypsin-to-protein ratio, we developed a novel concurrent lysis-digestion method for phosphoproteome analysis. In this method, the harvested cells were first placed in a lysis buffer containing a huge amount of trypsin. After ultrasonication, the cells were lysed and the proteins were efficiently digested into peptides within one step. Thereafter, tryptic digest was subjected to phosphopeptide enrichment, in which unphosphorylated peptides, trypsin, and other components incompatible with LC-MS/MS analysis were removed. Compared with conventional methods, better phosphoproteome coverage was achieved in this new one-step method. Because protein solubilization and cell lysis were facilitated by fast protein digestion, the complete transformation of cell pellets into the peptide mixture could be finished within 25 min, while it would take at least 16 h for conventional methods. Hence, our method, which integrated cell lysis, protein extraction, and protein digestion into one step, is rapid and convenient. It is expected to have broad applications in phosphoproteomics analysis.
Collapse
Affiliation(s)
- Fangjie Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, Liaoning 116023, China
| | | | | | | | | | | | | | | | | |
Collapse
|
954
|
Abraham PE, Giannone RJ, Xiong W, Hettich RL. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities. ACTA ACUST UNITED AC 2014; 46:13.26.1-13.26.14. [PMID: 24939130 DOI: 10.1002/0471250953.bi1326s46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | | | | |
Collapse
|
955
|
Aponte JR, Vasicek L, Swaminathan J, Xu H, Koag MC, Lee S, Brodbelt JS. Streamlining bottom-up protein identification based on selective ultraviolet photodissociation (UVPD) of chromophore-tagged histidine- and tyrosine-containing peptides. Anal Chem 2014; 86:6237-44. [PMID: 24897623 DOI: 10.1021/ac403654m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a fast and highly efficient diazonium reaction that couples a nitroazobenzene chromophore to tyrosine and histidine residues, thus endowing peptides with high photoabsorption cross sections at 351 nm in the gas phase. Only the tagged peptides undergo ultraviolet photodissociation (UVPD) at 351 nm, as demonstrated for several Tyr- and His-containing peptides from protein digests. Additional selectivity is achieved by the integration of the UVPD-MS method with an in silico database search restricted to Tyr- and His-containing peptides. A modified MassMatrix algorithm condenses analysis by filtering the input database file to include Tyr/His-containing peptides only, thus reducing the search space and increasing confidence. In summary, derivatization of specific amino acid residues in conjunction with selective activation of the derivatized peptides provides a streamlined approach to shotgun proteomics.
Collapse
Affiliation(s)
- Julia R Aponte
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
956
|
|
957
|
Yu Y, Suh MJ, Sikorski P, Kwon K, Nelson KE, Pieper R. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 2014; 86:5470-7. [PMID: 24797144 PMCID: PMC4045327 DOI: 10.1021/ac5008317] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/05/2014] [Indexed: 01/03/2023]
Abstract
Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ~10 μg of total protein were processed by 96FASP and LC-MS resulting in 700-900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics.
Collapse
Affiliation(s)
- Yanbao Yu
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Moo-Jin Suh
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Patricia Sikorski
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Keehwan Kwon
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Karen E. Nelson
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rembert Pieper
- The J.
Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
958
|
Ichibangase T, Imai K. Straightforward proteomic analysis reveals real dynamics of proteins in cells. J Pharm Biomed Anal 2014; 101:31-9. [PMID: 24953415 DOI: 10.1016/j.jpba.2014.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/23/2023]
Abstract
To reveal real dynamics of proteins in cells, we have developed a novel type of straightforward proteomic analysis named FD-LC-MS/MS. This technique consists of fluorogenic derivatization (FD) of intact proteins, followed by high performance liquid chromatographic (LC) separation, detection and quantification of the derivatized proteins, isolation of the subject proteins, enzymatic digestion of the isolated proteins, and identification of the proteins using HPLC and MS/MS with a database-searching algorithm. The method is uncomplicated, sensitive, reproducible, and easily quantifies and identifies intact proteins in tissues and cells. Additionally, in contrast to other proteomic approaches, our method does not require any pretreatment steps, such as precipitation and clean-up, except for the derivatization, resulting in high reproducibility and the same or higher detectability than that of other methods. In this article, after a brief review of other types of proteomic analyses, we introduce the development and application of the FD-LC-MS/MS method. We also discuss the features and perspectives of this method.
