951
|
Abstract
Genome sequence analysis of RNAs presents special challenges to computational biology, because conserved RNA secondary structure plays a large part in RNA analysis. Algorithms well suited for RNA secondary structure and sequence analysis have been borrowed from computational linguistics. These "stochastic context-free grammar" (SCFG) algorithms have enabled the development of new RNA gene-finding and RNA homology search software. The aim of this paper is to provide an accessible introduction to the strengths and weaknesses of SCFG methods and to describe the state of the art in one particular kind of application: SCFG-based RNA similarity searching. The INFERNAL and RSEARCH programs are capable of identifying distant RNA homologs in a database search by looking for both sequence and secondary structure conservation.
Collapse
Affiliation(s)
- S R Eddy
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| |
Collapse
|
952
|
Deng W, Zhu X, Skogerbø G, Zhao Y, Fu Z, Wang Y, He H, Cai L, Sun H, Liu C, Li B, Bai B, Wang J, Jia D, Sun S, He H, Cui Y, Wang Y, Bu D, Chen R. Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. Genes Dev 2006; 16:20-9. [PMID: 16344563 PMCID: PMC1356125 DOI: 10.1101/gr.4139206] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Accepted: 08/22/2005] [Indexed: 01/14/2023]
Abstract
Recent evidence points to considerable transcription occurring in non-protein-coding regions of eukaryote genomes. However, their lack of conservation and demonstrated function have created controversy over whether these transcripts are functional. Applying a novel cloning strategy, we have cloned 100 novel and 61 known or predicted Caenorhabditis elegans full-length ncRNAs. Studying the genomic environment and transcriptional characteristics have shown that two-thirds of all ncRNAs, including many intronic snoRNAs, are independently transcribed under the control of ncRNA-specific upstream promoter elements. Furthermore, the transcription levels of at least 60% of the ncRNAs vary with developmental stages. We identified two new classes of ncRNAs, stem-bulge RNAs (sbRNAs) and snRNA-like RNAs (snlRNAs), both featuring distinct internal motifs, secondary structures, upstream elements, and high and developmentally variable expression. Most of the novel ncRNAs are conserved in Caenorhabditis briggsae, but only one homolog was found outside the nematodes. Preliminary estimates indicate that the C. elegans transcriptome contains approximately 2700 small non-coding RNAs, potentially acting as regulatory elements in nematode development.
Collapse
Affiliation(s)
- Wei Deng
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
953
|
Abstract
The road to scientific discovery begins with an awareness of what is unknown. Research in science can in some ways be like putting together the pieces of a puzzle without having the benefit of the box-top picture of the completed puzzle. The "picture" in science is an understanding of how nature works in a particular instance, and it takes many separate pieces of the "puzzle" to put this understanding together. These pieces are always of different kinds of data, often obtained using different approaches and techniques. The challenge of the researcher is to picture or hypothesize each of the missing pieces before actually having them in hand, so they can be sought and tested in the laboratory. This "picturing" is actually having a clear idea of what you don't know: having a clear image of the "shape" of the missing piece. This is easy when the puzzle surrounding the missing piece is already in hand, but more difficult with less of it constrained by what is already known. In putting paper puzzles together, the shape of the pieces is not the only limitation that needs to be satisfied. There is also the picture to satisfy, that is, the picture usually has to make sense. In science these constraints can be manifold, and usually the quality of the research is judged by the number of ways a piece of data integrates into and brings together the rest of the puzzle. The multidimensionality of scientific questions makes it virtually essential that as many different pieces of the puzzle as possible be obtained. The more that is not known about the puzzle, the more pieces you need. Thus it is with the genetics of psychiatric diseases. In this guide, we will explore as many of the domains of the genetic puzzle as we are aware of. We will learn a bit of the language of each and how they fit into the puzzle with at least one anecdote to serve as an example. Mapping unknown territory is always a process, but we hope this guide will increase the reader's awareness of what is unknown.
Collapse
Affiliation(s)
- Christopher J Hough
- Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | |
Collapse
|
954
|
Mutch DM, Fauconnot L, Grigorov M, Fay LB. Putting the 'Ome' in lipid metabolism. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:67-84. [PMID: 17045192 DOI: 10.1016/s1387-2656(06)12003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recognition that altered lipid metabolism underlies many metabolic disorders challenging Western society highlights the importance of this metabolomic subset, herein referred to as the lipidome. Although comprehensive lipid analyses are not a recent concept, the novelty of a lipidomic approach lies with the application of robust statistical algorithms to highlight subtle, yet significant, changes in a population of lipid molecules. First-generation lipidomic studies have demonstrated the sensitivity of interpreting quantitative datasets with computational software; however, the innate power of comprehensive lipid profiling is often not exploited, as robust statistical models are not routinely utilized. Therefore, the current review aims to briefly describe the current technologies suitable for comprehensive lipid analysis, outline innovative mathematical models that have the ability to reveal subtle changes in metabolism, which will ameliorate our understanding of lipid biochemistry, and demonstrate the biological revelations found through lipidomic approaches and their potential implications for health management.
Collapse
Affiliation(s)
- David M Mutch
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | |
Collapse
|
955
|
Willingham AT, Dike S, Cheng J, Manak JR, Bell I, Cheung E, Drenkow J, Dumais E, Duttagupta R, Ganesh M, Ghosh S, Helt G, Nix D, Piccolboni A, Sementchenko V, Tammana H, Kapranov P, Gingeras TR. Transcriptional landscape of the human and fly genomes: nonlinear and multifunctional modular model of transcriptomes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:101-10. [PMID: 17480199 DOI: 10.1101/sqb.2006.71.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Regions of the genome not coding for proteins or not involved in cis-acting regulatory activities are frequently viewed as lacking in functional value. However, a number of recent large-scale studies have revealed significant regulated transcription of unannotated portions of a variety of plant and animal genomes, allowing a new appreciation of the widespread transcription of large portions of the genome. High-resolution mapping of the sites of transcription of the human and fly genomes has provided an alternative picture of the extent and organization of transcription and has offered insights for biological functions of some of the newly identified unannotated transcripts. Considerable portions of the unannotated transcription observed are developmental or cell-type-specific parts of protein-coding transcripts, often serving as novel, alternative 5' transcriptional start sites. These distal 5' portions are often situated at significant distances from the annotated gene and alternatively join with or ignore portions of other intervening genes to comprise novel unannotated protein-coding transcripts. These data support an interlaced model of the genome in which many regions serve multifunctional purposes and are highly modular in their utilization. This model illustrates the underappreciated organizational complexity of the genome and one of the functional roles of transcription from unannotated portions of the genome.
Collapse
|
956
|
Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto JI, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 2006; 16:55-65. [PMID: 16344560 PMCID: PMC1356129 DOI: 10.1101/gr.4039406] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 09/19/2005] [Indexed: 12/21/2022]
Abstract
By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.
Collapse
Affiliation(s)
- Kouichi Kimura
- Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
957
|
Win J, Kanneganti TD, Torto-Alalibo T, Kamoun S. Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Fungal Genet Biol 2006; 43:20-33. [PMID: 16380277 DOI: 10.1016/j.fgb.2005.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 10/05/2005] [Accepted: 10/05/2005] [Indexed: 11/16/2022]
Abstract
Phytophthora infestans is a devastating phytopathogenic oomycete that causes late blight on tomato and potato. Recent genome sequencing efforts of P. infestans and other Phytophthora species are generating vast amounts of sequence data providing opportunities to unlock the complex nature of pathogenesis. However, accurate annotation of Phytophthora genomes will be a significant challenge. Most of the information about gene structure in these species was gathered from a handful of genes resulting in significant limitations for development of ab initio gene-calling programs. In this study, we collected a total of 150 bioinformatically determined near full-length cDNA (FLcDNA) sequences of P. infestans that were predicted to contain full open reading frame sequences. We performed detailed computational analyses of these FLcDNA sequences to obtain a snapshot of P. infestans gene structure, gauge the degree of sequence conservation between P. infestans genes and those of Phytophthora sojae and Phytophthora ramorum, and identify patterns of gene conservation between P. infestans and various eukaryotes, particularly fungi, for which genome-wide translated protein sequences are available. These analyses helped us to define the structural characteristics of P. infestans genes using a validated data set. We also determined the degree of sequence conservation within the genus Phytophthora and identified a set of fast evolving genes. Finally, we identified a set of genes that are shared between Phytophthora and fungal phytopathogens but absent in animal fungal pathogens. These results confirm that plant pathogenic oomycetes and fungi share virulence components, and suggest that eukaryotic microbial pathogens that share similar lifestyles also share a similar set of genes independently of their phylogenetic relatedness.
