951
|
Sünderhauf N, Protzel P. Learning from Nature: Biologically Inspired Robot Navigation and SLAM—A Review. KUNSTLICHE INTELLIGENZ 2010. [DOI: 10.1007/s13218-010-0038-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
952
|
|
953
|
Abstract
We recently reported that the majority of hippocampal neurons in newborn rats increase their activity in association with myoclonic twitches, which are indicative of active sleep. Because spindle bursts in the developing somatosensory neocortex occur in response to sensory feedback from myoclonic twitching, we hypothesized that the state-dependent activity of the newborn hippocampus arises from sensory feedback that sequentially activates the neocortex and then hippocampus, constituting an early form of neocortical-hippocampal communication. Here, in unanesthetized 5- to 6-d-old rats, we test this hypothesis by recording simultaneously from forelimb and barrel regions of somatosensory neocortex and dorsal hippocampus during periods of spontaneous sleep and wakefulness and in response to peripheral stimulation. Myoclonic twitches were consistently followed by neocortical spindle bursts, which were in turn consistently followed by bursts of hippocampal unit activity; moreover, spindle burst power was positively correlated with hippocampal unit activity. In addition, exogenous stimulation consistently evoked this neocortical-to-hippocampal sequence of activation. Finally, parahippocampal lesions that disrupted functional connections between the neocortex and hippocampus effectively disrupted the transmission of both spontaneous and evoked neocortical activity to the hippocampus. These findings suggest that sleep-related motor activity contributes to the development of neocortical and hippocampal circuits and provides a foundation on which coordinated activity between these two forebrain structures develops.
Collapse
|
954
|
Cappaert NLM, Lopes da Silva FH, Wadman WJ. Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices. Hippocampus 2010; 19:1065-77. [PMID: 19338021 DOI: 10.1002/hipo.20570] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theta oscillations (4-12 Hz) are associated with learning and memory and are found in the hippocampus and the entorhinal cortex (EC). The spatio-temporal organization of rhythmic activity in the hippocampal-EC complex was investigated in vitro. The voltage sensitive absorption dye NK3630 was used to record the changes in aggregated membrane voltage simultaneously from the neuronal networks involved. Oscillatory activity at 7.0 Hz (range, 5.8-8.2) was induced in the slice with the muscarinic agonist carbachol (75-100 microM) in the presence of bicuculline (5 microM). Time relations between all recording sites were analyzed using cross-correlation functions which revealed systematic phase shifts in the theta oscillation recorded from the different entorhinal and hippocampal subregions. These phase shifts could be interpreted as propagation delays. The oscillation propagates over the slice in a characteristic spatio-temporal sequence, where the entorhinal cortex leads, followed by the subiculum and then the dentate gyrus (DG), to finally reach the CA3 and the CA1 area. The delay from dentate gyrus to the CA3 area was 12.4 +/- 1.1 ms (mean +/- s.e.m.) and from the CA3 to the CA1 region it was 10.9 +/- 1.9 ms. The propagation delays between the hippocampal subregions resemble the latencies of electrically evoked responses in the same subregions. Removing the entorhinal cortex from the slice changed the spatiotemporal pattern into a more clustered pattern with higher local synchrony. We conclude that in the slice, carbachol-induced theta oscillations are initiated in the entorhinal cortex. The EC could serve to control the information flow through the neuronal network in the subregions of the hippocampus by synchronizing and/or entraining their responses to external inputs.
Collapse
Affiliation(s)
- N L M Cappaert
- SILS - Center for NeuroScience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
955
|
Clark BJ, Bassett JP, Wang SS, Taube JS. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J Neurosci 2010; 30:5289-302. [PMID: 20392951 PMCID: PMC2861549 DOI: 10.1523/jneurosci.3380-09.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 02/25/2010] [Accepted: 03/03/2010] [Indexed: 12/24/2022] Open
Abstract
The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat's head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP. The functional relationship between HD cells in the RSP and those found in other limbic regions is presently unknown, but given the intimate connectivity between the RSP and regions such as the ADN and PoS, and the reported loss of spatial orientation in rodents and humans with RSP damage, it is likely that the RSP plays an important role in processing the limbic HD signal. To test this hypothesis, we produced neurotoxic or electrolytic lesions of the RSP and recorded HD cells in the ADN of female Long-Evans rats. HD cells remained present in the ADN after RSP lesions, but the stability of their preferred firing directions was significantly reduced even in the presence of a salient visual landmark. Subsequent tests revealed that lesions of the RSP moderately impaired landmark control over the cells' preferred firing directions, but spared the cells directional stability when animals were required to update their orientation using self-movement cues. Together, these results suggest that the RSP plays a prominent role in processing landmark information for accurate HD cell orientation and may explain the poor directional sense in humans that follows damage to the RSP.