Collapse
Affiliation(s)
- Tomoko Ichibangase
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Kazuhiro Imai
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan.
| |
Collapse
|
959
|
Patrick AL, Stedwell CN, Polfer NC. Differentiating sulfopeptide and phosphopeptide ions via resonant infrared photodissociation. Anal Chem 2014; 86:5547-52. [PMID: 24823797 DOI: 10.1021/ac500992f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The post-translational modifications sulfation and phosphorylation pose special challenges to mass spectral analysis due to their isobaric nature and their lability in the gas phase, as both types of peptides dissociate through similar channels upon collisional activation. Here, we present resonant infrared photodissociation based on diagnostic sulfate and phosphate OH stretches, as a means to differentiate sulfated from phosphorylated peptides within the framework of a mass spectrometry platform. The approach is demonstrated for a number of tyrosine-containing peptides, ranging from dipeptides (YG, pYG, and sYG) over tripeptides (GYR, GpYR, and GsYR), to more biologically relevant enkephalin peptides (YGGFL, pYGGFL, and sYGGFL). In all cases, the diagnostic ranges for sulfate OH stretches are established as 3580-3600 cm(-1) and can thus be distinguished from other characteristic hydrogen stretches, such as carboxylic acid OH, alcohol OH, and phosphate OH stretches.
Collapse
Affiliation(s)
- Amanda L Patrick
- Department of Chemistry, University of Florida , P.O. Box 117200, Gainesville, Florida 32611, United States
| | | | | |
Collapse
|
960
|
de Graaf EL, Giansanti P, Altelaar AFM, Heck AJR. Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics 2014; 13:2426-34. [PMID: 24850871 DOI: 10.1074/mcp.o113.036608] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Quantitative phosphoproteomics workflows traditionally involve additional sample labeling and fractionation steps for accurate and in-depth analysis. Here we report a high-throughput, straightforward, and comprehensive label-free phosphoproteomics approach using the highly selective, reproducible, and sensitive Ti(4+)-IMAC phosphopeptide enrichment method. We demonstrate the applicability of this approach by monitoring the phosphoproteome dynamics of Jurkat T cells stimulated by prostaglandin E2 (PGE2) over six different time points, measuring in total 108 snapshots of the phosphoproteome. In total, we quantitatively monitored 12,799 unique phosphosites over all time points with very high quantitative reproducibility (average r > 0.9 over 100 measurements and a median cv < 0.2). PGE2 is known to increase cellular cAMP levels, thereby activating PKA. The in-depth analysis revealed temporal regulation of a wide variety of phosphosites associated not only with PKA, but also with a variety of other classes of kinases. Following PGE2 stimulation, several pathways became only transiently activated, revealing that in-depth dynamic profiling requires techniques with high temporal resolution. Moreover, the large publicly available dataset provides a valuable resource for downstream PGE2 signaling dynamics in T cells, and cAMP-mediated signaling in particular. More generally, our method enables in-depth, quantitative, high-throughput phosphoproteome screening on any system, requiring very little sample, sample preparation, and analysis time.
Collapse
Affiliation(s)
- Erik L de Graaf
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piero Giansanti
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
961
|
Biomarkers in Alzheimer's disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 2014; 15:7865-82. [PMID: 24806343 PMCID: PMC4057708 DOI: 10.3390/ijms15057865] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a common chronic and destructive disease. The early diagnosis of AD is difficult, thus the need for clinically applicable biomarkers development is growing rapidly. There are many methods to biomarker discovery and identification. In this review, we aim to summarize Mass spectrometry (MS)-based proteomics studies on AD and discuss thoroughly the methods to identify candidate biomarkers in cerebrospinal fluid (CSF) and blood. This review will also discuss the potential research areas on biomarkers.
