951
|
Coombes MM, Briggs KL, Bone JR, Clayman GL, El-Naggar AK, Dent SYR. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene 2004; 22:8902-11. [PMID: 14654786 DOI: 10.1038/sj.onc.1207050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the fifth most frequent cancer in the US. Several genetic and epigenetic alterations are associated with HNSCC tumorigenesis, including inactivation of CDKN2A, which encodes the p16 tumor suppressor, in cell lines and primary tumors by DNA methylation. Reactivation of tumor suppressor genes by DNA-demethylating agents and histone deacetylase (HDAC) inhibitors shows therapeutic promise for other cancers. Therefore, we investigated the ability of these agents to reactivate p16 in Tu159 HNSCC cells. Treatment of cells with 5-aza-2'deoxycytidine (5-aza-dC) increases CDKN2A expression and slightly increases histone H3 acetylation at this gene. No reactivation of CDKN2A is observed upon treatment with the HDAC inhibitor trichostatin A (TSA), but synergistic reactivation of CDKN2A is observed upon sequential treatment of Tu159 cells with both 5-aza-dC and TSA. Silencing of CDKN2A in Tu159 cells is correlated with increased methylation of histone H3 at lysine 9 and decreased methylation at lysine 4 relative to the upstream p15 gene promoter. Interestingly, global levels of H3-K9 methylation are decreased upon treatment with 5-aza-dC. Together these data indicate that DNA methylation is a dominant epigenetic mark for silencing of CDKN2A in Tu159 tumor cells. Moreover, changes in DNA methylation can reset the histone code by impacting multiple H3 modifications.
Collapse
Affiliation(s)
- Madelene M Coombes
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
952
|
Loyola A, He S, Oh S, McCafferty DG, Reinberg D. Techniques used to study transcription on chromatin templates. Methods Enzymol 2004; 377:474-99. [PMID: 14979046 DOI: 10.1016/s0076-6879(03)77031-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Affiliation(s)
- Alejandra Loyola
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | |
Collapse
|
953
|
Heard E, Chaumeil J, Masui O, Okamoto I. Mammalian X-chromosome inactivation: an epigenetics paradigm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:89-102. [PMID: 16117637 DOI: 10.1101/sqb.2004.69.89] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- E Heard
- Mammalian Developmental Epigenetics Group, CNRS UMR218, Curie Institute, 75248 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
954
|
Abstract
Immediate early genes (IEG) are rapidly but transiently induced directly by intracellular signaling cascades to alter patterns of gene expression. It has been proposed that histone modifications could be the key to the quick alteration of chromatin structure, as this spread occurs too rapidly to be the consequence of passage of RNA polymerase II. In this review, we will discuss the different modifications on histones and the chromatin remodeling enzymes, allowing the promoter regions of two IEGs, c-fos and c-jun, to be accessed.
Collapse
Affiliation(s)
- Judy Chia Ghee Sng
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, Ishikawa, Japan
| | | | | |
Collapse
|
955
|
Zhang Y, Cao R, Wang L, Jones RS. Mechanism of Polycomb group gene silencing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:309-17. [PMID: 16117663 DOI: 10.1101/sqb.2004.69.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Y Zhang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
956
|
Abstract
Prostate specific antigen (PSA) is a serine protease that is synthesized by both normal and malignant epithelial cells of the human prostate. PSA expressed by malignant cells, however, are released into the serum at an increased level, which can be detected to diagnose and monitor prostate cancer. Moreover, increases in serum PSA following local and systemic treatments are highly correlated with tumor recurrence and progression, and this association has further established PSA as a clinically important biomarker. The expression of PSA is mainly induced by androgens and regulated by the androgen receptor (AR) at the transcriptional level. Extensive research on the regulation of PSA gene expression has provided significant information about the function of AR, which is a crucial transcription factor involved in all phases of prostate cancer. Still, the molecular mechanism(s) by which the transcription of the PSA gene escapes regulation in advanced prostate cancer has yet to be clearly defined. Accumulating evidence suggests that a number of processes including androgen-independent activation of AR are involved. Lacking an effective treatment, advanced prostate cancer is almost invariably fatal, which highlights the importance of elucidating mechanisms of tumor progression. Insights into AR activity at the PSA gene could be extended to transcriptional regulation of other AR target genes, which may be crucial in discerning prostate cancer progression. Ultimately, our improved understanding of AR-regulated PSA expression could aid in developing viable therapies in treating and/or preventing advanced prostate cancer.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Molecular Microbiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
957
|
Abstract
Histone modifications have emerged to be a major regulatory mechanism for gene expression (1-4). However, it is not clear how histone modifications are physiologically regulated. Here, we show that mono-ubiquitinated H2B at lysine 123 (uH2B) in the yeast (Saccharomyces cerevisiae) is present in exponential phase and absent in stationary phase. A wide array of carbohydrates or sugars, including glucose, fructose, mannose, and sucrose, are capable of inducing uH2B in stationary phase yeast. In contrast, non-metabolic glucose analogs are defective in inducing uH2B. Furthermore, uH2B induction is inhibited by iodoacetate, an inhibitor of glyceraldehyde-3-phosphate dehydrogenase in glycolysis. Moreover, uH2B induction is markedly impaired in yeast mutants, in which glycolytic genes are deleted. These data indicate that glycolysis is required for the carbohydrate-induced mono-ubiquitination of H2B at lysine 123. Therefore, our study reveals a novel paradigm of metabolic regulation of histone modifications.
Collapse
Affiliation(s)
- Lin Dong
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
958
|
Bolander FF. Modifications and Conformations of DNA and Nuclear Proteins. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
959
|
Abstract
In eukaryotes, transcription of the diverse array of tens of thousands of protein-coding genes is carried out by RNA polymerase II. The control of this process is predominantly mediated by a network of thousands of sequence-specific DNA binding transcription factors that interpret the genetic regulatory information, such as in transcriptional enhancers and promoters, and transmit the appropriate response to the RNA polymerase II transcriptional machinery. This review will describe some early advances in the discovery and characterization of the sequence-specific DNA binding transcription factors as well as some of the properties of these regulatory proteins.