Collapse
Affiliation(s)
- Joe Win
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
958
|
Ozawa T. Designing split reporter proteins for analytical tools. Anal Chim Acta 2006; 556:58-68. [PMID: 17723331 DOI: 10.1016/j.aca.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 11/25/2022]
Abstract
A current focus of biological research is to quantify and image cellular processes in living cells and animals. To detect such cellular processes, genetically-encoded reporters have been extensively used. The most common reporters include firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. This review describes novel design of split-GFP and luciferase reporters based on protein splicing, and highlights some potential applications with the reporters to study protein-protein interactions, protein localization, intracellular protein dynamics, and protein activity in living cells and animals.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Molecular Structure, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
959
|
Ban N, Sasaki M, Sakai H, Ueda K, Inagaki N. Cloning of ABCA17, a novel rodent sperm-specific ABC (ATP-binding cassette) transporter that regulates intracellular lipid metabolism. Biochem J 2005; 389:577-85. [PMID: 15810880 PMCID: PMC1175136 DOI: 10.1042/bj20050159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The A subclass of the ABC (ATP-binding cassette) transporter superfamily has a structural feature that distinguishes it from other ABC transporters, and is proposed to be involved in the transmembrane transport of endogenous lipids. Here we have cloned mouse and rat full-length cDNAs of ABCA17, a novel ABC transporter belonging to the A subclass. Mouse and rat ABCA17 proteins comprise 1733 and 1773 amino acid residues respectively, having 87.3% amino acid identity; mouse ABCA17 has amino acid identities of 55.3% and 36.7% with mouse ABCA3 and sea urchin ABCA respectively. RNA blot and quantitative real-time PCR analyses showed that ABCA17 mRNA is expressed exclusively in the testis. Examination of testis by in situ hybridization showed that ABCA17 mRNA is expressed in germ cells, mainly spermatocytes, in the seminiferous tubule. Immunoblot analysis using a specific antibody showed that ABCA17 is a protein of 200 kDa, and immunohistochemical analysis demonstrated that the protein is detected in the anterior head of sperm and elongated spermatids. ABCA17 was localized in the endoplasmic reticulum in transiently transfected HEK293 cells. Metabolic labelling analysis showed that intracellular esterified lipids, including cholesteryl esters, fatty acid esters and triacylglycerols, were significantly decreased in HEK293 cells stably expressing ABCA17 compared with untransfected cells. These results suggest that ABCA17 may play a role in regulating lipid composition in sperm.
Collapse
Affiliation(s)
- Nobuhiro Ban
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
| | - Mayumi Sasaki
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromichi Sakai
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
| | - Kazumitsu Ueda
- ‡Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuya Inagaki
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
960
|
Hackl H, Burkard TR, Sturn A, Rubio R, Schleiffer A, Tian S, Quackenbush J, Eisenhaber F, Trajanoski Z. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 2005; 6:R108. [PMID: 16420668 PMCID: PMC1414107 DOI: 10.1186/gb-2005-6-13-r108] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/23/2005] [Accepted: 11/08/2005] [Indexed: 12/31/2022] Open
Abstract
In-depth bioinformatics analyses of expressed sequence tags found to be differentially expressed during differentiation of 3T3-L1 pre-adipocyte cells were combined with de novo functional annotation and mapping onto known pathways to generate a molecular atlas of fat-cell development. Background Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. Detailed characterization of the sequences of identified gene products has not been done and global mechanisms have not been investigated. We evaluated the extent to which molecular processes can be revealed by expression profiling and functional annotation of genes that are differentially expressed during fat cell development. Results Mouse microarrays with more than 27,000 elements were developed, and transcriptional profiles of 3T3-L1 cells (pre-adipocyte cells) were monitored during differentiation. In total, 780 differentially expressed expressed sequence tags (ESTs) were subjected to in-depth bioinformatics analyses. The analysis of 3'-untranslated region sequences from 395 ESTs showed that 71% of the differentially expressed genes could be regulated by microRNAs. A molecular atlas of fat cell development was then constructed by de novo functional annotation on a sequence segment/domain-wise basis of 659 protein sequences, and subsequent mapping onto known pathways, possible cellular roles, and subcellular localizations. Key enzymes in 27 out of 36 investigated metabolic pathways were regulated at the transcriptional level, typically at the rate-limiting steps in these pathways. Also, coexpressed genes rarely shared consensus transcription-factor binding sites, and were typically not clustered in adjacent chromosomal regions, but were instead widely dispersed throughout the genome. Conclusions Large-scale transcription profiling in conjunction with sophisticated bioinformatics analyses can provide not only a list of novel players in a particular setting but also a global view on biological processes and molecular networks.
Collapse
Affiliation(s)
- Hubert Hackl
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Thomas Rainer Burkard
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Sturn
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Renee Rubio
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney Street, Boston, MA 02115
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Sun Tian
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - John Quackenbush
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney Street, Boston, MA 02115
| | - Frank Eisenhaber
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
961
|
Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 2005; 16:11-9. [PMID: 16344565 PMCID: PMC1356124 DOI: 10.1101/gr.4200206] [Citation(s) in RCA: 401] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did not contain an apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-mRNA contamination during library construction, or alternatively represent nonspecific "transcriptional noise." Here we show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts of unknown function whose expression appears to be regulated. The ncRNA transcripts have larger exons and fewer introns than protein-coding transcripts. Analysis of the genomic landscape around these sequences indicates that some cDNA clones were produced not from terminal poly(A) tracts but internal priming sites within longer transcripts, only a minority of which is encompassed by known genes. A significant proportion of these transcripts exhibit tissue-specific expression patterns, as well as dynamic changes in their expression in macrophages following lipopolysaccharide stimulation. Taken together, the data provide strong support for the conclusion that ncRNAs are an important, regulated component of the mammalian transcriptome.
Collapse
Affiliation(s)
- Timothy Ravasi
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
962
|
Lipovich L, King MC. Abundant novel transcriptional units and unconventional gene pairs on human chromosome 22. Genome Res 2005; 16:45-54. [PMID: 16344557 PMCID: PMC1356128 DOI: 10.1101/gr.3883606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Novel transcriptional units (TUs) are EST-supported transcribed features not corresponding to known genes. Unconventional gene pairs (UGPs) are pairs of genes and/or TUs sharing exon-to-exon cis-antisense overlaps or putative bidirectional promoters. Computational TU and UGP discovery followed by manual curation was performed in the entire published 34.9-Mb human chromosome 22 euchromatic sequence. Novel TUs (n = 517) were as abundant as known genes (n = 492) and typically did not have nonprimate DNA and protein homologies. One hundred seventy-one (33%) of TUs, but only 13 (3%) of genes, both lacked nonprimate conservation and localized to gaps in the human-mouse BLASTZ alignment. Novel TUs were richer in exonic primate-specific interspersed repetitive elements (P = 0.001) and were more likely to rely on splice junctions provided by them, than were known genes: 19% of spliced TUs, versus 5% of spliced genes, had a splice site within a primate-specific repeat. Hence, novel TUs and known genes may represent different portions of the transcriptome. Two hundred nine (21%) of chromosome 22 transcripts participated in 77 cis-antisense and 42 promoter-sharing UGPs. Transcripts involved simultaneously in both UGP types were more common than was expected (P = 0.01). UGPs were nonrandomly distributed along the sequence: 89 (75%) clustered in distinct regions, the sum of which equaled 4.4 Mb (<13% of the chromosome). Eighty (67%) of the UGPs possessed significant locus structure differences between primates and rodents. Since some TUs may be functional noncoding transcripts and since the cis-regulatory potential of UGPs is well recognized, TUs and UGPs specific to the primate lineage may contribute to the genomic basis for primate-specific phenotypes.