Collapse
|
962
|
Aiyetan P, Zhang B, Chen L, Zhang Z, Zhang H. M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool. JOURNAL OF BIOINFORMATICS 2014; 1:40-49. [PMID: 25346941 PMCID: PMC4206089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.
Collapse
Affiliation(s)
- Paul Aiyetan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | - Bai Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | - Lily Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| |
Collapse
|
963
|
Meyer JG. In Silico Proteome Cleavage Reveals Iterative Digestion Strategy for High Sequence Coverage. ISRN COMPUTATIONAL BIOLOGY 2014; 2014:960902. [PMID: 30687733 PMCID: PMC6347401 DOI: 10.1155/2014/960902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the postgenome era, biologists have sought to measure the complete complement of proteins, termed proteomics. Currently, the most effective method to measure the proteome is with shotgun, or bottom-up, proteomics, in which the proteome is digested into peptides that are identified followed by protein inference. Despite continuous improvements to all steps of the shotgun proteomics workflow, observed proteome coverage is often low; some proteins are identified by a single peptide sequence. Complete proteome sequence coverage would allow comprehensive characterization of RNA splicing variants and all posttranslational modifications, which would drastically improve the accuracy of biological models. There are many reasons for the sequence coverage deficit, but ultimately peptide length determines sequence observability. Peptides that are too short are lost because they match many protein sequences and their true origin is ambiguous. The maximum observable peptide length is determined by several analytical challenges. This paper explores computationally how peptide lengths produced from several common proteome digestion methods limit observable proteome coverage. Iterative proteome cleavage strategies are also explored. These simulations reveal that maximized proteome coverage can be achieved by use of an iterative digestion protocol involving multiple proteases and chemical cleavages that theoretically allow 92.9% proteome coverage.
Collapse
Affiliation(s)
- Jesse G Meyer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| |
Collapse
|
964
|
Using pharmacological chaperones to restore proteostasis. Pharmacol Res 2014; 83:3-9. [PMID: 24747662 DOI: 10.1016/j.phrs.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.
Collapse
|
965
|
Yang Y, Rhodus NL, Ondrey FG, Wuertz BRK, Chen X, Zhu Y, Griffin TJ. Quantitative proteomic analysis of oral brush biopsies identifies secretory leukocyte protease inhibitor as a promising, mechanism-based oral cancer biomarker. PLoS One 2014; 9:e95389. [PMID: 24748380 PMCID: PMC3991667 DOI: 10.1371/journal.pone.0095389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
A decrease in the almost fifty percent mortality rate from oral cancer is needed urgently. Improvements in early diagnosis and more effective preventive treatments could affect such a decrease. Towards this end, we undertook for the first time an in-depth mass spectrometry-based quantitative shotgun proteomics study of non-invasively collected oral brush biopsies. Proteins isolated from brush biopsies from healthy normal tissue, oral premalignant lesion tissue (OPMLs), oral squamous cell carcinoma (OSCC) and matched control tissue were compared. In replicated proteomic datasets, the secretory leukocyte protease inhibitor (SLPI) protein stood out based on its decrease in abundance in both OPML and OSCC lesion tissues compared to healthy normal tissue. Western blotting in additional brushed biopsy samples confirmed a trend of gradual decreasing SLPI abundance between healthy normal and OPML tissue, with a larger decrease in OSCC lesion tissue. A similar SLPI decrease was observed in-vitro comparing model OPML and OSCC cell lines. In addition, exfoliated oral cells in patients’ whole saliva showed a loss of SLPI correlated with oral cancer progression. These results, combined with proteomics data indicating a decrease in SLPI in matched healthy control tissue from OSCC patients compared to tissue from healthy normal tissue, suggested a systemic decrease of SLPI in oral cells correlated with oral cancer development. Finally, in-vitro experiments showed that treatment with SLPI significantly decreased NF-kB activity in an OPML cell line. The findings indicate anti-inflammatory activity in OPML, supporting a mechanistic role of SLPI in OSCC progression and suggesting its potential for preventative treatment of at-risk oral lesions. Collectively, our results show for the first time the potential for SLPI as a mechanism-based, non-invasive biomarker of oral cancer progression with potential in preventive treatment.