Collapse
Affiliation(s)
- James T Kadonaga
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
960
|
Togashi T, Obata M, Aoyagi Y, Kominami R, Mishima Y. Two distinct methods analyzing chromatin structure using centrifugation and antibodies to modified histone H3: both provide similar chromatin states of the Rit1/Bcl11b gene. Biochem Biophys Res Commun 2004; 313:489-95. [PMID: 14697215 DOI: 10.1016/j.bbrc.2003.11.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chromatin state of a 2-Mb region harboring Rit1/Bcl11b on mouse chromosome 12 was examined using two distinct methods. One is ChIP assay examining the degree of enrichment with histone H3 methylated at lysine 9 (H3-mLys9) in chromatin and the other is H/E (heterochromatin/euchromatin) assay that measures a chromatin condensation state by using centrifugation. The ChIP assay showed that a 50-kb interval covering the gene and an upstream region constituted chromatin enriched with unmethylated H3-mLys9 in cells expressing Rit1 compared to cells not expressing Rit1. In contrast, regions other than the 50-kb interval did not show much difference in the enrichment between the two different types of cells. On the other hand, H/E assay of two expressing and two non-expressing tissues provided compatible fractionation patterns, suggesting that the chromatin condensation state detected by H/E assay is correlated with the chromatin state controlled by histone H3 tail modification linked to gene expression. These results indicate that the centrifugation-based H/E assay should provide a new approach to the regulation of chromatin structure with respect to its condensation state, complementing ChIP assays.
Collapse
Affiliation(s)
- Tadayuki Togashi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
961
|
Ausió J, Abbott D. The role of histone variability in chromatin stability and folding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
962
|
Lachner M, Sengupta R, Schotta G, Jenuwein T. Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:209-18. [PMID: 16117651 DOI: 10.1101/sqb.2004.69.209] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- M Lachner
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
963
|
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, M. D. Anderson Cancer Center, University of Texas Houston, Texas 77030, USA
| | | |
Collapse
|
964
|
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues in both histone and non-histone proteins. They play a key role in the regulation of gene transcription and many other biological processes involving chromatin. Significantly, recent studies suggest that HDACs are critically involved in cell-cycle regulation, cell proliferation, differentiation, and in the development of human cancer. HDAC inhibitors currently are being exploited as potential anti-cancer agents. As expected for vital regulators of many cellular processes, the activities of HDACs are tightly controlled and precisely regulated by multiple mechanisms. The activities of most if not all HDACs are regulated by protein-protein interactions. In addition, many HDACs are regulated by post-translational modifications as well as by subcellular localization. Less studied, but perhaps equally important, is the regulation of some HDACs by control of expression, availability of cofactors, and by proteolytic processing. A complete understanding of how HDACs are regulated will contribute not only to our overall knowledge of chromatin structure and gene control, but will offer tremendous insight into approaches for developing therapeutic HDAC inhibitors with improved specificity.
Collapse
Affiliation(s)
- Nilanjan Sengupta
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
965
|
Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003; 17:2733-40. [PMID: 14630937 DOI: 10.1101/gad.1156403] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
966
|
Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302:890-3. [PMID: 14593184 DOI: 10.1126/science.1090842] [Citation(s) in RCA: 1073] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Changes in DNA methylation perturb neuronal function, and mutations in a methyl-CpG-binding protein, MeCP2, are associated with Rett syndrome. We report that increased synthesis of brain-derived neurotrophic factor (BDNF) in neurons after depolarization correlates with a decrease in CpG methylation within the regulatory region of the Bdnf gene. Moreover, increased Bdnf transcription involves dissociation of the MeCP2-histone deacetylase-mSin3A repression complex from its promoter. Our findings suggest that DNA methylation-related chromatin remodeling is important for activity-dependent gene regulation that may be critical for neural plasticity.
Collapse
Affiliation(s)
- Keri Martinowich
- Neuroscience Interdepartmental Program, UCLA School of Medicine, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
967
|
Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J, Tempst P, Sif S. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 2003; 23:7475-87. [PMID: 14559996 PMCID: PMC207647 DOI: 10.1128/mcb.23.21.7475-7487.2003] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of hSWI/SNF complexes in transcriptional activation is well characterized; however, little is known about their function in transcriptional repression. We have previously shown that subunits of the mSin3A/histone deacetylase 2 (HDAC2) corepressor complex copurify with hSWI/SNF complexes. Here we show that the type II arginine-specific methyltransferase PRMT5, which is involved in cyclin E repression, can be found in association with Brg1 and hBrm-based hSWI/SNF complexes. We also show that hSWI/SNF-associated PRMT5 can methylate hypoacetylated histones H3 and H4 more efficiently than hyperacetylated histones H3 and H4. Protein-protein interaction studies indicate that PRMT5 and mSin3A interact with the same hSWI/SNF subunits as those targeted by c-Myc. These observations prompted us to examine the expression profile of the c-Myc target genes, carbamoyl-phosphate synthase-aspartate carbamoyltransferase-dihydroorotase (cad) and nucleolin (nuc). We found that cad repression is altered in cells that express inactive Brg1 and in cells treated with the HDAC inhibitor depsipeptide. Using chromatin immunoprecipitation assays, we found that Brg1, mSin3A, HDAC2, and PRMT5 are directly recruited to the cad promoter. These results suggest that hSWI/SNF complexes, through their ability to interact with activator and repressor proteins, control expression of genes involved in cell growth and proliferation.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
968
|
Shi Y, Blackwell TK. A two-tiered transcription regulation mechanism that protects germ cell identity. Mol Cell 2003; 12:1062-4. [PMID: 14636565 DOI: 10.1016/s1097-2765(03)00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yang Shi
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
969
|
Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 2003; 12:475-87. [PMID: 14536086 DOI: 10.1016/j.molcel.2003.08.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methylation of histone tails plays an important role in chromatin structure and function. Previously, we reported that ESET/SETDB1 is a histone methyltransferase (HMTase). Here, we show that SETDB1 tightly associates with the human homolog of mAM, a murine ATFa-associated factor. Although recombinant ESET can methylate lysine 9 of histone H3 (H3-K9), its activity is severely compromised when compared to that of the ESET/mAM complex. mAM stimulates ESET enzymatic activity by increasing the Vmax and decreasing the Km. Importantly, mAM facilitates the ESET-dependent conversion of dimethyl H3-K9 to the trimethyl state both in vitro and in vivo. Chromatin-based transcription and ChIP analyses demonstrate that mAM enhances ESET-mediated transcriptional repression in a SAM-dependent manner, and this repression correlates with H3-K9 trimethylation at the promoter. Thus, our studies establish that promoter H3-K9 trimethylation is the cause of transcriptional repression and that mAM/hAM facilitates conversion of H3-K9 dimethyl to trimethyl by ESET/SETDB1.