Collapse
Affiliation(s)
- Benjamin J. Clark
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| | - Joshua P. Bassett
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| | - Sarah S. Wang
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
956
|
Giuggioli L, Bartumeus F. Animal movement, search strategies and behavioural ecology: a cross-disciplinary way forward. J Anim Ecol 2010; 79:906-9. [PMID: 20337757 DOI: 10.1111/j.1365-2656.2010.01682.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Giuggioli
- Bristol Centre for Complexity Sciences, Department of Engineering Mathematics and School of Biological Sciences, University of Bristol, Bristol, UK.
| | | |
Collapse
|
957
|
Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Nemec P. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 2010; 7:1275-92. [PMID: 20219838 DOI: 10.1098/rsif.2009.0551] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Collapse
Affiliation(s)
- Tomás Burger
- Department of Zoology, Faculty of Science Charles University in Prague, Vinicna 7, CZ-12844 Praha 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
958
|
Abstract
Although anatomical, lesion, and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons (1) rarely showed continuous two-dimensional place fields, (2) differentiated open and closed arms of a radial maze, and (3) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zigzag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral compared with dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of nonspatial information.
Collapse
|
959
|
Conejo N, González-Pardo H, Gonzalez-Lima F, Arias J. Spatial learning of the water maze: Progression of brain circuits mapped with cytochrome oxidase histochemistry. Neurobiol Learn Mem 2010; 93:362-71. [DOI: 10.1016/j.nlm.2009.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/02/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
960
|
Abstract
Traditionally, the hippocampal system has been studied in relation to the goal of retrieving memories about the past. Recent work in humans and rodents suggests that the hippocampal system may be better understood as a system that facilitates predictions about upcoming events. The hippocampus and associated cortical structures are active when people envision future events, and damage that includes the hippocampal region impairs this ability. In rats, hippocampal ensembles preplay and replay event sequences in the absence of overt behavior. If strung together in novel combinations, these sequences could provide the neural building blocks for simulating upcoming events during decision-making, planning, and when imagining novel scenarios. Moreover, in both humans and rodents, the hippocampal system is spontaneously active during task-free epochs and sleep, further suggesting that the system may use idle moments to derive new representations that set the context for future behaviors.
Collapse
Affiliation(s)
- Randy L Buckner
- Howard Hughes Medical Institute at Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
961
|
Gatome CW, Slomianka L, Mwangi DK, Lipp HP, Amrein I. The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg’s epauletted fruit bat and the straw-coloured fruit bat. Brain Struct Funct 2010; 214:375-93. [DOI: 10.1007/s00429-010-0239-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
|
962
|
Iglói K, Zaoui M, Berthoz A, Rondi-Reig L. Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus 2010; 19:1199-211. [PMID: 19360853 DOI: 10.1002/hipo.20595] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
At least two main cognitive strategies can be used to solve a complex navigation task: the allocentric or map-based strategy and the sequential egocentric or route-based strategy. The sequential egocentric strategy differs from a succession of independent simple egocentric responses as it requires a sequential ordering of events, possibly sharing functional similarity with episodic memory in this regard. To question the possible simultaneous encoding of sequential egocentric and allocentric strategies, we developed a paradigm in which these two strategies are spontaneously used or imposed. Our results evidenced that sequential egocentric strategy can be spontaneously acquired at the onset of the training as well as allocentric strategy. Allocentric and sequential egocentric strategies could be used together within a trial, and bidirectional shifts (between trials) were spontaneously performed during the training period by 30% of the participants. Regardless of the strategy used spontaneously during the training, all participants could execute immediate shifts to the opposite non previously used strategy when this strategy was imposed. Altogether, our findings suggest that subjects acquire different types of spatial knowledge in parallel, namely knowledge permitting allocentric navigation as well as knowledge permitting sequential egocentric navigation.