Collapse
Affiliation(s)
- Ya Yang
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nelson L. Rhodus
- Oral Medicine, Diagnosis and Radiology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank G. Ondrey
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beverly R. K. Wuertz
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Zhu
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (YZ); (TJG)
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (TJG)
| |
Collapse
|
966
|
Sun L, Zhu G, Yan X, Mou S, Dovichi NJ. Uncovering immobilized trypsin digestion features from large-scale proteome data generated by high-resolution mass spectrometry. J Chromatogr A 2014; 1337:40-7. [PMID: 24636566 PMCID: PMC4000775 DOI: 10.1016/j.chroma.2014.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
Immobilized trypsin produces very fast protein digestion, which is attractive for application to high throughput bottom-up proteomics. While there is a rich literature on the preparation of immobilized trypsin, there are very few studies that investigate its application to complex proteomic samples. In this work, we compared solution-phase trypsin with trypsin immobilized on magnetic microspheres for digestion of two complex proteomes, Escherichia coli and the MCF7 cell line. The digests were separated by HPLC, and detected with a Q-Exactive mass spectrometer, which generated high resolution and high quality parent- and fragment-ion mass spectra. The data were analyzed using MaxQuant. We make several conclusions about the features of immobilized trypsin digestion of complex proteomes. First, both immobilized and solution-phase trypsin generate peptides that sample the same protein pool. Second, immobilized trypsin can digest complex proteomes two orders of magnitude faster than solution-phase trypsin while retaining similar numbers of protein identifications and proteome depth. Digestion using immobilized trypsin for 5-min produces a similar number of missed cleavages as solution-based trypsin digestion for 4-h; digestion using immobilized trypsin for 20-min produces a similar number of missed cleavages as solution-based trypsin digestion for 12-h. Third, immobilized trypsin produces quantitatively reproducible digestion of complex proteomes. Finally, there is small but measurable loss of peptide due to non-specific adsorption to the immobilization matrix. This adsorption generates a bias against detection of basic peptides.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
967
|
Lill JR, Wertz IE. Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol Sci 2014; 35:187-207. [PMID: 24717260 DOI: 10.1016/j.tips.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/20/2022]
Abstract
Ubiquitination is a highly conserved post-translational modification that regulates protein trafficking, function, and turnover. Ubiquitin ligases (E3s) conjugate ubiquitin polypeptides on substrates, whereas deubiquitnases (DUBs) reverse ubiquitination. Engineering of chemical antagonists and inhibitors of ubiquitin ligases and DUBs has considerably aided the study of enzymes that participate in ubiquitin modification of substrates. In addition, proteomic tools have been developed to characterize the enzymes, substrates, and modifications regulated by DUBs and E3s. Here we review inhibitors and antagonists that have been developed against DUBs and E3s, focusing on enzymes that participate in ubiquitin editing or in the reciprocal ubiquitin regulation of substrates. We outline the cellular biology that is regulated by these DUBs and E3s and highlight how the inhibitory compounds have improved our understanding of these pathways. Finally, we discuss the challenges and future directions for pharmacologically targeting ubiquitin-modifying enzymes, as well as the development of proteomic methods to evaluate ubiquitin modification of substrates.
Collapse
Affiliation(s)
- Jennie R Lill
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, M/S 413A, South San Francisco, CA 94080, USA.
| | - Ingrid E Wertz
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, M/S 40, South San Francisco, CA 94080, USA.