Collapse
Affiliation(s)
- Hengbin Wang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
970
|
McManus KJ, Hendzel MJ. Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol Cell Biol 2003; 23:7611-27. [PMID: 14560007 PMCID: PMC207635 DOI: 10.1128/mcb.23.21.7611-7627.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 07/02/2003] [Accepted: 07/17/2003] [Indexed: 11/20/2022] Open
Abstract
In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.
Collapse
Affiliation(s)
- Kirk J McManus
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | | |
Collapse
|
971
|
Senawong T, Peterson VJ, Avram D, Shepherd DM, Frye RA, Minucci S, Leid M. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003; 278:43041-50. [PMID: 12930829 PMCID: PMC2819354 DOI: 10.1074/jbc.m307477200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 (CTIP1 and CTIP2) enhance transcriptional repression mediated by COUP-TF II and have been implicated in hematopoietic cell development and malignancies. CTIP1 and CTIP2 are also sequence-specific DNA-binding proteins that repress transcription through direct, COUP-TF-in-dependent binding to a GC-rich response element. CTIP1- and CTIP2-mediated transcriptional repression is insensitive to trichostatin A, an inhibitor of known class I and II histone deacetylases. However, chromatin immunoprecipitation assays revealed that expression of CTIP2 in mammalian cells resulted in deacetylation of histones H3 and/or H4 that were associated with the promoter region of a reporter gene. CTIP2-mediated transcriptional repression, as well as deacetylation of promoter-associated histones H3/H4 in CTIP2-transfected cells, was reversed by nicotinamide, an inhibitor of class III histone deacetylases such as the mammalian homologs of yeast Silent Information Regulator 2 (Sir2). The human homolog of yeast Sir2, SIRT1, was found to interact directly with CTIP2 and was recruited to the promoter template in a CTIP2-dependent manner. Moreover, SIRT1 enhanced the deacetylation of template-associated histones H3/H4 in CTIP2-transfected cells, and stimulated CTIP2-dependent transcriptional repression. Finally, endogenous SIRT1 and CTIP2 co-purified from Jurkat cell nuclear extracts in the context of a large (1-2 mDa) complex. These findings implicate SIRT1 as a histone H3/H4 deacetylase in mammalian cells and in transcriptional repression mediated by CTIP2.
Collapse
Affiliation(s)
- Thanaset Senawong
- Program in Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon 97331
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Valerie J. Peterson
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Dorina Avram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208
| | - David M. Shepherd
- Center for Environmental Health Sciences Department of Pharmaceutical Sciences, College of Pharmacy, The University of Montana, Missoula, Montana 59812
| | - Roy A. Frye
- Pittsburgh Veterans Affairs Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Department of Physiology and Biochemistry, University of Milan, 20126 Milan, Italy
| | - Mark Leid
- Program in Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon 97331
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331
- To whom correspondence should be addressed: Laboratory of Molecular Pharmacology, Dept. of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331. Tel.: 541-737-5809; Fax: 541-737-3999;
| |
Collapse
|
972
|
Fass DM, Butler JEF, Goodman RH. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J Biol Chem 2003; 278:43014-9. [PMID: 12939274 DOI: 10.1074/jbc.m305905200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many hormones activate transcription by raising the level of cAMP within cells. In one well studied pathway, cAMP induces protein kinase A to phosphorylate the transcription factor CREB, which binds to a consensus sequence, the cAMP-regulated enhancer, found in many target genes. A generally accepted model suggests that phosphorylated CREB recruits the histone acetyltransferase CBP to activate transcription. In contrast, histone deacetylases have been linked to the cessation of CREB-dependent transcription. Here we tested this model in the regulation of endogenous CREB target genes. We used a constitutively active CREB mutant and microarray analysis to identify target genes in PC12 cells. We then tested the role of histone deacetylase activity in cAMP activation of four of these genes (c-FOS, ICER, NOR-1, and NUR77) by treating cells with the histone deacetylase inhibitor trichostatin A. Consistent with the generally accepted model, trichostatin A enhanced activation of c-FOS and NUR77 by cAMP. Surprisingly, trichostatin A blocked activation of ICER and NOR-1. The block of ICER and NOR-1 activation persisted in the presence of cycloheximide, indicating that the trichostatin A effect did not depend on new protein synthesis. This unexpected role of histone deacetylases in transcriptional activation of certain endogenous CREB target genes was not apparent in transfected reporter genes. Chromatin immunoprecipitation analysis indicated that the differential roles of histone deacetylases in activating or repressing CREB target genes was manifested at the level of preinitiation complex recruitment. These data indicate that histone deacetylases differentially regulate CREB target genes by contributing to either activation or cessation of transcription.
Collapse
Affiliation(s)
- Daniel M Fass
- Vollum Institute L474, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
973
|
Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003; 425:475-9. [PMID: 14523437 DOI: 10.1038/nature02017] [Citation(s) in RCA: 472] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 08/22/2003] [Indexed: 11/10/2022]
Abstract
An immense number of post-translational modifications on histone proteins have been described and additional sites of modification are still being uncovered. Whereas many direct and indirect connections between certain histone modifications and distinct biological phenomena have now been established, concepts for comprehending the extreme density and variety of these covalent modifications are lacking. Here, we formally introduce localized 'binary switches' and 'modification cassettes' as new concepts in histone biology, elucidating mechanisms that might govern the biological readout of distinct modification patterns. Specifically, our hypotheses provide missing models for the dynamic readout of stable histone modifications and offer explanations for several long-standing questions embedded in the literature. Our ideas might also apply to non-histone proteins and are open to direct experimental examination.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
974
|
Rougeulle C, Navarro P, Avner P. Promoter-restricted H3 Lys 4 di-methylation is an epigenetic mark for monoallelic expression. Hum Mol Genet 2003; 12:3343-8. [PMID: 14570711 DOI: 10.1093/hmg/ddg351] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylation of histone tails has been implicated in long-term epigenetic memory. Methylated H3 Lys 4 (K4) is a generally conserved mark for euchromatic, transcriptionally active regions, although the effect of this modification is likely also to depend on its distribution both within the euchromatic region and more specifically within a given gene. Here we describe a profile of H3K4 di-methylation that is specific for monoallelically expressed genes. Both X-linked genes subject to X-inactivation and autosomal imprinted genes have di-methylated H3K4 restricted to their promoter regions. In contrast, high levels of H3K4 di-methylation are found in both promoters and exonic parts of autosomal genes and of X-linked genes that escape X-inactivation. We suggest that this pattern of promoter restricted H3 Lys 4 di-methylation, already present in totipotent cells, is causally related to the long-term programming of allelic expression and provides an epigenetic mark for monoallelically expressed genes.