Collapse
Affiliation(s)
- Leonard Lipovich
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA.
| | | |
Collapse
|
963
|
|
964
|
Hoskins RA, Stapleton M, George RA, Yu C, Wan KH, Carlson JW, Celniker SE. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP). Nucleic Acids Res 2005; 33:e185. [PMID: 16326860 PMCID: PMC1301602 DOI: 10.1093/nar/gni184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5′- and 3′-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT–PCR approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan E. Celniker
- To whom correspondence should be addressed at Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road MS 64-121, Berkeley, CA 94720, USA. Tel: 510 486 6258; Fax: 510 486 6798;
| |
Collapse
|
965
|
Fujii Y, Itoh T, Sakate R, Koyanagi KO, Matsuya A, Habara T, Yamaguchi K, Kaneko Y, Gojobori T, Imanishi T. A web tool for comparative genomics: G-compass. Gene 2005; 364:45-52. [PMID: 16169162 DOI: 10.1016/j.gene.2005.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/09/2005] [Accepted: 05/30/2005] [Indexed: 11/22/2022]
Abstract
In order to assist the progression of comparative genomics, we have developed a new web-based tool, named G-compass, for browsing and analysis of genome alignments. G-compass utilizes 829,311 pieces of genome alignments between human and mouse that were originally produced for this tool. The quality of the genome alignment set was evaluated by using several statistics. As a result, the alignment set is found to cover approximately 17% of the human genome and 82% of the annotated exons. The averages of nucleotide sequence identity and sequence length are 71.2% and 673.6 bp, respectively. In comparison with public data, it appeared that our data is more expansive and possesses greater genome coverage. G-compass incorporates unique functions such as window analysis of individual alignments. Furthermore, with G-compass and the joint help of H-InvDB, we were able to find highly conserved genomic segments and a human specific antisense transcript candidate, demonstrating that G-compass is useful for facilitating biological discoveries. G-compass is publicly accessible on the WWW at http://www.jbirc.aist.go.jp/g-compass/.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Japan Biological Information Research Center, Japan Biological Informatics Consortium, AIST Bio-IT Research Building 7F, 2-42, Aomi, Koto-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
966
|
Hsiao WWL, Ung K, Aeschliman D, Bryan J, Finlay BB, Brinkman FSL. Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 2005; 1:e62. [PMID: 16299586 PMCID: PMC1285063 DOI: 10.1371/journal.pgen.0010062] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 10/13/2005] [Indexed: 11/21/2022] Open
Abstract
Microbial genes that are “novel” (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger “arsenal” of novel genes for adaptation than previously thought. More than 250 microbial genomes have been sequenced to date. A significant proportion of the genes in these genomes have no apparent similarity to known genes and their functions are unknown (i.e., they appear to be novel). As the number of sequenced genomes increases, the number of these novel genes continues to increase. In this paper, the authors now show, through an analysis of a diverse range of prokaryotic genomes, that novel genes are more prevalent in regions called genomic islands. Genomic islands are clusters of genes in genomes that show evidence of horizontal origins. This study is notable since genomic islands disproportionately contain many genes of medical, agricultural, and environmental importance (e.g., animal and plant pathogen virulence factors, antibiotic resistance genes, phenolic degradation genes, etc.). The observation that high proportions of novel genes are also localized to genomic islands suggests that microbes may have access to a larger “arsenal” of novel genes for important adaptations than previously thought. These results also imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. The authors suggest that further studies involving large-scale environmental genomic sampling are required to help characterize this understudied gene pool.
Collapse
Affiliation(s)
- William W. L Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Korine Ung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dana Aeschliman
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Bryan
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona S. L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
967
|
Ureña JM, La Torre A, Martínez A, Lowenstein E, Franco N, Winsky-Sommerer R, Fontana X, Casaroli-Marano R, Ibáñez-Sabio MA, Pascual M, Del Rio JA, de Lecea L, Soriano E. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain. J Comp Neurol 2005; 490:119-32. [PMID: 16052498 DOI: 10.1002/cne.20656] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytosolic tyrosine kinases play a critical role both in neural development and in adult brain function and plasticity. Here we isolated a cDNA with high homology to human Ack1 and mouse Tnk2. This cDNA directs the expression of a 125-kD protein that can be autophosphorylated in tyrosines. Initially, this clone was named Pyk1 for proline-rich tyrosine kinase (Lev et al., 1995); however, since it corresponds to the mouse homolog of Ack1, here we called it Ack1/Pyk1. In this study we show that Ack1/Pyk1 mRNA and protein is highly expressed in the developing and adult brain. The highest levels of Ack1/Pyk1 expression were detected in the hippocampus, neocortex, and cerebellum. Electron microscopy studies showed that Ack1/Pyk1 protein is expressed in these regions both at dendritic spines and presynaptic axon terminals, indicating a role in synaptic function. Furthermore, we demonstrate that Ack1/Pyk1 mRNA levels are strongly upregulated by increased neural activity, produced by intraperitoneal kainate injections. During development, Ack1/Pyk1 was also expressed in the proliferative ventricular zones and in postmitotic maturing neurons. In neuronal cultures, Ack1/Pyk1 was detected in developing dendrites and axons, including dendritic tips and growth cones. Moreover, Ack1/Pyk1 colocalized with Cdc42 GTPase in neuronal cultures and coimmunoprecipitated with Cdc42 in HEK 293T cells. Altogether, our findings indicate that Ack1/Pyk1 tyrosine kinase may be involved both in adult synaptic function and plasticity and in brain development.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Blotting, Western/methods
- Brain/cytology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Cells, Cultured
- Cloning, Molecular/methods
- Embryo, Mammalian
- Excitatory Amino Acid Agonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Kainic Acid/pharmacology
- Mice
- Microscopy, Immunoelectron/methods
- Microtubule-Associated Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/ultrastructure
- Phosphoamino Acids/metabolism
- Phosphorylation
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/biosynthesis
- Synapses/metabolism
- Synapses/ultrastructure
- Time Factors
- Tubulin/metabolism
- cdc42 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Jesús Mariano Ureña
- Developmental Neurobiology and Regeneration Lab, Institute of Biomedical Research of Barcelona-Parc Científic de Barcelona, University of Barcelona, Josep Samitier 1-5, E08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
968
|
Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 2005; 22:1-5. [PMID: 16290135 DOI: 10.1016/j.tig.2005.10.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/02/2005] [Accepted: 10/14/2005] [Indexed: 01/05/2023]
Abstract
The mammalian transcriptome contains many non-protein-coding RNAs (ncRNAs), but most of these are of unclear significance and lack strong sequence conservation, prompting suggestions that they might be non-functional. However, certain long functional ncRNAs such as Air and Xist are also poorly conserved. In this article, we systematically analyzed the conservation of several groups of functional ncRNAs, including miRNAs, snoRNAs and longer ncRNAs whose function has been either documented or confidently predicted. As expected, miRNAs and snoRNAs were highly conserved. By contrast, the longer functional non-micro, non-sno ncRNAs were much less conserved with many displaying rapid sequence evolution. Our findings suggest that longer ncRNAs are under the influence of different evolutionary constraints and that the lack of conservation displayed by the thousands of candidate ncRNAs does not necessarily signify an absence of function.
Collapse
Affiliation(s)
- Ken C Pang
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
969
|
Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005; 33:e175. [PMID: 16284200 PMCID: PMC1283542 DOI: 10.1093/nar/gni179] [Citation(s) in RCA: 1438] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genome-wide expression profiling is a powerful tool for implicating novel gene ensembles in cellular mechanisms of health and disease. The most popular platform for genome-wide expression profiling is the Affymetrix GeneChip. However, its selection of probes relied on earlier genome and transcriptome annotation which is significantly different from current knowledge. The resultant informatics problems have a profound impact on analysis and interpretation the data. Here, we address these critical issues and offer a solution. We identified several classes of problems at the individual probe level in the existing annotation, under the assumption that current genome and transcriptome databases are more accurate than those used for GeneChip design. We then reorganized probes on more than a dozen popular GeneChips into gene-, transcript- and exon-specific probe sets in light of up-to-date genome, cDNA/EST clustering and single nucleotide polymorphism information. Comparing analysis results between the original and the redefined probe sets reveals approximately 30-50% discrepancy in the genes previously identified as differentially expressed, regardless of analysis method. Our results demonstrate that the original Affymetrix probe set definitions are inaccurate, and many conclusions derived from past GeneChip analyses may be significantly flawed. It will be beneficial to re-analyze existing GeneChip data with updated probe set definitions.