Collapse
Affiliation(s)
- Kinga Iglói
- LPPA, UMR CNRS 7152, Collège de France, Paris, France
| | | | | | | |
Collapse
|
963
|
Kalenscher T, Lansink CS, Lankelma JV, Pennartz CMA. Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. J Neurophysiol 2010; 103:1658-72. [PMID: 20089824 DOI: 10.1152/jn.00432.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oscillations of local field potentials (LFPs) in the gamma range are found in many brain regions and are supposed to support the temporal organization of cognitive, perceptual, and motor functions. Even though gamma oscillations have also been observed in ventral striatum, one of the brain's most important structures for motivated behavior and reward processing, their specific function during ongoing behavior is unknown. Using a movable tetrode array, we recorded LFPs and activity of neural ensembles in the ventral striatum of rats performing a reward-collection task. Rats were running along a triangle track and in each round collected one of three different types of rewards. The gamma power of LFPs on subsets of tetrodes was modulated by reward-site visits, discriminated between reward types, between baitedness of reward locations and was different before versus after arrival at a reward site. Many single units in ventral striatum phase-locked their discharge pattern to the gamma oscillations of the LFPs. Phase-locking occurred more often in reward-related than in reward-unrelated neurons and LFPs. A substantial number of simultaneously recorded LFPs correlated poorly with each other in terms of gamma rhythmicity, indicating that the expression of gamma activity was heterogeneous and regionally differentiated. The orchestration of LFPs and single-unit activity by way of gamma rhythmicity sheds light on the functional architecture of the ventral striatum and the temporal coordination of ventral striatal activity for modulating downstream areas and regulating synaptic plasticity.
Collapse
Affiliation(s)
- Tobias Kalenscher
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
964
|
Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 2010; 20:45-51. [DOI: 10.1016/j.tcb.2009.09.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 12/13/2022]
|
965
|
Abstract
Thinking allows an animal to take an effective action in a novel situation based on a mental exploration of possibilities and previous knowledge. We describe a model animal, with a neural system based loosely on the rodent hippocampus, which performs mental exploration to find a useful route in a spatial world it has previously learned. It then mentally recapitulates the chosen route, and this intent is converted to motor acts that move the animal physically along the route. The modeling is based on spiking neurons with spike-frequency adaptation. Adaptation causes the continuing evolution in the pattern of neural activity that is essential to mental exploration. A successful mental exploration is remembered through spike-timing-dependent synaptic plasticity. The system is also an episodic memory for an animal chiefly concerned with locations.
Collapse
|
966
|
Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 2009; 461:941-6. [PMID: 19829374 PMCID: PMC2771429 DOI: 10.1038/nature08499] [Citation(s) in RCA: 599] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/15/2009] [Indexed: 11/08/2022]
Abstract
Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, we measured the intracellular dynamics of place cells by combining in vivo whole cell recordings with a virtual reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviors. Robust place cell activity was present during movement along a virtual linear track. From whole cell recordings, we identified three subthreshold signatures of place fields: (1) an asymmetric ramp-like depolarization of the baseline membrane potential; (2) an increase in the amplitude of intracellular theta oscillations; and, (3) a phase precession of the intracellular theta oscillation relative to the extracellularly-recorded theta rhythm. These intracellular dynamics underlie the primary features of place cell rate and temporal codes. The virtual reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation.
Collapse
|
967
|
Vickerstaff RJ, Cheung A. Which coordinate system for modelling path integration? J Theor Biol 2009; 263:242-61. [PMID: 19962387 DOI: 10.1016/j.jtbi.2009.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/19/2009] [Accepted: 11/22/2009] [Indexed: 11/19/2022]
Abstract
Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors.