Collapse
Affiliation(s)
- Claire Rougeulle
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
975
|
Abstract
It has become clear that post-translational modifications of histones are key players in the mechanisms of transcriptional regulation. There are 4 major types of histone modifications: acetylation, methylation, phosphorylation and ubiquitinylation. Different combinations of these modifications would form an epigenetic code which, once read by specific protein domains, would lead to diverse responses at precise locations within the eukaryotic genome.
Collapse
Affiliation(s)
- Nicolas Lacoste
- Centre de recherche en cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9, rue McMahon, Québec, G1R 2J6, Canada
| | | |
Collapse
|
976
|
He S, Bauman D, Davis JS, Loyola A, Nishioka K, Gronlund JL, Reinberg D, Meng F, Kelleher N, McCafferty DG. Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci U S A 2003; 100:12033-8. [PMID: 14530408 PMCID: PMC218708 DOI: 10.1073/pnas.2035256100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Indexed: 11/18/2022] Open
Abstract
The functional capacity of genetically encoded histone proteins can be powerfully expanded by posttranslational modification. A growing body of biochemical and genetic evidence clearly links the unique combinatorial patterning of side chain acetylation, methylation, and phosphorylation mainly within the highly conserved N termini of histones H2A, H2B, H3, and H4 with the regulation of gene expression and chromatin assembly and remodeling, in effect constituting a "histone code" for epigenetic signaling. Deconvoluting this code has proved challenging given the inherent posttranslational heterogeneity of histone proteins isolated from biological sources. Here we describe the application of native chemical ligation to the preparation of full-length histone proteins containing site-specific acetylation and methylation modifications. Peptide thioesters corresponding to histone N termini were prepared by solid phase peptide synthesis using an acid labile Boc/HF assembly strategy, then subsequently ligated to recombinantly produced histone C-terminal globular domains containing an engineered N-terminal cysteine residue. The ligation site is then rendered traceless by hydrogenolytic desulfurization, generating a native histone protein sequence. Synthetic histones generated by this method are fully functional, as evidenced by their self-assembly into a higher order H3/H4 heterotetramer, their deposition into nucleosomes by human ISWI-containing (Imitation of Switch) factor RSF (Remodeling and Spacing Factor), and by enzymatic modification by human Sirt1 deacetylase and G9a methyltransferase. Site-specifically modified histone proteins generated by this method will prove invaluable as novel reagents for the evaluation of the histone code hypothesis and analysis of epigenetic signaling mechanisms.
Collapse
Affiliation(s)
- Shu He
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
977
|
Hoshino M, Tagawa K, Okuda T, Murata M, Oyanagi K, Arai N, Mizutani T, Kanazawa I, Wanker EE, Okazawa H. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J Neurochem 2003; 87:257-67. [PMID: 12969272 DOI: 10.1046/j.1471-4159.2003.01991.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Perturbation of histone acetyl-transferase (HAT) activity is implicated in the pathology of polyglutamine diseases, and suppression of the counteracting histone deacetylase (HDAC) proteins has been proposed as a therapeutic candidate for these intractable disorders. Meanwhile, it is not known whether mutant polyglutamine disease protein affects the HDAC activity in declining neurons, though the answer is essential for application of anti-HDAC drugs for polyglutamine diseases. Here, we show the effect of mutant huntingtin (htt) protein on the expression and activity of HDAC proteins in rat primary cortical neurons as well as in human Huntington's disease (HD) brains. Our findings indicate that expression and activity of HDAC proteins are not repressed by mutant htt protein. Furthermore, expression of normal and mutant htt protein slightly increased HDAC activity although the effects of normal and mutant htt were not remarkably different. In human HD cerebral cortex, HDAC5 immunoreactivity was increased in the nucleus of striatal and cortical neurons, suggesting accelerated nuclear import of this class II HDAC. Meanwhile, western blot and immunohistochemical analyses showed no remarkable change in the expression of class I HDAC proteins such as HDAC1 and HDCA8. Collectively, retained activity in affected neurons supports application of anti-HDAC drugs to the therapy of HD.
Collapse
Affiliation(s)
- Masataka Hoshino
- Department of Molecular Therapeutics, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
978
|
Hosohata K, Li P, Hosohata Y, Qin J, Roeder RG, Wang Z. Purification and identification of a novel complex which is involved in androgen receptor-dependent transcription. Mol Cell Biol 2003; 23:7019-29. [PMID: 12972618 PMCID: PMC193941 DOI: 10.1128/mcb.23.19.7019-7029.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The androgen receptor (AR) binds to and activates transcription of target genes in response to androgens. In an attempt to isolate cofactors capable of influencing AR transcriptional activity, we used an immunoprecipitation method and identified a 44-kDa protein, designated p44, as a new AR-interacting protein. p44 interacts with AR in the nucleus and with an androgen-regulated homeobox protein (NKX3.1) in the cytoplasm of LNCaP cells. Transient-transfection assays revealed that p44 enhances AR-, glucocorticoid receptor-, and progesterone receptor-dependent transcription but not estrogen receptor- or thyroid hormone receptor-dependent transcription. p44 was recruited onto the promoter of the prostate-specific antigen gene in the presence of the androgen in LNCaP cells. p44 exists as a multiprotein complex in the nuclei of HeLa cells. This complex, but not p44 alone, enhances AR-driven transcription in vitro in a cell-free transcriptional system and contains the protein arginine methyltransferase 5, which acts synergistically with p44 to enhance AR-driven gene expression in a methyltransferase-independent manner. Our data suggest a novel mechanism by which the protein arginine methyltransferase is involved in the control of AR-driven transcription. p44 expression is dramatically enhanced in prostate cancer tissue compared with adjacent benign prostate tissue.