Collapse
Affiliation(s)
| | | | - Andrew D. Boyd
- Michigan Center for Biological Information, University of MichiganAnn Arbor, MI 48105, USA
| | - Georgi Kostov
- Michigan Center for Biological Information, University of MichiganAnn Arbor, MI 48105, USA
| | - Brian Athey
- Michigan Center for Biological Information, University of MichiganAnn Arbor, MI 48105, USA
| | - Edward G. Jones
- Department of Psychiatry and Center for Neuroscience, University of CaliforniaDavis, CA 95616, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA 92697, USA
| | - Richard M. Myers
- Department of Genetics, Stanford University School of MedicineStanford, CA 94305, USA
| | - Terry P. Speed
- Department of Statistics, University of CaliforniaBerkeley, CA 94720, USA
| | | | | | - Fan Meng
- To whom correspondence should be addressed. Tel: +1 734 615 7099; Fax: +1 734 647 4130;
| |
Collapse
|
970
|
Babon JJ, Yao S, DeSouza DP, Harrison CF, Fabri LJ, Liepinsh E, Scrofani SD, Baca M, Norton RS. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. FEBS J 2005; 272:6120-30. [PMID: 16302975 DOI: 10.1111/j.1742-4658.2005.05010.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SOCS3 is a negative regulator of cytokine signalling that inhibits Janus kinase-signal transduction and activator of transcription (JAK-STAT) mediated signal tranduction by binding to phosphorylated tyrosine residues on intracellular subunits of various cytokine receptors, as well as possibly the JAK proteins. SOCS3 consists of a short N-terminal sequence followed by a kinase inhibitory region, an extended SH2 domain and a C-terminal suppressor of cytokine signalling (SOCS) box. SOCS3 and the related protein, cytokine-inducible SH2-containing protein, are unique among the SOCS family of proteins in containing a region of mostly low complexity sequence, between the SH2 domain and the C-terminal SOCS box. Using NMR, we assigned and determined the secondary structure of a murine SOCS3 construct. The SH2 domain, unusually, consists of 140 residues, including an unstructured insertion of 35 residues. This insertion fits the criteria for a PEST sequence and is not required for phosphotyrosine binding, as shown by isothermal titration calorimetry. Instead, we propose that the PEST sequence has a functional role unrelated to phosphotyrosine binding, possibly mediating efficient proteolytic degradation of the protein. The latter half of the kinase inhibitory region and the entire extended SH2 subdomain form a single alpha-helix. The mapping of the true SH2 domain, and the location of its C terminus more than 50 residues further downstream than predicted by sequence homology, explains a number of previously unexpected results that have shown the importance of residues close to the SOCS box for phosphotyrosine binding.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
971
|
Neverov AD, Artamonova II, Nurtdinov RN, Frishman D, Gelfand MS, Mironov AA. Alternative splicing and protein function. BMC Bioinformatics 2005; 6:266. [PMID: 16274476 PMCID: PMC1298288 DOI: 10.1186/1471-2105-6-266] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 11/07/2005] [Indexed: 11/16/2022] Open
Abstract
Background Alternative splicing is a major mechanism of generating protein diversity in higher eukaryotes. Although at least half, and probably more, of mammalian genes are alternatively spliced, it was not clear, whether the frequency of alternative splicing is the same in different functional categories. The problem is obscured by uneven coverage of genes by ESTs and a large number of artifacts in the EST data. Results We have developed a method that generates possible mRNA isoforms for human genes contained in the EDAS database, taking into account the effects of nonsense-mediated decay and translation initiation rules, and a procedure for offsetting the effects of uneven EST coverage. Then we computed the number of mRNA isoforms for genes from different functional categories. Genes encoding ribosomal proteins and genes in the category "Small GTPase-mediated signal transduction" tend to have fewer isoforms than the average, whereas the genes in the category "DNA replication and chromosome cycle" have more isoforms than the average. Genes encoding proteins involved in protein-protein interactions tend to be alternatively spliced more often than genes encoding non-interacting proteins, although there is no significant difference in the number of isoforms of alternatively spliced genes. Conclusion Filtering for functional isoforms satisfying biological constraints and accountung for uneven EST coverage allowed us to describe differences in alternative splicing of genes from different functional categories. The observations seem to be consistent with expectations based on current biological knowledge: less isoforms for ribosomal and signal transduction proteins, and more alternative splicing of interacting and cell cycle proteins.
Collapse
Affiliation(s)
- AD Neverov
- State Scientific Center GosNIIGenetika, 1st Dorozhny proezd 1, Moscow, 117545, Russia
| | - II Artamonova
- Institute for Bioinformatics/MIPS, GSF – National Research Center for Environment and Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - RN Nurtdinov
- Department of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow, 119992, Russia
| | - D Frishman
- Institute for Bioinformatics/MIPS, GSF – National Research Center for Environment and Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Genome Oriented Bioinformatics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| | - MS Gelfand
- State Scientific Center GosNIIGenetika, 1st Dorozhny proezd 1, Moscow, 117545, Russia
- Department of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow, 119992, Russia
- Institute for Information Transmission Problems RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| | - AA Mironov
- State Scientific Center GosNIIGenetika, 1st Dorozhny proezd 1, Moscow, 117545, Russia
- Department of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow, 119992, Russia
| |
Collapse
|
972
|
Furutani Y, Manabe RI, Tsutsui K, Yamada T, Sugimoto N, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K. Identification and characterization of photomedins: novel olfactomedin-domain-containing proteins with chondroitin sulphate-E-binding activity. Biochem J 2005; 389:675-84. [PMID: 15836428 PMCID: PMC1180717 DOI: 10.1042/bj20050120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We screened more than 60000 RIKEN mouse cDNAs for novel ECM (extracellular matrix) proteins by extensive computational screening followed by recombinant expression and immunohistochemical characterization. We identified two novel olfactomedin-family proteins characterized by the presence of tandem CXCXCX9C motifs in the N-terminal region, a coiled-coil domain and an olfactomedin domain in the C-terminal region. These proteins, named photomedin-1 and photomedin-2, were secreted as disulphide-bonded dimers (photomedin-1) or oligomers/multimers (photomedin-2) with O-linked carbohydrate chains, although photomedin-1 was proteolytically processed in the middle of the molecule after secretion. In the retina, photomedin-1 was selectively expressed in the outer segment of photoreceptor cells and photomedin-2 was expressed in all retinal neurons. Among a panel of ECM components, including glycosaminoglycans, photomedins preferentially bound to chondroitin sulphate-E and heparin. These results, together, indicate that photomedins are novel olfactomedin-domain-containing extracellular proteins capable of binding to proteoglycans containing these glycosaminoglycan chains.
Collapse
Affiliation(s)
- Yutaka Furutani
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ri-ichiroh Manabe
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ko Tsutsui
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tomiko Yamada
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Nagisa Sugimoto
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Shiro Fukuda
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Kawai
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Nobuo Sugiura
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- ∥Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Koji Kimata
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshihide Hayashizaki
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Kiyotoshi Sekiguchi
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
- ¶Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
973
|
Castrignanò T, De Meo PD, Grillo G, Liuni S, Mignone F, Talamo IG, Pesole G. GenoMiner: a tool for genome-wide search of coding and non-coding conserved sequence tags. Bioinformatics 2005; 22:497-9. [PMID: 16267081 DOI: 10.1093/bioinformatics/bti754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GenoMiner is a software tool that searches for regions of similarity between user-submitted genome or transcript sequences and user-specified whole genome assemblies. The program then identifies conserved sequence tags (CSTs) in these homologous regions and provides a prediction of their coding or non-coding nature. The analysis is carried out through three steps: (1) definition of sequence regions homologous to the query sequence in the selected target genomes by a fast BLAT alignment; (2) identification of CSTs by a more sensitive BLAST-like alignment between the query and the homologous regions in the target genomes and (3) assessment of the coding or non-coding nature of detected CSTs through the computation of a suitable coding potential score. GenoMiner allows the user to search the query sequence against a number of vertebrate genome assemblies in a single run providing a user-friendly graphical output.