| |
Collapse
|
968
|
Prudent M, D’Alessandro A, Cazenave JP, Devine DV, Gachet C, Greinacher A, Lion N, Schubert P, Steil L, Thiele T, Tissot JD, Völker U, Zolla L. Proteome Changes in Platelets After Pathogen Inactivation—An Interlaboratory Consensus. Transfus Med Rev 2014; 28:72-83. [DOI: 10.1016/j.tmrv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
969
|
Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med 2014; 3:7. [PMID: 24679154 PMCID: PMC3994249 DOI: 10.1186/2001-1326-3-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic-based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
| | - Akshay Bhat
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
970
|
Zougman A, Selby PJ, Banks RE. Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis. Proteomics 2014; 14:1006-0. [PMID: 24678027 DOI: 10.1002/pmic.201300553] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 01/28/2023]
Abstract
Despite recent developments in bottom-up proteomics, the need still exists in a fast, uncomplicated, and robust method for comprehensive sample processing especially when applied to low protein amounts. The suspension trapping method combines the advantage of efficient SDS-based protein extraction with rapid detergent removal, reactor-type protein digestion, and peptide cleanup. Proteins are solubilized in SDS. The sample is acidified and introduced into the suspension trapping tip incorporating the depth filter and hydrophobic compartments, filled with the neutral pH methanolic solution. The instantly formed fine protein suspension is trapped in the depth filter stack-this crucial step is aimed at separating the particulate matter in space. SDS and other contaminants are removed in the flow-through, and a protease is introduced. Following the digestion, the peptides are cleaned up using the tip's hydrophobic part. The methodology allows processing of protein loads down to the low microgram/submicrogram levels. The detergent removal takes about 5 min, whereas the tryptic proteolysis of a cellular lysate is complete in as little as 30 min. We have successfully utilized the method for analysis of cellular lysates, enriched membrane preparations, and immunoprecipitates. We expect that due to its robustness and simplicity, the method will become an essential proteomics tool.
Collapse
Affiliation(s)
- Alexandre Zougman
- Cancer Research UK Centre, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | | | | |
Collapse
|
971
|
Gromov P, Moreira JMA, Gromova I. Proteomic analysis of tissue samples in translational breast cancer research. Expert Rev Proteomics 2014; 11:285-302. [DOI: 10.1586/14789450.2014.899469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
972
|
Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development. Sci Rep 2014; 4:4365. [PMID: 24626130 PMCID: PMC3953746 DOI: 10.1038/srep04365] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023] Open
Abstract
While there is a rich literature on transcription dynamics during the development of many organisms, protein data is limited. We used iTRAQ isotopic labeling and mass spectrometry to generate the largest developmental proteomic dataset for any animal. Expression dynamics of nearly 4,000 proteins of Xenopuslaevis was generated from fertilized egg to neurula embryo. Expression clusters into groups. The cluster profiles accurately reflect the major events that mark changes in gene expression patterns during early Xenopus development. We observed decline in the expression of ten DNA replication factors after the midblastula transition (MBT), including a marked decline of the licensing factor XCdc6. Ectopic expression of XCdc6 leads to apoptosis; temporal changes in this protein are critical for proper development. Measurement of expression in single embryos provided no evidence for significant protein heterogeneity between embryos at the same stage of development.
Collapse
|
973
|
Ivanov MV, Levitsky LI, Lobas AA, Panic T, Laskay ÜA, Mitulovic G, Schmid R, Pridatchenko ML, Tsybin YO, Gorshkov MV. Empirical Multidimensional Space for Scoring Peptide Spectrum Matches in Shotgun Proteomics. J Proteome Res 2014; 13:1911-20. [DOI: 10.1021/pr401026y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark V. Ivanov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Lev I. Levitsky
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Anna A. Lobas
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Tanja Panic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Goran Mitulovic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Rainer Schmid
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marina L. Pridatchenko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| |
Collapse
|
974
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
975
|
Sun L, Zhu G, Yan X, Champion MM, Dovichi NJ. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface. Proteomics 2014; 14:622-8. [PMID: 24277677 PMCID: PMC3947435 DOI: 10.1002/pmic.201300295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/18/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of proteomic studies employ RP-HPLC coupled with MS/MS for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These studies usually require milligrams to micrograms of starting material. CZE provides an interesting alternative separation method based on a different separation mechanism than HPLC. CE received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. CZE coupled with this interface and these detectors provides single shot detection of >1250 peptides from an Escherichia coli digest in less than 1 h, identification of nearly 5000 peptides from analysis of seven fractions produced by SPE of the E. coli digest in a 6 h total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