Collapse
Affiliation(s)
- Keiko Hosohata
- Department of Cancer Biology, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
979
|
Loyola A, Huang JY, LeRoy G, Hu S, Wang YH, Donnelly RJ, Lane WS, Lee SC, Reinberg D. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol 2003; 23:6759-68. [PMID: 12972596 PMCID: PMC193931 DOI: 10.1128/mcb.23.19.6759-6768.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human ISWI-containing factor RSF (for remodeling and spacing factor) is composed of two subunits: the ATPase hSNF2H and p325 (Rsf-1), a protein encoded by a novel human gene. We previously showed that RSF mediates nucleosome deposition and generates regularly spaced nucleosome arrays. Here we report the characterization of the largest subunit of RSF, Rsf-1. We found that Rsf-1 is a highly acidic protein containing a plant homology domain. The present study includes the cloning of Rsf-1, the preparation of recombinant RSF, and the dissection of the role of each subunit in the chromatin assembly reaction. The sequence of the gene for Rsf-1 includes a recently characterized cDNA, HBXAP; postulated to be involved in the transcriptional regulation of the hepatitis B virus. HBXAP actually contains a 252-amino-acid truncation of the amino terminus of Rsf-1. Finally, comparison of HBXAP and Rsf-1 properties shows that they are functionally different.
Collapse
Affiliation(s)
- Alejandra Loyola
- Howard Hughes Medical Institute, University of Medicine and Dentistry of New JerseyRobert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Morshead KB, Ciccone DN, Taverna SD, Allis CD, Oettinger MA. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci U S A 2003; 100:11577-82. [PMID: 14500909 PMCID: PMC208800 DOI: 10.1073/pnas.1932643100] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Indexed: 11/18/2022] Open
Abstract
In the earliest stages of antigen receptor assembly, D and J segments of the Ig heavy chain and T cell receptor beta loci are recombined in B and T cells, respectively, whereas the V segments are not. Distinct distribution patterns of various histone modifications and the nucleosome-remodeling factor BRG1 are found at "active" (DJ) and "inactive" (V) regions. Striking "hotspots" of histone H3 dimethylated at lysine 4 (di-Me H3-K4) are localized at the ends of the active DJ domains of both the Ig heavy chain and T cell receptor beta loci. BRG1 is not localized to specific sequences, as it is with transcriptional initiation, but rather associates with the entire active locus in a pattern that mirrors acetylation of histone H3. Within some inactive loci marked by H3-K9 dimethylation, two distinct levels of methylation are found in a nonrandom gene-segment-specific pattern. We suggest that the hotspots of di-Me H3-K4 are important marks for locus accessibility. The specific patterns of modification imply that the regulation of V(D)J recombination involves recruitment of specific methyltransferases in a localized manner.
Collapse
Affiliation(s)
- Katrina B Morshead
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
981
|
Berg A, Meza TJ, Mahić M, Thorstensen T, Kristiansen K, Aalen RB. Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 2003; 31:5291-5304. [PMID: 12954765 PMCID: PMC203319 DOI: 10.1093/nar/gkg735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 07/17/2003] [Accepted: 07/27/2003] [Indexed: 11/13/2022] Open
Abstract
Animal proteins that contain a methyl-CpG-binding domain (MBD) are suggested to provide a link between DNA methylation, chromatin remodelling and gene silencing. However, some MBD proteins reside in chromatin remodelling complexes, but do not have specific affinity for methylated DNA. It has recently been shown that the Arabidopsis genome contains 12 putative genes encoding proteins with domains similar to MBD, of which at least three bind symmetrically methylated DNA. Using a bioinformatics approach, we have identified additional domains in a number of these proteins and, on this basis and extended sequence similarity, divided the proteins into subgroups. Using RT-PCR we show that 10 of the AtMBD genes are active and differentially expressed in diverse tissues. To investigate the biological significance of AtMBD proteins, we have transformed Arabidopsis with a construct aimed at RNA interference with expression of the AtMBD11 gene, normally active in most tissues. The resulting 35S::AtMBD11-RNAi plants displayed a variety of phenotypic effects, including aerial rosettes, serrated leaves, abnormal position of flowers, fertility problems and late flowering. Arabidopsis lines with reduced expression of genes involved in chromatin remodelling and transgene silencing show similar phenotypes. Our results suggest an important role for AtMBD proteins in plant development.
Collapse
Affiliation(s)
- Anita Berg
- Division of Cell and Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
982
|
Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 2003; 228:113-20. [PMID: 12950085 DOI: 10.1002/dvdy.10348] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The remarkable regeneration capacity of plant cells is based on their capability to dedifferentiate. We recently reported that cellular dedifferentiation proceeds through two distinct phases, each accompanied by chromatin decondensation: acquisition of competence for fate switch followed by a signal-dependent reentry into S phase. The purpose of this study was to (1) characterize changes in chromatin factors associated with chromatin decondensation, and (2) study the relationship between chromatin decondensation and transcriptional activation of pRb/E2F-regulated genes. We show that plant cells competent for fate switch display a disruption of nucleolar domain appearance associated with condensation of 18S ribosomal DNA, as well as modifications of histone H3 and redistribution of heterochromatin protein 1 (HP1). We further show that the pRb/E2F-target genes RNR2 and PCNA are condensed and silent in differentiated leaf cells but become decondensed, although not yet activated, as cells acquire competence for fate switch; transcriptional activation becomes evident during progression into S phase, concomitantly with pRb phosphorylation. We propose that chromatin reorganization is central for reversion of the differentiation process leading to resetting of the gene expression program and activation of silent genes.