Collapse
|
968
|
Moffat SD. Aging and Spatial Navigation: What Do We Know and Where Do We Go? Neuropsychol Rev 2009; 19:478-89. [PMID: 19936933 DOI: 10.1007/s11065-009-9120-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/12/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Scott D Moffat
- Institute of Gerontology, Wayne State University, 87 E. Ferry Street, Detroit, MI 48202, USA.
| |
Collapse
|
969
|
Salehi A, Faizi M, Colas D, Valletta J, Laguna J, Takimoto-Kimura R, Kleschevnikov A, Wagner SL, Aisen P, Shamloo M, Mobley WC. Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome. Sci Transl Med 2009; 1. [DOI: 10.1126/scitranslmed.3000258] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cognitive deficits in mice with a Down syndrome–like genetic defect can be reversed with precursors to the neurotransmitter norepinephrine.
Collapse
Affiliation(s)
- A. Salehi
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - M. Faizi
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - D. Colas
- Department of Biology, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Valletta
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Laguna
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - R. Takimoto-Kimura
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - A. Kleschevnikov
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - S. L. Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - P. Aisen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M. Shamloo
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - W. C. Mobley
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| |
Collapse
|
970
|
Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 2009; 64:267-80. [PMID: 19874793 DOI: 10.1016/j.neuron.2009.08.037] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 11/22/2022]
Abstract
Theta oscillations are believed to play an important role in the coordination of neuronal firing in the entorhinal (EC)-hippocampal system but the underlying mechanisms are not known. We simultaneously recorded from neurons in multiple regions of the EC-hippocampal loop and examined their temporal relationships. Theta-coordinated synchronous spiking of EC neuronal populations predicted the timing of current sinks in target layers in the hippocampus. However, the temporal delays between population activities in successive anatomical stages were longer (typically by a half theta cycle) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We hypothesize that the temporal windows set by the theta cycles allow for local circuit interactions and thus a considerable degree of computational independence in subdivisions of the EC-hippocampal loop.
Collapse
|
971
|
|
972
|
Abstract
Periodic spontaneous activity represents an important attribute of the developing nervous system. The entorhinal cortex (EC) is a crucial component of the medial temporal lobe memory system. Yet, little is known about spontaneous activity in the immature EC. Here, we investigated spontaneous field potential (fp) activity and intrinsic firing patterns of medial EC layer III principal neurons in brain slices obtained from rats at the first two postnatal weeks. A fraction of immature layer III neurons spontaneously generated prolonged (2-20 s) voltage-dependent intrinsic bursting activity. Prolonged bursts were dependent on the extracellular concentration of Ca(2+) ([Ca(2+)](o)). Thus, reduction of [Ca(2+)](o) increased the fraction of neurons with prolonged bursting by inducing intrinsic bursts in regularly firing neurons. In 1 mm [Ca(2+)](o), the percentages of neurons showing prolonged bursts were 53%, 81%, and 29% at postnatal day 5 (P5)-P7, P8-P10, and P11-P13, respectively. Prolonged intrinsic bursting activity was blocked by buffering intracellular Ca(2+) with BAPTA, and by Cd(2+), flufenamic acid (FFA), or TTX, and was suppressed by nifedipine and riluzole, suggesting that the Ca(2+)-sensitive nonspecific cationic current (I(CAN)) and the persistent Na(+) current (I(Nap)) underlie this effect. Indeed, a 0.2-1 s suprathreshold current step stimulus elicited a terminated plateau potential in these neurons. fp recordings at P5-P7 showed periodic spontaneous glutamate receptor-mediated events (sharp fp events or prolonged fp bursts) which were blocked by FFA. Slow-wave network oscillations become a dominant pattern at P11-P13. We conclude that prolonged intrinsic bursting activity is a characteristic feature of developing medial EC layer III neurons that might be involved in neuronal and network maturation.
Collapse
|
973
|
Abstract
The hippocampus has been proposed to support a cognitive map, a mental representation of the spatial layout of an environment as well as the nonspatial items encountered in that environment. In the present study, we recorded simultaneously from 43 to 61 hippocampal pyramidal cells as rats performed an object recognition memory task in which novel and repeated objects were encountered in different locations on a circular track. Multivariate analyses of the neural data indicated that information about object identity was represented secondarily to the primary information dimension of object location. In addition, the neural data related to performance on the recognition memory task. The results suggested that objects were represented as points of interest on the hippocampal cognitive map and that this map was useful in remembering encounters with particular objects in specific locations.