976
|
Such-Sanmartín G, Sidoli S, Ventura-Espejo E, Jensen ON. KYSS: Mass spectrometry data quality assessment for protein analysis and large-scale proteomics. Biochem Biophys Res Commun 2014; 445:702-7. [DOI: 10.1016/j.bbrc.2014.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/02/2023]
|
977
|
Hioki Y, Tanimura R, Iwamoto S, Tanaka K. Nano-LC/MALDI-MS Using a Column-Integrated Spotting Probe for Analysis of Complex Biomolecule Samples. Anal Chem 2014; 86:2549-58. [DOI: 10.1021/ac4037069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yusaku Hioki
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ritsuko Tanimura
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
978
|
Martell J, Weerapana E. Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules 2014; 19:1378-93. [PMID: 24473203 PMCID: PMC6270908 DOI: 10.3390/molecules19021378] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a chemical proteomic technique that enables the interrogation of protein activity directly within complex proteomes. Given the dominant role of posttranslational modifications in regulating protein function in vivo, ABPP provides a direct readout of activity that is not attained through traditional proteomic methods. ABPP relies on the design of covalent binding probes that either target a specific enzyme or a class of enzymes with related function. These covalent warheads are coupled to either fluorophores or biotin groups for visualization and enrichment of these active proteins. The advent of bioorthogonal chemistries, in particular, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), has benefitted the field of ABPP by achieving the following: (1) replacing bulky reporter groups with smaller alkyne or azide groups to promote cell permeability; (2) adding modularity to the system such that a single probe can be diversified with a variety of reporter groups without the need to develop new synthetic routes; and (3) enabling the conjugation of complex linkers to facilitate quantitative proteomic analyses. Here, we summarize recent examples of CuAAC in ABPP that serve to illustrate the contribution of bioorthogonal chemistry to advancing discoveries in this field.
Collapse
Affiliation(s)
- Julianne Martell
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
979
|
Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, Mondello S, Tan W, Anagli J, Wang K. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:111-31. [PMID: 24410486 DOI: 10.1089/omi.2013.0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.
Collapse
Affiliation(s)
- Firas H Kobeissy
- 1 Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Marino F, Cristobal A, Binai NA, Bache N, Heck AJR, Mohammed S. Characterization and usage of the EASY-spray technology as part of an online 2D SCX-RP ultra-high pressure system. Analyst 2014; 139:6520-8. [DOI: 10.1039/c4an01568a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The EASY-spray technology can now be implemented as a simple online 2D SCX-RP ultra-high pressure system, which allows one to reach deep proteome coverages.
Collapse
Affiliation(s)
- Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences
- University of Utrecht
- 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre
| | - Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences
- University of Utrecht
- 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre
| | - Nadine A. Binai
- Biomolecular Mass Spectrometry and Proteomics
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences
- University of Utrecht
- 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre
| | | | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences
- University of Utrecht
- 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences
- University of Utrecht
- 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre
| |
Collapse
|
981
|
Abstract
Discovery-based proteomics has found its place in nearly every facet of biological research. A key objective of this approach is to maximize sequence coverage for proteins across a wide concentration range. Fractionating samples at the protein level is one of the most common ways to circumvent challenges due to sample complexity and improve proteome coverage. Of the available methods, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) is a robust and reproducible method for qualitative and quantitative proteomic analysis. Here we describe a general GeLC-MS/MS protocol and include technical advice and outline caveats to increase the probability of a successful analysis.
Collapse
|
982
|
Buchowiecka AK. Puzzling over protein cysteine phosphorylation – assessment of proteomic tools for S-phosphorylation profiling. Analyst 2014; 139:4118-23. [DOI: 10.1039/c4an00724g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The article provides useful information necessary for designing experiments in the emerging cysteine phosphoproteomics.