Collapse
Affiliation(s)
- Leor Williams
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
983
|
Landry J, Sutton A, Hesman T, Min J, Xu RM, Johnston M, Sternglanz R. Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:5972-8. [PMID: 12917322 PMCID: PMC180946 DOI: 10.1128/mcb.23.17.5972-5978.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has shown that histone methylation is an important regulator of transcription. While much is known about the roles of histone methyltransferases (HMTs) in the establishment of heterochromatin, little is known of their roles in the regulation of actively transcribed genes. We describe an in vivo role of the Saccharomyces cerevisiae HMT, Set2. We identified SET2 as a gene necessary for repression of GAL4 basal expression and show that the evolutionarily conserved SACI, SACII, and SET domains of Set2 are necessary for this repression. We confirm that Set2 catalyzes methylation of lysine 36 on the N-terminal tail of histone H3. Conversion of lysine 36 to an unmethylatable arginine causes a decrease in the repression of GAL4 transcription, as does a Delta set2 mutation. We further show that lysine 36 of histone H3 at GAL4 is methylated and that this methylation is dependent upon the presence of SET2.
Collapse
Affiliation(s)
- Joseph Landry
- Program in Genetics, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
984
|
Aoyagi S, Wade PA, Hayes JJ. Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism. J Biol Chem 2003; 278:30562-8. [PMID: 12767978 DOI: 10.1074/jbc.m304148200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes can induce the translocation (sliding) of nucleosomes in cis along DNA, but the mechanism by which sliding occurs is not well defined. We previously presented evidence that sliding induced by the human SWI/SNF complex does not occur solely via a proposed "twist-diffusion" mechanism whereby the DNA rotates about its helical axis without displacement from the surface of the nucleosome (Aoyagi, S., and Hayes, J. J. (2002) Mol. Cell. Biol. 22, 7484-7490). Here we examined whether the Xenopus Mi-2 nucleosome remodeling complex induces nucleosome sliding via a twist-diffusion mechanism with nucleosomes assembled onto DNA templates containing branched DNA structures expected to sterically hinder rotation of the DNA helix on the nucleosome surface. We find that the branched DNA-containing nucleosomes undergo xMi-2-catalyzed sliding at a rate and extent identical to that of nucleosomes assembled on native DNA fragments. These results indicate that both the hSWI/SNF and xMi-2 complexes induce nucleosome sliding via a mechanism(s) other than simple twist diffusion and are consistent with models in which the DNA largely maintains its rotational orientation with respect to the histone surface.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
985
|
Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 2003; 17:1855-69. [PMID: 12869583 PMCID: PMC196232 DOI: 10.1101/gad.1102803] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heterochromatin protein 1 (HP1) is a key component of constitutive heterochromatin in Drosophila and is required for stable epigenetic gene silencing classically observed as position effect variegation. Less is known of the family of mammalian HP1 proteins, which may be euchromatic, targeted to expressed loci by repressor-corepressor complexes, and retained there by Lys 9-methylated histone H3 (H3-MeK9). To characterize the physical properties of euchromatic loci bound by HP1, we developed a strategy for regulated recruitment of HP1 to an expressed transgene in mammalian cells by using a synthetic, hormone-regulated KRAB repression domain. We show that its obligate corepressor, KAP1, can coordinate all the machinery required for stable gene silencing. In the presence of hormone, the transgene is rapidly silenced, spatially recruited to HP1-rich nuclear regions, assumes a compact chromatin structure, and is physically associated with KAP1, HP1, and the H3 Lys 9-specific methyltransferase, SETDB1, over a highly localized region centered around the promoter. Remarkably, silencing established by a short pulse of hormone is stably maintained for >50 population doublings in the absence of hormone in clonal-cell populations, and the silent transgenes in these clones show promoter hypermethylation. Thus, like variegation in Drosophila, recruitment of mammalian HP1 to a euchromatic promoter can establish a silenced state that is epigenetically heritable.
Collapse
|
986
|
Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 2003; 17:1870-81. [PMID: 12897054 PMCID: PMC196235 DOI: 10.1101/gad.1110503] [Citation(s) in RCA: 759] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
On the histone H3 tail, Lys 9 and Lys 27 are both methylation sites associated with epigenetic repression, and reside within a highly related sequence motif ARKS. Here we show that the chromodomain proteins Polycomb (Pc) and HP1 (heterochromatin protein 1) are highly discriminatory for binding to these sites in vivo and in vitro. In Drosophila S2 cells, and on polytene chromosomes, methyl-Lys 27 and Pc are both excluded from areas that are enriched in methyl-Lys 9 and HP1. Swapping of the chromodomain regions of Pc and HP1 is sufficient for switching the nuclear localization patterns of these factors, indicating a role for their chromodomains in both target site binding and discrimination. To better understand the molecular basis for the selection of methyl-lysine binding sites, we solved the 1.8 A structure of the Pc chromodomain in complex with a H3 peptide bearing trimethyl-Lys 27, and compared it with our previously determined structure of the HP1 chromodomain in complex with a H3 peptide bearing trimethyl-Lys 9. The Pc chromodomain distinguishes its methylation target on the H3 tail via an extended recognition groove that binds five additional residues preceding the ARKS motif.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
987
|
Abstract
The genes that encode ribosomal RNA exist in two distinct types of chromatin--an 'open' conformation that is permissive to transcription and a 'closed' conformation that is transcriptionally refractive. Recent studies have provided insights into the molecular mechanisms that silence either entire nucleolus organizer regions (NORs) in genetic hybrids or individual rRNA genes within a NOR. An emerging theme from these studies is that epigenetic mechanisms operating at the level of DNA methylation and histone modifications alter the chromatin structure and control the ratio of active and inactive rRNA genes.
Collapse
Affiliation(s)
- Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
988
|
Min J, Zhang Y, Xu RM. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 2003; 17:1823-8. [PMID: 12897052 PMCID: PMC196225 DOI: 10.1101/gad.269603] [Citation(s) in RCA: 508] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chromodomain of Drosophila Polycomb protein is essential for maintaining the silencing state of homeotic genes during development. Recent studies suggest that Polycomb mediates the assembly of repressive higher-order chromatin structures in conjunction with the methylation of Lys 27 of histone H3 by a Polycomb group repressor complex. A similar mechanism in heterochromatin assembly is mediated by HP1, a chromodomain protein that binds to histone H3 methylated at Lys 9. To understand the molecular mechanism of the methyl-Lys 27 histone code recognition, we have determined a 1.4-A-resolution structure of the chromodomain of Polycomb in complex with a histone H3 peptide trimethylated at Lys 27. The structure reveals a conserved mode of methyl-lysine binding and identifies Polycomb-specific interactions with histone H3. The structure also reveals a dPC dimer in the crystal lattice that is mediated by residues specifically conserved in the Polycomb family of chromodomains. The dimerization of dPC can effectively account for the histone-binding specificity and provides new mechanistic insights into the function of Polycomb. We propose that self-association is functionally important for Polycomb.