Collapse
Affiliation(s)
- Tiziana Castrignanò
- Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Universitàe Ricerca, CASPUR, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
974
|
Aidinis V, Carninci P, Armaka M, Witke W, Harokopos V, Pavelka N, Koczan D, Argyropoulos C, Thwin MM, Möller S, Waki K, Kazunori W, Gopalakrishnakone P, Ricciardi-Castagnoli P, Thiesen HJ, Hayashizaki Y, Kollias G. Cytoskeletal rearrangements in synovial fibroblasts as a novel pathophysiological determinant of modeled rheumatoid arthritis. PLoS Genet 2005; 1:e48. [PMID: 16254600 PMCID: PMC1270006 DOI: 10.1371/journal.pgen.0010048] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 09/14/2005] [Indexed: 01/16/2023] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease with a high prevalence and substantial socioeconomic burden. Despite intense research efforts, its aetiology and pathogenesis remain poorly understood. To identify novel genes and/or cellular pathways involved in the pathogenesis of the disease, we utilized a well-recognized tumour necrosis factor-driven animal model of this disease and performed high-throughput expression profiling with subtractive cDNA libraries and oligonucleotide microarray hybridizations, coupled with independent statistical analysis. This twin approach was validated by a number of different methods in other animal models of arthritis as well as in human patient samples, thus creating a unique list of disease modifiers of potential therapeutic value. Importantly, and through the integration of genetic linkage analysis and Gene Ontology–assisted functional discovery, we identified the gelsolin-driven synovial fibroblast cytoskeletal rearrangements as a novel pathophysiological determinant of the disease. Rheumatoid arthritis (RA) is a chronic destructive disease that affects 1–3% of the general population, exacting substantial personal, social, and economic costs. Current treatments alleviate the symptoms and offer immediate relief for many patients but do not cure the disease. While the cause of the disease remains poorly understood, the completion of the Human Genome Project and the emergence of functional genomics and high-throughput technologies offer intriguing new possibilities. For example, expression profiling creates a molecular fingerprint of the disease status by quantifying the expression levels of thousand of genes simultaneously. Similarly, reverse genetics (the genetic modification of a particular gene in search of its function) allow for the creation of animal models of disease. To discover novel genes and/or cellular pathways involved in the development of the disease, the authors used two methods in an animal model of RA for large-scale expression profiling. They identified a large number of genes and molecular processes that are deregulated in the disease. Using this information, the authors described pathophysiologic determinants of RA and created a unique list of disease modifiers of potential therapeutic value.
Collapse
Affiliation(s)
- Vassilis Aidinis
- Institute of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
975
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
976
|
Laserson U, Gan HH, Schlick T. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Nucleic Acids Res 2005; 33:6057-69. [PMID: 16254081 PMCID: PMC1270951 DOI: 10.1093/nar/gki911] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Riboswitches and RNA interference are important emerging mechanisms found in many organisms to control gene expression. To enhance our understanding of such RNA roles, finding small regulatory motifs in genomes presents a challenge on a wide scale. Many simple functional RNA motifs have been found by in vitro selection experiments, which produce synthetic target-binding aptamers as well as catalytic RNAs, including the hammerhead ribozyme. Motivated by the prediction of Piganeau and Schroeder [(2003) Chem. Biol., 10, 103–104] that synthetic RNAs may have natural counterparts, we develop and apply an efficient computational protocol for identifying aptamer-like motifs in genomes. We define motifs from the sequence and structural information of synthetic aptamers, search for sequences in genomes that will produce motif matches, and then evaluate the structural stability and statistical significance of the potential hits. Our application to aptamers for streptomycin, chloramphenicol, neomycin B and ATP identifies 37 candidate sequences (in coding and non-coding regions) that fold to the target aptamer structures in bacterial and archaeal genomes. Further energetic screening reveals that several candidates exhibit energetic properties and sequence conservation patterns that are characteristic of functional motifs. Besides providing candidates for experimental testing, our computational protocol offers an avenue for expanding natural RNA's functional repertoire.
Collapse
Affiliation(s)
- Uri Laserson
- Department of Chemistry, New York University251 Mercer Street, New York, NY 10012, USA
- Courant Institute of Mathematical Sciences, New York University251 Mercer Street, New York, NY 10012, USA
| | - Hin Hark Gan
- Department of Chemistry, New York University251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry, New York University251 Mercer Street, New York, NY 10012, USA
- Courant Institute of Mathematical Sciences, New York University251 Mercer Street, New York, NY 10012, USA
- To whom correspondence should be addressed. Tel: +1 212 998 3116; Fax: +1 212 998 4152; E-mail:
| |
Collapse
|
977
|
Abstract
Antisense RNA was a rather uncommon term in a physiology environment until short interfering RNAs emerged as the tool of choice to knock down the expression of specific genes. As a consequence, the concept of RNA having regulatory potential became widely accepted. Yet, there is more to come. Computational studies suggest that between 15 and 25% of mammalian genes overlap, giving rise to pairs of sense and antisense RNAs. The resulting transcripts potentially interfere with each other’s processing, thus representing examples of RNA-mediated gene regulation by endogenous, naturally occurring antisense transcripts. Concerns that the large-scale antisense transcription may represent transcriptional noise rather than a gene regulatory mechanism are strongly opposed by recent reports. A relatively small, well-defined group of antisense or noncoding transcripts is linked to monoallelic gene expression as observed in genomic imprinting, X chromosome inactivation, and clonal expression of B and T leukocytes. For the remaining, much larger group of bidirectionally transcribed genes, however, the physiological consequences of antisense transcription as well as the cellular mechanism(s) involved remain largely speculative.
Collapse
Affiliation(s)
- Andreas Werner
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle, United Kingdom.
| | | |
Collapse
|
978
|
Dalla E, Mignone F, Verardo R, Marchionni L, Marzinotto S, Lazarević D, Reid JF, Marzio R, Klarić E, Licastro D, Marcuzzi G, Gambetta R, Pierotti MA, Pesole G, Schneider C. Discovery of 342 putative new genes from the analysis of 5'-end-sequenced full-length-enriched cDNA human transcripts. Genomics 2005; 85:739-51. [PMID: 15885500 DOI: 10.1016/j.ygeno.2005.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 01/31/2005] [Accepted: 02/16/2005] [Indexed: 12/31/2022]
Abstract
In this work we describe the process that, starting with the production of human full-length-enriched cDNA libraries using the CAP-Trapper method, led us to the discovery of 342 putative new human genes. Twenty-three thousand full-length-enriched clones, obtained from various cell lines and tissues in different developmental stages, were 5'-end sequenced, allowing the identification of a pool of 5300 unique cDNAs. By comparing these sequences to various human and vertebrate nucleotide databases we found that about 40% of our clones extended previously annotated 5' ends, 662 clones were likely to represent splice variants of known genes, and finally 342 clones remained unknown, with no or poor functional annotation. cDNA-microarray gene expression analysis showed that 260 of 342 unknown clones are expressed in at least one cell line and/or tissue. Further analysis of their sequences and the corresponding genomic locations allowed us to conclude that most of them represent potential novel genes, with only a small fraction having protein-coding potential.
Collapse
Affiliation(s)
- E Dalla
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, AREA Science Park, 99 Padriciano, 34012 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
979
|
Pritsker M, Doniger TT, Kramer LC, Westcot SE, Lemischka IR. Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci U S A 2005; 102:14290-5. [PMID: 16183747 PMCID: PMC1242282 DOI: 10.1073/pnas.0502132102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 08/16/2005] [Indexed: 12/29/2022] Open
Abstract
Complete information regarding transcriptional and posttranscriptional gene regulation in stem cells is necessary to understand the regulation of self-renewal and differentiation. Alternative splicing is a prevalent mode of posttranscriptional regulation, and occurs in approximately one half of all mammalian genes. The frequency and functional impact of alternative splicing in stem cells are yet to be determined. In this study we combine computational and experimental methods to identify splice variants in embryonic and hematopoietic stem cells on a genome-wide scale. Using EST collections derived from stem cells, we detect alternative splicing in >1,000 genes. Systematic RT-PCR and sequencing studies show confirmation of computational predictions at a level of 80%. We find that alternative splicing can modify multiple components of signaling pathways important for stem cell function. We also analyze the distribution of splice variants across different classes of genes. We find that tissue-specific genes have a higher tendency to undergo alternative splicing than ubiquitously expressed genes. Furthermore, the patterns of alternative splicing are only weakly conserved between orthologous genes in human and mouse. Our studies reveal extensive modification of the stem cell molecular repertoire by alternative splicing and provide insights into its overall role as a mechanism of generating genomic diversity.