Collapse
Affiliation(s)
- A. K. Buchowiecka
- Institute of Technical Biochemistry
- Lodz University of Technology
- 90-924 Lodz, Poland
| |
Collapse
|
983
|
Abstract
Proteins provide the verbs to biology, and proteomics provides the nouns for their analytical and discovery-driven studies. The term proteomics was coined in the 1990s and deals with the protein complement of the genome-the proteome. Following the classical proteomics era, the development of new mass spectrometric methods for peptide analysis permitted the identification of proteins in peptide mixtures obtained by proteolytic digestion of complex samples, e.g., shotgun proteomics. Since its introduction, shotgun proteomics became the standard technique for the analysis of protein hydrolyzates in a high-throughput way. In this chapter, we provide a survey in shotgun proteomics highlighting instruments and techniques used in modern second and third proteomics generation.
Collapse
Affiliation(s)
- Fabio Cesar Sousa Nogueira
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av Athos da Silveira Ramos, 149 Bloco A - sala 542 Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
984
|
Aquino PF, Lima DB, de Saldanha da Gama Fischer J, Melani RD, Nogueira FCS, Chalub SRS, Soares ER, Barbosa VC, Domont GB, Carvalho PC. Exploring the proteomic landscape of a gastric cancer biopsy with the shotgun imaging analyzer. J Proteome Res 2013; 13:314-20. [PMID: 24283986 DOI: 10.1021/pr400919k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accessing localized proteomic profiles has emerged as a fundamental strategy to understand the biology of diseases, as recently demonstrated, for example, in the context of determining cancer resection margins with improved precision. Here, we analyze a gastric cancer biopsy sectioned into 10 parts, each one subjected to MudPIT analysis. We introduce a software tool, named Shotgun Imaging Analyzer and inspired in MALDI imaging, to enable the overlaying of a protein's expression heat map on a tissue picture. The software is tightly integrated with the NeXtProt database, so it enables the browsing of identified proteins according to chromosomes, quickly listing human proteins never identified by mass spectrometry (i.e., the so-called missing proteins), and the automatic search for proteins that are more expressed over a specific region of interest on the biopsy, all of which constitute goals that are clearly well-aligned with those of the C-HPP. Our software has been able to highlight an intense expression of proteins previously known to be correlated with cancers (e.g., glutathione S-transferase Mu 3), and in particular, we draw attention to Gastrokine-2, a "missing protein" identified in this work of which we were able to clearly delineate the tumoral region from the "healthy" with our approach. Data are available via ProteomeXchange with identifier PXD000584.
Collapse
Affiliation(s)
- Priscila Ferreira Aquino
- Proteomics Unit, Rio de Janeiro Proteomics Network, Department of Biochemistry, Federal University of Rio de Janeiro , Rio de Janeiro 21941-909, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
985
|
Mayne J, Starr AE, Ning Z, Chen R, Chiang CK, Figeys D. Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Anal Chem 2013; 86:176-95. [DOI: 10.1021/ac403551f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Zhibin Ning
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Rui Chen
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Daniel Figeys
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| |
Collapse
|
986
|
Zhou W, Liotta LA, Petricoin EF. Cancer metabolism and mass spectrometry-based proteomics. Cancer Lett 2013; 356:176-83. [PMID: 24262660 DOI: 10.1016/j.canlet.2013.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
Cancer metabolism has been extensively investigated by various tools, and the fact of diverse metabolic reprogramming in cancer cells has been gradually unveiled. In this review, we discuss some contributions in cancer metabolism by general proteomic analysis and post-translational modification analysis using mass spectrometry (MS) technique. Instead of following one or several metabolic enzymes/pathways, the current MS approach can quickly identify a large number of proteins and compare their expression levels in different samples, providing a potentially comprehensive picture of cancer metabolism. The MS analyses from pancreatic cancer cells support a hypothesis that hypoxia promotes cells in solid tumor to reprogram metabolic pathways in order to minimize the oxygen consumption. The oxidative stress in pancreatic cancer cells is lower than that in normal duct cells, and the cancer cells