Collapse
Affiliation(s)
- Jinrong Min
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
989
|
Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003; 31:567-85. [PMID: 12842702 DOI: 10.1016/s0301-472x(03)00081-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetic modification of chromatin structure underlies the differentiation of pluripotent hemopoietic stem cells (HSCs) into their committed/differentiated progeny. Compelling evidence indicates that Polycomb group (PcG) genes play a key role in normal and leukemic hemopoiesis through epigenetic regulation of HSC self-renewal/proliferation and commitment. The PcG proteins are constituents of evolutionary highly conserved molecular pathways regulating cell fate in several other tissues through diverse mechanisms, including 1) regulation of self-renewal/proliferation, 2) regulation of senescence/immortalization, 3) interaction with the initiation transcription machinery, 4) interaction with chromatin-condensation proteins, 5) modification of histones, 6) inactivation of paternal X chromosome, and 7) regulation of cell death. It is therefore not surprising that PcG genes lead to pleiotropic phenotypes when mutated and have been associated with malignancies in several systems in both mice and humans. Although much remains to be learned regarding the PcG mechanism(s) of action, advances in identifying the functional domains and enzymatic activities of these multimeric protein complexes have provided insights into how PcG proteins accomplish such processes. Some of the new insights into a role for the PcG cellular memory system in regulating normal and leukemic hemopoiesis are reviewed here, with special emphasis on their potential involvement in epigenetic regulation of gene expression through modification of chromatin structure.
Collapse
Affiliation(s)
- Julie Lessard
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
990
|
Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, Chiba T, Nakao M. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 2003; 278:24132-8. [PMID: 12711603 DOI: 10.1074/jbc.m302283200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytosine methylation and posttranslational modifications of the amino termini of the core histones in the nucleosome provide epigenetic codes for genome regulation. In the nucleus, not only is the DNA methylated, but the methylated DNA is also interpreted by methyl-CpG binding domain (MBD) proteins. MBD1 possesses an MBD involved in mediating DNA methylation-dependent transcriptional repression. The MBD of MBD1 binds a symmetrically methylated CpG sequence, but the precise roles of this domain have not been investigated. In addition, little is understood about the state of histone modifications within MBD1-containing heterochromatin on methylated gene promoters. Here we show that histone H3 methylase Suv39h1 and the methyl lysine-binding protein HP1 directly interact with MBD of MBD1 in vitro and in cells. Suv39h1 was found to enhance MBD1-mediated transcriptional repression via MBD but not via the C-terminal transcriptional repression domain of MBD1. Furthermore, MBD1 links to histone deacetylases through Suv39h1, resulting in methylation and deacetylation of histones for gene inactivation. These data indicate that MBD1 may tether the Suv39h1-HP1 complex to methylated DNA regions, suggesting the presence of a pathway from DNA methylation to the modifications of histones for epigenetic gene regulation.
Collapse
Affiliation(s)
- Naoyuki Fujita
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | |
Collapse
|
991
|
Panigrahi AK, Tomar RS, Chaturvedi MM. Mechanism of nucleosome disruption and octamer transfer by the chicken SWI/SNF-like complex. Biochem Biophys Res Commun 2003; 306:72-8. [PMID: 12788068 DOI: 10.1016/s0006-291x(03)00906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We had recently characterized SLC, a SWI/SNF-like chromatin remodelling activity, from chicken liver. The SLC efficiently disrupts nucleosomes, transfers histone octamers from nucleosomal substrates onto acceptor DNA, and slides histone octamers along DNA. Here, we present evidence that SLC is indeed a SWI/SNF homologue, and it disrupts nucleosomes by inducing extensive dynamic helical distortions in the nucleosomal DNA. Both the nucleosome disruption and octamer transfer functions are indifferent to nucleosomal histone tails. We further show that the nucleosome disruption precedes the octamer transfer and that the latter requires continuous presence of ATP. Based on these observations, we propose that a disrupted nucleosome is not a spontaneous substrate for octamer transfer; rather the nucleosome disruption and the octamer transfer are two temporally successive, ATP-dependent events during nucleosome remodelling by SLC in vitro.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Biochemistry and Molecular Biology Laboratory, Center of Advanced Study in Zoology, Banaras Hindu University, 221 005, Varanasi, India
| | | | | |
Collapse
|
992
|
Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, Mahadevan LC, Arthur JSC. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 2003; 22:2788-97. [PMID: 12773393 PMCID: PMC156769 DOI: 10.1093/emboj/cdg273] [Citation(s) in RCA: 387] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 04/11/2003] [Accepted: 04/14/2003] [Indexed: 11/13/2022] Open
Abstract
Cells respond to mitogenic or stress stimuli by the rapid induction of immediate-early (IE) genes, which occurs concomitantly with the phosphorylation of histone H3 and the high-mobility-group protein HMG-14. In mammalian cells this response is mediated via ERK and p38 MAP kinase pathways, but the identity of the downstream kinase that phosphorylates histone H3 has been contentious. One study, based on Coffin- Lowry cells defective in RSK2, reported that RSK2 was the histone H3 kinase, while a second study, based on the efficiency of RSKs and MSKs as in vitro histone H3 kinases, and their relative susceptibility to kinase inhibitors, suggested that MSKs were responsible. We show here that the histone H3 phosphorylation response is normal in Coffin-Lowry cells. Further more, we show that histone H3 and HMG-14 phosphorylation is severely reduced or abolished in mice lacking MSK1 and MSK2. We also show that, despite this, histone H3 acetylation is unimpaired in these cells and that IE genes can be induced, although at a reduced efficiency. We conclude that MSKs are the major kinases for histone H3 and HMG-14 in response to mitogenic and stress stimuli in fibroblasts.