Collapse
Affiliation(s)
- Moshe Pritsker
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
980
|
Puente LG, Borris DJ, Carrière JF, Kelly JF, Megeney LA. Identification of candidate regulators of embryonic stem cell differentiation by comparative phosphoprotein affinity profiling. Mol Cell Proteomics 2005; 5:57-67. [PMID: 16188873 DOI: 10.1074/mcp.m500166-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Embryonic stem cells are a unique cell population capable both of self-renewal and of differentiation into all tissues in the adult organism. Despite the central importance of these cells, little information is available regarding the intracellular signaling pathways that govern self-renewal or early steps in the differentiation program. Embryonic stem cell growth and differentiation correlates with kinase activities, but with the exception of the JAK/STAT3 pathway, the relevant substrates are unknown. To identify candidate phosphoproteins with potential relevance to embryonic stem cell differentiation, a systems biology approach was used. Proteins were purified using phosphoprotein affinity columns, then separated by two-dimensional gel electrophoresis, and detected by silver stain before being identified by tandem mass spectrometry. By comparing preparations from undifferentiated and differentiating mouse embryonic stem cells, a set of proteins was identified that exhibited altered post-translational modifications that correlated with differentiation state. Evidence for altered post-translational modification included altered gel mobility, altered recovery after affinity purification, and direct mass spectra evidence. Affymetrix microarray analysis indicated that gene expression levels of these same proteins had minimal variability over the same differentiation period. Bioinformatic annotations indicated that this set of proteins is enriched with chromatin remodeling, catabolic, and chaperone functions. This set of candidate phosphoprotein regulators of stem cell differentiation includes products of genes previously noted to be enriched in embryonic stem cells at the mRNA expression level as well as proteins not associated previously with stem cell differentiation status.
Collapse
Affiliation(s)
- Lawrence G Puente
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
981
|
Abstract
In this study we tried to identify new genes or proteins in skeletal muscle induced by exercise. We analyzed alterations of protein expression in mouse gastrocnemius muscles induced by swim-exercise using two dimensional gel electrophoresis and mass spectrometry. Nine spots were significantly altered between control and swim groups. One of the four protein spots whose expression was decreased was identified as functionally unknown "expressed sequence AI854635" gene. The AI854635 gene has C2H2 type zinc finger motif, and is considered to be a transcription factor. The mRNA of AI854635 gene was expressed in skeletal muscle, brain, kidney, and thymus. To elucidate the function of the AI854635 gene we analyzed mRNA expression levels during C2C12 myoblast differentiation. C2C12 myoblast began to form myotube around 20 h after the initiation of differentiation. The mRNA expression levels of AI854635 gene was significantly induced around 6 h and increased till 48 h, indicating a pivotal role in myoblast differentiation. Although the significance of decreased expression of AI854635 gene induced by swim-exercise is not clear, we found that this gene is involved in myoblast differentiation.
Collapse
Affiliation(s)
- Mitsuhiro Takahashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
982
|
Nunomura K, Nagano K, Itagaki C, Taoka M, Okamura N, Yamauchi Y, Sugano S, Takahashi N, Izumi T, Isobe T. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 2005; 4:1968-76. [PMID: 16176923 DOI: 10.1074/mcp.m500216-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although interactions between cell surface proteins and extracellular ligands are key to initiating embryonic stem cell differentiation to specific cell lineages, the plasma membrane protein components of these cells are largely unknown. We describe here a group of proteins expressed on the surface of the undifferentiated mouse embryonic stem cell line D3. These proteins were identified using a combination of cell surface labeling with biotin, subcellular fractionation of plasma membranes, and mass spectrometry-based protein identification technology. From 965 unique peptides carrying biotin labels, we assigned 324 proteins including 235 proteins that have putative signal sequences and/or transmembrane segments. Receptors, transporters, and cell adhesion molecules were the major classes of proteins identified. Besides known cell surface markers of embryonic stem cells, such as alkaline phosphatase, the analysis identified 59 clusters of differentiation-related molecules and more than 80 components of multiple cell signaling pathways that are characteristic of a number of different cell lineages. We identified receptors for leukemia-inhibitory factor, interleukin 6, and bone morphogenetic protein, which play critical roles in the maintenance of undifferentiated mouse embryonic stem cells. We also identified receptors for growth factors/cytokines, such as fibroblast growth factor, platelet-derived growth factor, ephrin, Hedgehog, and Wnt, which transduce signals for cell differentiation and embryonic development. Finally we identified a variety of integrins, cell adhesion molecules, and matrix metalloproteases. These results suggest that D3 cells express diverse cell surface proteins that function to maintain pluripotency, enabling cells to respond to various external signals that initiate differentiation into a variety of cell types.
Collapse
Affiliation(s)
- Kazuto Nunomura
- Division of Proteomics Research, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
983
|
Imai K, Kawai M, Tada M, Nagase T, Ohara O, Koga H. Temporal change in mKIAA gene expression during the early stage of retinoic acid-induced neurite outgrowth. Gene 2005; 364:114-22. [PMID: 16169686 DOI: 10.1016/j.gene.2005.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/28/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
mKIAA genes are mouse counterparts of human KIAA genes, which were isolated in our cDNA project and were functionally unknown at the time they were sequenced. Because KIAA/mKIAA genes were isolated mainly from cDNA libraries derived from brain tissues, they are thought to be important for the organization and function of the brain. To investigate the participation of mKIAA genes in neuronal phenomena, we analyzed retinoic acid-induced neurite outgrowth using an mKIAA oligonucleotide microarray. Focusing on the early stage of this outgrowth phenomenon, we analyzed temporal gene expression changes 1-24 h after treatment with retinoic acid and found several change patterns in 38 mKIAA genes. Among them, six were upregulated at 3 h and subsequently returned to the steady state. Supposing that these genes had important roles, we performed semi-quantitative RT-PCR analysis and confirmed the existence of temporal expression patterns in two genes (mKIAA0182 and mKIAA1039). Further computational analysis of the 38 genes enabled us to find the cellular pathway associated with 6 of them with high confidence. These results indicate that some mKIAA genes are apparently relevant to retinoic acid-induced neurite outgrowth.
Collapse
Affiliation(s)
- Kazuhide Imai
- Chiba Industry Advancement Center, 2-6 Nakase, Mihama-ku, Chiba 261-7126, Japan
| | | | | | | | | | | |
Collapse
|
984
|
Orth AP, Batalov S, Perrone M, Chanda SK. The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 2005; 8:587-96. [PMID: 15584864 DOI: 10.1517/14728222.8.6.587] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cataloguing of the human genome has provided an unprecedented prospectus for target identification and drug discovery. A current analysis indicates that slightly more than 3000 unique protein encoding loci are potentially amenable to pharmacological intervention (the 'druggable genome', which can be queried at http://function.gnf.org/druggable). However, the assessment of genome sequence data has not resulted in the anticipated acceleration of novel therapeutic developments. The basis for this shortfall lies in the significant attrition rates endemic to preclinical/clinical development, as well as the often underestimated complexity of gene function in higher order biological systems. To address the latter issue, a number of strategies have emerged to facilitate genomics-driven target identification and validation, including cellular profiling of gene function, in silico modelling of gene networks, and systematic analyses of protein complexes. The expectation is that the integration of these and other systems-based technologies may enable the conversion of potential genomic targets into functionally validated molecules, and result in practicable gene-based drug discovery pipelines.
Collapse
Affiliation(s)
- Anthony P Orth
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
985
|
Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, Gingeras TR. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 2005; 15:987-97. [PMID: 15998911 PMCID: PMC1172043 DOI: 10.1101/gr.3455305] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recently, we mapped the sites of transcription across approximately 30% of the human genome and elucidated the structures of several hundred novel transcripts. In this report, we describe a novel combination of techniques including the rapid amplification of cDNA ends (RACE) and tiling array technologies that was used to further characterize transcripts in the human transcriptome. This technical approach allows for several important pieces of information to be gathered about each array-detected transcribed region, including strand of origin, start and termination positions, and the exonic structures of spliced and unspliced coding and noncoding RNAs. In this report, the structures of transcripts from 14 transcribed loci, representing both known genes and unannotated transcripts taken from the several hundred randomly selected unannotated transcripts described in our previous work are represented as examples of the complex organization of the human transcriptome. As a consequence of this complexity, it is not unusual that a single base pair can be part of an intricate network of multiple isoforms of overlapping sense and antisense transcripts, the majority of which are unannotated. Some of these transcripts follow the canonical splicing rules, whereas others combine the exons of different genes or represent other types of noncanonical transcripts. These results have important implications concerning the correlation of genotypes to phenotypes, the regulation of complex interlaced transcriptional patterns, and the definition of a gene.