adaptively express less antioxidant proteins, contrary to claims that oxidative stress is higher in cancer cells. Separately, the MS analyses confirm that pyruvate kinase isoform 2 (PKM2) can be detected in both cancer and normal cells, disagreeing with report that tumor cells express exclusively PKM2. In addition, MS analyses from pancreatic cancer cells demonstrate that lactate dehydrogenase-B is significantly upregulated in pancreatic cancer cells, whereas previous reports show that lactate dehydrogenase-A is overexpressed and is responsible for lactate production in cancer cells. Lastly, the result from MS analysis suggests that the glutaminolysis in pancreatic cancer cells is different from that observed in glioblastoma cells.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
987
|
Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Ultrasensitive and Fast Bottom-up Analysis of Femtogram Amounts of Complex Proteome Digests. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
988
|
Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew Chem Int Ed Engl 2013; 52:13661-4. [PMID: 24173663 DOI: 10.1002/anie.201308139] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 12/16/2022]
Abstract
Femtogram proteomics: An ultrasensitive capillary zone electrophoresis-mass spectrometry system that is based on an improved nanospray interface has been developed. This system is used for the analysis of picogram to femtogram amounts of E. coli digests; for example, over 100 proteins were identified from 16 pg digests by tandem mass spectrometry. AMTs=accurate mass and time tags.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (USA)
| | | | | | | | | | | |
Collapse
|
989
|
Laskay ÜA, Lobas AA, Srzentić K, Gorshkov MV, Tsybin YO. Proteome Digestion Specificity Analysis for Rational Design of Extended Bottom-up and Middle-down Proteomics Experiments. J Proteome Res 2013; 12:5558-69. [DOI: 10.1021/pr400522h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskii Prospect 38, Bldg. 2,119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141707 Dolgoprudny, Moscow
Region, Russia
| | - Kristina Srzentić
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskii Prospect 38, Bldg. 2,119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141707 Dolgoprudny, Moscow
Region, Russia
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| |
Collapse
|
990
|
Stein DR, Hu X, McCorrister SJ, Westmacott GR, Plummer FA, Ball TB, Carpenter MS. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics 2013; 13:2956-66. [DOI: 10.1002/pmic.201300079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/10/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Derek R. Stein
- Department of Medical Microbiology; University of Manitoba; Winnipeg MB Canada
| | - Xiaojie Hu
- Section of Viral Diseases; Public Health Agency of Canada; Winnipeg MB Canada
| | - Stuart J. McCorrister
- Mass Spectrometry and Proteomics Core Facility; Public Health Agency of Canada; Winnipeg MB Canada
| | - Garrett R. Westmacott
- National HIV and Retrovirology Laboratories; Public Health Agency of Canada; Winnipeg MB Canada
| | - Francis A. Plummer
- Department of Medical Microbiology; University of Manitoba; Winnipeg MB Canada
- National HIV and Retrovirology Laboratories; Public Health Agency of Canada; Winnipeg MB Canada
| | - Terry B. Ball
- Department of Medical Microbiology; University of Manitoba; Winnipeg MB Canada
- National HIV and Retrovirology Laboratories; Public Health Agency of Canada; Winnipeg MB Canada
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Michael S. Carpenter
- Department of Medical Microbiology; University of Manitoba; Winnipeg MB Canada
- Section of Viral Diseases; Public Health Agency of Canada; Winnipeg MB Canada
| |
Collapse
|
991
|
Hansson J, Krijgsveld J. Proteomic analysis of cell fate decision. Curr Opin Genet Dev 2013; 23:540-7. [DOI: 10.1016/j.gde.2013.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 02/08/2023]
|
992
|
Alberton D, Müller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA, Yates MG, de Oliveira Pedrosa F, de Souza EM. Comparative Proteomics Analysis of the Rice Roots Colonized by Herbaspirillum seropedicae Strain SmR1 Reveals Induction of the Methionine Recycling in the Plant Host. J Proteome Res 2013; 12:4757-68. [DOI: 10.1021/pr400425f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dayane Alberton
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | | | - Glaucio Valdameri
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Fabio Aparecido Cordeiro
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Marshall Geoffrey Yates
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| |
Collapse
|