Collapse
Affiliation(s)
- Ana Soloaga
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
993
|
Nakayama JI, Xiao G, Noma KI, Malikzay A, Bjerling P, Ekwall K, Kobayashi R, Grewal SIS. Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity. EMBO J 2003; 22:2776-87. [PMID: 12773392 PMCID: PMC156745 DOI: 10.1093/emboj/cdg248] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The post-translational modifications of histones are key to the modulation of chromatin structure. Distinct patterns of modifications established by histone-modifying enzymes control diverse chromosomal processes. Here, we report the purification and molecular characterization of the fission yeast Clr6 histone deacetyl ase involved in higher order chromatin assembly. We show that a chromodomain protein Alp13, which belongs to the conserved MRG protein family linked to cellular senescence in humans, is associated with Clr6. In addition, Clr6 interacts with homologs of the mammalian transcriptional co-repressors Sin3, Pst1 and Pst2, and a WD40 repeat-containing protein, Prw1. Alp13, Pst2 and Prw1 form a stable complex with Clr6 in the nucleus. Deletion of any of these factors causes progressive loss of viability and sensitivity to DNA-damaging agents, and impairs condensation/resolution of chromosomes during mitosis. This is accompanied by hyperacetylation of histones and a reduction in histone H3 Ser10 phosphorylation, which correlates with chromosome condensation during mitosis. These results link the MRG family protein Alp13 to histone deacetylation, and suggest that Clr6 and its associated factors are essential for fundamental chromosomal events.
Collapse
Affiliation(s)
- Jun-Ichi Nakayama
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
994
|
Zardo G, Reale A, De Matteis G, Buontempo S, Caiafa P. A role for poly(ADP-ribosyl)ation in DNA methylation. Biochem Cell Biol 2003; 81:197-208. [PMID: 12897854 DOI: 10.1139/o03-050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aberrant DNA methylation of promoter regions of housekeeping genes leads to gene silencing. Additional epigenetic events, such as histone methylation and acetylation, also play a very important role in the definitive repression of gene expression by DNA methylation. If the aberrant DNA methylation of promoter regions is the starting or the secondary event leading to the gene silencing is still debated. Mechanisms controlling DNA methylation patterns do exist although they have not been ultimately proven. Our data suggest that poly(ADP-ribosyl)ation might be part of this control mechanism. Thus an additional epigenetic modification seems to be involved in maintaining tissue and cell-type methylation patterns that when formed during embryo development, have to be rigorously conserved in adult organisms.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
995
|
Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM. Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. PLANT PHYSIOLOGY 2003; 132:907-25. [PMID: 12805620 PMCID: PMC167030 DOI: 10.1104/pp.102.013722] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 10/30/2002] [Accepted: 02/11/2003] [Indexed: 05/17/2023]
Abstract
Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
996
|
Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci 2003; 116:2117-24. [PMID: 12730288 DOI: 10.1242/jcs.00493] [Citation(s) in RCA: 475] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Monika Lachner
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr Bohrgasse7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
997
|
Abstract
Which mechanisms regulate nuclear plasticity? Part of the answer to that question lies in understanding how genes are expressed and regulated in the context of chromatin structure. It is now clear that the genes are regulated in discrete and controlled stages, from packaging into chromatin to their localization within the nucleus. Whereas the genetic information provides the framework for the manufacture of all proteins necessary to create a living cell, chromatin structure controls how, where, and when the genetic information should be used. In this minireview, I summarize the main characteristics of chromatin structure and highlight some of the modifications usually associated with the regulation of gene expression.
Collapse
Affiliation(s)
- Nathalie Beaujean
- Division of Gene Expression and Development, Roslin Institute, Roslin, Midlothian, Scotland, United Kingdom.
| |
Collapse
|
998
|
|
999
|
Tan Q, Prysak MH, Woychik NA. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol Cell Biol 2003; 23:3329-38. [PMID: 12697831 PMCID: PMC153193 DOI: 10.1128/mcb.23.9.3329-3338.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/16/2002] [Accepted: 01/17/2003] [Indexed: 11/20/2022] Open
Abstract
We have identified a conditional mutation in the shared Rpb6 subunit, assembled in RNA polymerases I, II, and III, that illuminated a new role that is independent of its assembly function. RNA polymerase II and III activities were significantly reduced in mutant cells before and after the shift to nonpermissive temperature. In contrast, RNA polymerase I was marginally affected. Although the Rpb6 mutant strain contained two mutations (P75S and Q100R), the majority of growth and transcription defects originated from substitution of an amino acid nearly identical in all eukaryotic counterparts as well as bacterial omega subunits (Q100R). Purification of mutant RNA polymerase II revealed that two subunits, Rpb4 and Rpb7, are selectively lost in mutant cells. Rpb4 and Rpb7 are present at substoichiometric levels, form a dissociable subcomplex, are required for RNA polymerase II activity at high temperatures, and have been implicated in the regulation of enzyme activity. Interaction experiments support a direct association between the Rpb6 and Rpb4 subunits, indicating that Rpb6 is one point of contact between the Rpb4/Rpb7 subcomplex and RNA polymerase II. The association of Rpb4/Rpb7 with Rpb6 suggests that analogous subunits of each RNA polymerase impart class-specific functions through a conserved core subunit.
Collapse
Affiliation(s)
- Qian Tan
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
1000
|
Shi Y, Sawada JI, Sui G, Affar EB, Whetstine JR, Lan F, Ogawa H, Luke MPS, Nakatani Y, Shi Y. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003; 422:735-8. [PMID: 12700765 DOI: 10.1038/nature01550] [Citation(s) in RCA: 631] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 03/04/2003] [Indexed: 11/09/2022]
Abstract
The transcriptional co-repressor CtBP (C-terminal binding protein) is implicated in tumorigenesis because it is targeted by the adenovirus E1A protein during oncogenic transformation. Genetic studies have also identified a crucial function for CtBP in animal development. CtBP is recruited to DNA by transcription factors that contain a PXDLS motif, but the detailed molecular events after the recruitment of CtBP to DNA and the mechanism of CtBP function in tumorigenesis are largely unknown. Here we report the identification of a CtBP complex that contains the essential components for both gene targeting and coordinated histone modifications, allowing for the effective repression of genes targeted by CtBP. Inhibiting the expression of CtBP and its associated histone-modifying activities by RNA-mediated interference resulted in alterations of histone modifications at the promoter of the tumour invasion suppressor gene E-cadherin and increased promoter activity in a reporter assay. These findings identify a molecular mechanism by which CtBP mediates transcriptional repression and provide insight into CtBP participation in oncogenesis.
Collapse
Affiliation(s)
- Yujiang Shi
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|