Collapse
Affiliation(s)
- Joseph R Manns
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
974
|
Clark BJ, Taube JS. Deficits in landmark navigation and path integration after lesions of the interpeduncular nucleus. Behav Neurosci 2009; 123:490-503. [PMID: 19485555 DOI: 10.1037/a0015477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experiments were designed to determine the role of the interpeduncular nucleus (IPN) in 3 forms of navigation: beacon, landmark, and path integration. In beacon navigation, animals reach goals using cues directly associated with them, whereas in landmark navigation animals use external cues to determine a direction and distance to goals. Path integration refers to the use of self-movement cues to obtain a trajectory to a goal. IPN-lesioned rats were tested in a food-carrying task in which they searched for food in an open field, and returned to a refuge after finding the food. Landmark navigation was evaluated during trials performed under lighted conditions and path integration was tested under darkened conditions, thus eliminating external cues. We report that IPN lesions increased the number of errors and reduced heading accuracy under both lighted and darkened conditions. Tests using a Morris water maze procedure indicated that IPN lesions produced moderate impairments in the landmark version of the water task, but left beacon navigation intact. These findings suggest that the IPN plays a fundamental role in landmark navigation and path integration.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
975
|
Horst NK, Laubach M. The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 2009; 164:444-56. [PMID: 19665526 DOI: 10.1016/j.neuroscience.2009.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/29/2009] [Accepted: 08/01/2009] [Indexed: 11/26/2022]
Abstract
We used an operant delayed spatial alternation task to examine the role of rat dorsomedial prefrontal cortex (dmPFC) in spatial working memory. The task was designed to restrict movements during the delay period to minimize use of motor-mediating strategies. Inactivation of dmPFC (muscimol) resulted in increased errors and increased the temporal variability of responding. Animals did not show perseveration after errors (i.e., responding again at the erroneous location). Under control conditions, the time between spatial responses was greater and more variable before errors as compared to correct responses. These effects were eliminated when muscimol was infused into dmPFC. Trial outcome also affected movement and delay times in the next trial. This effect was diminished with muscimol in dmPFC. By contrast, when muscimol was infused in dorsal agranular insular cortex (AId)-a region that is strongly interconnected with dorsomedial prefrontal regions-there was no effect on delayed spatial alternation performance. These experiments confirm that dmPFC is necessary for successful delayed spatial alternation and establish that there is a relationship between response time variability and trial outcome that depends on dorsomedial prefrontal function.
Collapse
Affiliation(s)
- N K Horst
- The John B. Pierce Laboratory, New Haven, CT 06519, USA
| | | |
Collapse
|
976
|
Shin AC, Zheng H, Berthoud HR. An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009; 97:572-80. [PMID: 19419661 PMCID: PMC2765252 DOI: 10.1016/j.physbeh.2009.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 01/01/2023]
Abstract
The traditional view of neural regulation of body energy homeostasis focuses on internal feedback signals integrated in the hypothalamus and brainstem and in turn leading to balanced activation of behavioral, autonomic, and endocrine effector pathways leading to changes in food intake and energy expenditure. Recent observations have demonstrated that many of these internal signals encoding energy status have much wider effects on the brain, particularly sensory and cortico-limbic systems that process information from the outside world by detecting and interpreting food cues, forming, storing, and recalling representations of experience with food, and assigning hedonic and motivational value to conditioned and unconditioned food stimuli. Thus, part of the metabolic feedback from the internal milieu regulates food intake and energy balance by acting on extrahypothalamic structures, leading to an expanded view of neural control of energy homeostasis taking into account the need to adapt to changing conditions in the environment. The realization that metabolic signals act directly on these non-traditional targets of body energy homeostasis brings opportunities for novel drug targets for the fight against obesity and eating disorders.