Collapse
|
986
|
Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet 2005; 21:457-65. [PMID: 15990197 DOI: 10.1016/j.tig.2005.06.008] [Citation(s) in RCA: 451] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/21/2005] [Accepted: 06/08/2005] [Indexed: 11/22/2022]
Abstract
Genomic imprinting, the parent-of-origin-specific silencing of a small proportion of genes, introduces a paradoxical vulnerability of hemizygosity into the diploid mammalian genome. To facilitate the evaluation of the biological and evolutionary significance of imprinting, we have collated a census of known imprinted genes, listing 83 transcriptional units of which 29 are imprinted in both humans and mice. There is a high level of discordance of imprinting status between the mouse and human, even when cases in which the orthologue is absent from one species are excluded. A high proportion of imprinted genes are noncoding RNAs or genes derived by retrotransposition. Accumulation of functional and comparative data for these genes will improve our understanding of imprinting and its contribution to mammalian evolution.
Collapse
Affiliation(s)
- Ian M Morison
- Cancer Genetics Laboratory, Department of Biochemistry and National Research Centre for Growth and Development, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
987
|
Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 2005; 309:1570-3. [PMID: 16141075 DOI: 10.1126/science.1115901] [Citation(s) in RCA: 601] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Noncoding RNA molecules (ncRNAs) have been implicated in numerous biological processes including transcriptional regulation and the modulation of protein function. Yet, in spite of the apparent abundance of ncRNA, little is known about the biological role of the projected thousands of ncRNA genes present in the human genome. To facilitate functional analysis of these RNAs, we have created an arrayed library of short hairpin RNAs (shRNAs) directed against 512 evolutionarily conserved putative ncRNAs and, via cell-based assays, we have begun to determine their roles in cellular pathways. Using this system, we have identified an ncRNA repressor of the nuclear factor of activated T cells (NFAT), which interacts with multiple proteins including members of the importin-beta superfamily and likely functions as a specific regulator of NFAT nuclear trafficking.
Collapse
Affiliation(s)
- A T Willingham
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
988
|
Abstract
Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed by complementary DNA cloning and genome tiling array studies in animals. The big and as yet largely unanswered question is whether these transcripts are relevant. A paper by Willingham et al. shows the way forward by developing a strategy for large-scale functional screening of ncRNAs, involving small interfering RNA knockdowns in cell-based screens, which identified a previously unidentified ncRNA repressor of the transcription factor NFAT. It appears likely that ncRNAs constitute a critical hidden layer of gene regulation in complex organisms, the understanding of which requires new approaches in functional genomics.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
989
|
Shearwin KE, Callen BP, Egan JB. Transcriptional interference--a crash course. Trends Genet 2005; 21:339-45. [PMID: 15922833 PMCID: PMC2941638 DOI: 10.1016/j.tig.2005.04.009] [Citation(s) in RCA: 430] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/09/2005] [Accepted: 04/12/2005] [Indexed: 12/13/2022]
Abstract
The term "transcriptional interference" (TI) is widely used but poorly defined in the literature. There are a variety of methods by which one can interfere with the process or the product of transcription but the term TI usually refers to the direct negative impact of one transcriptional activity on a second transcriptional activity in cis. Two recent studies, one examining Saccharomyces cerevisiae and the other Escherichia coli, clearly show TI at one promoter caused by the arrival of a transcribing complex initiating at a distant promoter. TI is potentially widespread throughout biology; therefore, it is timely to assess exactly its nature, significance and operative mechanisms. In this article, we will address the following questions: what is TI, how important and widespread is it, how does it work and where should we focus our future research efforts?
Collapse
Affiliation(s)
- Keith E Shearwin
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia 5005.
| | | | | |
Collapse
|
990
|
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SPT, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, et alCarninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SPT, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple CAM, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, FANTOM Consortium, RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science 2005; 309:1559-63. [PMID: 16141072 DOI: 10.1126/science.1112014] [Show More Authors] [Citation(s) in RCA: 2671] [Impact Index Per Article: 133.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Collapse
|
991
|
Frey BJ, Mohammad N, Morris QD, Zhang W, Robinson MD, Mnaimneh S, Chang R, Pan Q, Sat E, Rossant J, Bruneau BG, Aubin JE, Blencowe BJ, Hughes TR. Genome-wide analysis of mouse transcripts using exon microarrays and factor graphs. Nat Genet 2005; 37:991-6. [PMID: 16127451 DOI: 10.1038/ng1630] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/28/2005] [Indexed: 11/09/2022]
Abstract
Recent mammalian microarray experiments detected widespread transcription and indicated that there may be many undiscovered multiple-exon protein-coding genes. To explore this possibility, we labeled cDNA from unamplified, polyadenylation-selected RNA samples from 37 mouse tissues to microarrays encompassing 1.14 million exon probes. We analyzed these data using GenRate, a Bayesian algorithm that uses a genome-wide scoring function in a factor graph to infer genes. At a stringent exon false detection rate of 2.7%, GenRate detected 12,145 gene-length transcripts and confirmed 81% of the 10,000 most highly expressed known genes. Notably, our analysis showed that most of the 155,839 exons detected by GenRate were associated with known genes, providing microarray-based evidence that most multiple-exon genes have already been identified. GenRate also detected tens of thousands of potential new exons and reconciled discrepancies in current cDNA databases by 'stitching' new transcribed regions into previously annotated genes.
Collapse
Affiliation(s)
- Brendan J Frey
- Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
992
|
Kerr MC, Bennetts JS, Simpson F, Thomas EC, Flegg C, Gleeson PA, Wicking C, Teasdale RD. A Novel Mammalian Retromer Component, Vps26B. Traffic 2005; 6:991-1001. [PMID: 16190980 DOI: 10.1111/j.1600-0854.2005.00328.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian retromer protein complex, which consists of three proteins--Vps26, Vps29, and Vps35--in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience and ARC Centre in Bioinformatics, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
993
|
Ichikawa M, Okamura-Oho Y, Okunishi R, Kanamori M, Suzuki H, Ritani A, Nitta H, Eguchi N, Urade Y, Hayashizaki Y. Expression analysis of genes responsible for serotonin signaling in the brain. Neurobiol Dis 2005; 19:378-85. [PMID: 16023580 DOI: 10.1016/j.nbd.2005.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 12/29/2004] [Accepted: 01/12/2005] [Indexed: 11/16/2022] Open
Abstract
To thoroughly understand the function and regulation of neurotransmitter systems in the brain, as well as the underlying disease mechanisms, it is important to comprehensively analyze the expression patterns of genes participating in such systems. Using functional annotated cDNA clones (FANTOM), we examined the gene expression patterns of the serotonin neurotransmitter system, which is involved in psychiatric diseases such as depression. We chose 24 gene products and visualized their endogenous localizations using in situ hybridization (ISH). We were able to fine-tune an automated ISH method to obtain high-resolution cell-based figures within 24 h. We also measured the amounts of mRNAs with quantitative RT-PCR. The outline of the in situ gene expression pattern viewed under low magnification agreed with the results of the RT-PCR. In the high-resolution view obtained with ISH, we could document novel localizations of the several genes critically related to serotonin activity.
Collapse
Affiliation(s)
- Manabu Ichikawa
- Laboratory for Genome Exploration Research Group,RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
994
|
Harbers M, Carninci P. Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2005; 2:495-502. [PMID: 15973418 DOI: 10.1038/nmeth768] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the increasing number of whole genome sequences available, genomic research has shifted toward the annotation of functional elements and transcribed regions. Thus, the related field of transcriptome research requires accurate methods for the profiling of genes that are not biased by known sequence information, and that also allow for the identification of promoter regions. Starting with serial analysis of gene expression (SAGE), methods making use of short sequencing tags have greatly contributed to transcriptome studies. Here we review recent developments in the use of short sequencing tags in expression profiling, gene discovery and genome annotation. These tags are obtained from the 5' end of mRNAs, both terminal ends of mRNAs, or genomic regions. The 5' end-specific tags, with their ability to identify transcripts along with their transcriptional start sites, will be of particular interest for gene network studies and may become one of the most important approaches in systems biology.