Collapse
Affiliation(s)
- Andrew C Shin
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | |
Collapse
|
977
|
Fricker D, Dinocourt C, Eugène E, Wood JN, Wood J, Miles R. Pyramidal cells of rodent presubiculum express a tetrodotoxin-insensitive Na+ current. J Physiol 2009; 587:4249-64. [PMID: 19596892 DOI: 10.1113/jphysiol.2009.175349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Presubicular neurons are activated physiologically by a specific preferred head direction. Here we show that firing in these neurones is characterized by action potentials with a large overshoot and a reduced firing frequency adaptation during repetitive firing. We found that a component of the sodium current of presubicular cells was not abolished by tetrodotoxin (TTX, 10 mum) and was activated at more depolarized voltages than TTX-sensitive currents. This inward current was completely abolished by the removal of external sodium, suggesting that sodium is the charge carrier of this TTX-insensitive (TTX-I) current. The channels responsible for the TTX-I sodium current seemed to be expressed at sites distant from the soma, giving rise to a voltage-dependent delay in current activation. The voltage required for half-maximal activation was 21 mV, and 36 mV for inactivation, which is similar to that reported for Na(V)1.8 sodium channels. However, the kinetics were considerably slower, with a time constant of current decay of 1.4 s. The current was not abolished in pyramidal cells from animals lacking either the Na(V)1.8 or the Na(V)1.9 subunit. This, possibly novel, TTX-I sodium current could contribute to the coding functions of presubicular neurons, specifically the maintained firing associated with signalling of a stable head position.
Collapse
Affiliation(s)
- Desdemona Fricker
- CRICM - CNRS UMR7225, CHU Pitié-Salpêtrière, 105 Bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
978
|
Huhn Z, Somogyvári Z, Kiss T, Erdi P. Distance coding strategies based on the entorhinal grid cell system. Neural Netw 2009; 22:536-43. [PMID: 19604670 DOI: 10.1016/j.neunet.2009.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/08/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022]
Abstract
Estimating and keeping track of the distance from salient points of the environment are important constituents of the spatial awareness and navigation. In rodents, the majority of principal cells in the hippocampus are known to be correlated with the position of the animal. However, the lack of topography in the hippocampal cognitive map does not support the assumption that connections between these cells are able to store and recall distances between coded positions. In contrast, the firing fields of the grid cells in the medial entorhinal cortex form triangular grids and are organized on metrical principles. We suggest a model in which a hypothesized 'distance cell' population is able to extract metrics from the activity of grid cells. We show that storing the momentary activity pattern of the grid cell system in a freely chosen position by one-shot learning and comparing it to the actual grid activity at other positions results in a distance dependent activity of these cells. The actual distance of the animal from the origin can be decoded directly by selecting the distance cell receiving the largest excitation or indirectly via transmission of local interneurons. We found that direct decoding works up to the longest grid spacing, but fails on smaller scales, while the indirect way provides precise distance determination up to the half of the longest grid spacing. In both cases, simulated distance cells have a multi-peaked, patchy spatial activity pattern consistent with the experimentally observed behavior of granule cells in the dentate gyrus.
Collapse
Affiliation(s)
- Zsófia Huhn
- Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| | | | | | | |
Collapse
|
979
|
The hippocampal rate code: anatomy, physiology and theory. Trends Neurosci 2009; 32:329-38. [PMID: 19406485 DOI: 10.1016/j.tins.2009.01.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Since the days of Cajal, the CA1 pyramidal cell has arguably received more attention than any other neuron in the mammalian brain. Hippocampal CA1 pyramidal cells fire spikes with remarkable spatial and temporal precision, giving rise to the hippocampal rate and temporal codes. However, little is known about how different inputs interact during spatial behavior to generate such robust firing patterns. Here, we review the properties of the rodent hippocampal rate code and synthesize work from several disciplines to understand the functional anatomy and excitation-inhibition balance that can produce the rate-coded outputs of the CA1 pyramidal cell. We argue that both CA3 and entorhinal inputs are crucial for the formation of sharp, sparse CA1 place fields and that precisely timed and dominant inhibition is an equally important factor.
Collapse
|
980
|
Abstract
One of the great mysteries of neuroscience is why neurons express so many different types of ion channels with such wide-ranging expression heterogeneity. In this issue of Neuron, Garden and colleagues add a new piece to this puzzle by demonstrating that the "memory" of various functional maps in regions of the medial entorhinal cortex resides in conductance gradients of two types of ion channels expressed in layer II stellate neurons.