Collapse
Affiliation(s)
- Matthias Harbers
- K.K. Dnaform, Tsukuba Branch, 3-1 Chuo 8-chome, Ami Machi, Inashiki Gun, Ibaraki, 300-0332, Japan.
| | | |
Collapse
|
995
|
Makalowska I, Lin CF, Makalowski W. Overlapping genes in vertebrate genomes. Comput Biol Chem 2005; 29:1-12. [PMID: 15680581 DOI: 10.1016/j.compbiolchem.2004.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/15/2004] [Accepted: 12/15/2004] [Indexed: 11/19/2022]
Abstract
Overlapping genes in mammalian genomes are unexpected phenomena even though hundreds of pairs of protein coding overlapping genes have been reported so far. Overlapping genes can be divided into different categories based on direction of transcription as well as on sequence segments being shared between overlapping coding regions. The biologic functions of natural antisense transcripts, their involvement in physiological processes and gene regulation in living organisms are not fully understood. Number of documented examples indicates that they may exert control at various levels of gene expression, such as transcription, mRNA processing, splicing, stability, transport, and translation. Similarly, evolutionary origin of such genes is not known, existing hypotheses can explain only selected cases of mammalian gene overlaps which could originate as result of rearrangements, overprinting and/or adoption of signals in the neighboring gene locus.
Collapse
Affiliation(s)
- Izabela Makalowska
- The Huck Institute of the Life Sciences, The Pennsylvania State University, 502 Wartik Lab, University Park, PA 16802, USA.
| | | | | |
Collapse
|
996
|
Lowther W, Wiley K, Smith GH, Callahan R. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol 2005; 79:10093-6. [PMID: 16014973 PMCID: PMC1181551 DOI: 10.1128/jvi.79.15.10093-10096.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel common integration site for the mouse mammary tumor virus (MMTV) was identified (designated Int7) in five independently arising mouse mammary tumors. The insertion sites all cluster within a 1-kb region that is 2 to 3 kb 5' of the transcription initiation site of a gene, 2610028F08RIK, whose gene product contains furin-like and thrombospondin-like sequences. Expression of Int7 is normally very low or silent during various stages of mammary gland development, but MMTV integration at this site results in the activation of high steady-state levels of expression of the gene. These five tumors were also found to have two or three additional viral insertions, which in each case occurred flanking a member of either the Wnt and/or FGF gene family. Reverse transcriptase PCR results demonstrated that each of the viral insertions led to elevated expression of the presumed target flanking genes.
Collapse
Affiliation(s)
- William Lowther
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
997
|
Chamary JV, Hurst LD. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol 2005; 6:R75. [PMID: 16168082 PMCID: PMC1242210 DOI: 10.1186/gb-2005-6-9-r75] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/08/2005] [Accepted: 07/20/2005] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In mammals, contrary to what is usually assumed, recent evidence suggests that synonymous mutations may not be selectively neutral. This position has proven contentious, not least because of the absence of a viable mechanism. Here we test whether synonymous mutations might be under selection owing to their effects on the thermodynamic stability of mRNA, mediated by changes in secondary structure. RESULTS We provide numerous lines of evidence that are all consistent with the above hypothesis. Most notably, by simulating evolution and reallocating the substitutions observed in the mouse lineage, we show that the location of synonymous mutations is non-random with respect to stability. Importantly, the preference for cytosine at 4-fold degenerate sites, diagnostic of selection, can be explained by its effect on mRNA stability. Likewise, by interchanging synonymous codons, we find naturally occurring mRNAs to be more stable than simulant transcripts. Housekeeping genes, whose proteins are under strong purifying selection, are also under the greatest pressure to maintain stability. CONCLUSION Taken together, our results provide evidence that, in mammals, synonymous sites do not evolve neutrally, at least in part owing to selection on mRNA stability. This has implications for the application of synonymous divergence in estimating the mutation rate.
Collapse
Affiliation(s)
- JV Chamary
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
998
|
Fernandes JMO, Mackenzie MG, Elgar G, Suzuki Y, Watabe S, Kinghorn JR, Johnston IA. A genomic approach to reveal novel genes associated with myotube formation in the model teleost,Takifugu rubripes. Physiol Genomics 2005; 22:327-38. [PMID: 15928209 DOI: 10.1152/physiolgenomics.00087.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the transcriptional networks that regulate myotube production in vertebrates. In the present study, we have used a genomic approach to discover novel genes associated with myotube formation in fast muscle of the tiger puffer fish, Takifugu rubripes. The number of fast muscle fibers per myotome increased until 1.2 kg body mass, and subsequent growth was by fiber hypertrophy alone. Forward and reverse subtracted cDNA libraries were prepared from a 180-g (myotube +) and a 3.4-kg (myotube −) fish, and 1,452 expressed sequence tags (ESTs) were obtained. After these ESTs were grouped into nonredundant clusters and housekeeping and structural genes were eliminated, 57 genes were selected and quantitative PCR was used to investigate their expression levels in different tissues from independent groups of myotube(−) and myotube(+) fish acclimated to the same environmental conditions and diet. Eleven novel genes were found to be consistently differentially expressed, but only four showed appropriate tissue-specific expression. These four genes were upregulated 5–25 times in fast muscle of myotube(−) relative to myotube(+) growth stages, while their expression remained unchanged in the other tissues studied. The novel genes identified, which are also present in other vertebrate genomes, may play a role in inhibiting myotube formation in vertebrate muscle.
Collapse
Affiliation(s)
- Jorge M O Fernandes
- Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
999
|
Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, Murphy S, Tighe PJ, Das Sarma J, Trinchieri G, Rostami A. Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem 2005; 95:331-40. [PMID: 16086689 DOI: 10.1111/j.1471-4159.2005.03368.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-12 (IL-12, p70) a heterodimeric cytokine of p40 and p35 subunits, important for Th1-type immune responses, has been attributed a prominent role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the related heterodimeric cytokine, IL-23, composed of the same p40 subunit as IL-12 and a unique p19 subunit, was shown to be involved in Th1 responses and EAE. We investigated whether astrocytes and microglia, CNS cells with antigen-presenting cell (APC) function can present antigen to myelin basic protein (MBP)-reactive T cells, and whether this presentation is blocked with antibodies against IL-12/IL-23p40. Interferon (IFN)-gamma-treated APC induced proliferation of MBP-reactive T cells. Anti-IL-12/IL-23p40 antibodies blocked this proliferation. These results support and extend our previous observation that astrocytes and microglia produce IL-12/IL-23p40. Moreover, we show that stimulated astrocytes and microglia produce biologically active IL-12p70. Because IL-12 and IL-23 share p40, we wanted to determine whether astrocytes also express IL-12p35 and IL-23p19, as microglia were already shown to express them. Astrocytes expressed IL-12p35 mRNA constitutively, and IL-23 p19 after stimulation. Thus, astrocytes, under inflammatory conditions, express all subunits of IL-12/IL-23. Their ability to present antigen to encephalitogenic T cells can be blocked by neutralizing anti-IL-12/IL-23p40 antibodies.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, University Hospital, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1000
|
Babak T, Blencowe BJ, Hughes TR. A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics 2005; 6:104. [PMID: 16083503 PMCID: PMC1199595 DOI: 10.1186/1471-2164-6-104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/05/2005] [Indexed: 11/10/2022] Open
Abstract
Background Systematic identification and functional characterization of novel types of noncoding (nc)RNA in genomes is more difficult than it is for protein coding mRNAs, since ncRNAs typically do not possess sequence features such as splicing or translation signals, or long open reading frames. Recent "tiling" microarray studies have reported that a surprisingly larger proportion of mammalian genomes is transcribed than was previously anticipated. However, these non-genic transcripts often appear to be low in abundance, and their functional significance is not known. Results To systematically search for functional ncRNAs, we designed microarrays to detect 3,478 intergenic and intronic sequences that are conserved between the human, mouse, and rat genomes, and that score highly by other criteria that characterize ncRNAs. We probed these arrays with total RNA isolated from 16 wild-type mouse tissues. Among 55 candidates for highly-expressed novel ncRNAs tested by northern blotting, eight were confirmed as small, highly-and ubiquitously-expressed RNAs in mouse. Of the eight, five were also detected in rat tissues, but none were detected at appreciable levels in human tissues or cultured cells. Conclusion Since the sequence and expression of most known coding transcripts and functional ncRNAs is conserved between human and mouse, the lack of northern-detectable expression in human cells and tissues of the novel mouse and rat ncRNAs that we identified suggests that they are not functional or possibly have rodent-specific functions. Our results confirm that relatively little of the intergenic sequence conserved between human, mouse and rat is transcribed at high levels in mammalian tissues, possibly suggesting a limited role for transcribed intergenic and intronic sequences as independent functional elements.
Collapse
Affiliation(s)
- Tomas Babak
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| | - Benjamin J Blencowe
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, 112 College St., Toronto, ON M5G 1L6 Canada
- Department of Medical Genetics and Microbiology, 10 King's College Circle, Toronto, ON M1R 4F9 Canada
| |
Collapse
|