Collapse
Affiliation(s)
- Rishikesh Narayanan
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
981
|
Diekmann V, Jürgens R, Becker W. Deriving angular displacement from optic flow: a fMRI study. Exp Brain Res 2009; 195:101-16. [PMID: 19300986 DOI: 10.1007/s00221-009-1753-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/23/2009] [Indexed: 11/25/2022]
Abstract
Using fMRI we wished to identify brain areas subserving the conversion of velocity signals into estimates of self-displacement (velocity-to-displacement integration, VDI), a function which is a prerequisite for the ability to navigate without landmarks. As real self-motion is not feasible in an fMRI environment, we presented subjects with a ride along a circular path in virtual reality devoid of usable landmarks. We asked subjects to try and feel as if actually moving in the scene and to either detect and count changes in driving speed (V-task) or to estimate the angular displacement achieved during a ride (D-task). We examined the contrast between these two tasks with regard to two hypothesised key functions for VDI: (1) evoking an internal image of the self in space and (2) manipulating this image in proportion to perceived velocity at the pace of a time base. The BOLD-responses during both tasks were fairly similar showing activity with right hemispheric dominance in a large parieto-temporo-occipital area as well as in frontal and prefrontal areas. Contrast D-V revealed a mainly parieto-hippocampal network comprising precuneus and inferior parietal cortex, posterior parieto-occipital cortex, retrosplenial cortex and the hippocampal region, but also right superior frontal gyrus and right cerebellum. It can be viewed as a blend of networks known to be involved in mental rotation and in navigation, except for the lack of ventral premotor and prefrontal activity. A tentative interpretation proposes a scenario where precuneus, together perhaps with posterior parieto-occipital cortex, provides the postulated mental image of the self in space and uses it to interpret results computed in the hippocampal region. In the hippocampal region, VDI proper would take place based on a map of spatial orientation, with the appropriate time scale being an intrinsic property. In addition, a dedicated time keeping system in inferior parietal cortex appears to be involved.
Collapse
Affiliation(s)
- Volker Diekmann
- Sektion Neurophysiologie, Universität Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | | | | |
Collapse
|
982
|
Hassabis D, Chu C, Rees G, Weiskopf N, Molyneux PD, Maguire EA. Decoding neuronal ensembles in the human hippocampus. Curr Biol 2009; 19:546-54. [PMID: 19285400 PMCID: PMC2670980 DOI: 10.1016/j.cub.2009.02.033] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/27/2009] [Accepted: 02/10/2009] [Indexed: 11/30/2022]
Abstract
Background The hippocampus underpins our ability to navigate, to form and recollect memories, and to imagine future experiences. How activity across millions of hippocampal neurons supports these functions is a fundamental question in neuroscience, wherein the size, sparseness, and organization of the hippocampal neural code are debated. Results Here, by using multivariate pattern classification and high spatial resolution functional MRI, we decoded activity across the population of neurons in the human medial temporal lobe while participants navigated in a virtual reality environment. Remarkably, we could accurately predict the position of an individual within this environment solely from the pattern of activity in his hippocampus even when visual input and task were held constant. Moreover, we observed a dissociation between responses in the hippocampus and parahippocampal gyrus, suggesting that they play differing roles in navigation. Conclusions These results show that highly abstracted representations of space are expressed in the human hippocampus. Furthermore, our findings have implications for understanding the hippocampal population code and suggest that, contrary to current consensus, neuronal ensembles representing place memories must be large and have an anisotropic structure.
Collapse
Affiliation(s)
- Demis Hassabis
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
983
|
Abstract
Not all areas of neuronal systems investigation have matured to the stage where computation can be understood at the microcircuit level. In mammals, insights into cortical circuit functions have been obtained for the early stages of sensory systems, where signals can be followed through networks of increasing complexity from the receptors to the primary sensory cortices. These studies have suggested how neurons and neuronal networks extract features from the external world, but how the brain generates its own codes, in the higher-order nonsensory parts of the cortex, has remained deeply mysterious. In this terra incognita, a path was opened by the discovery of grid cells, place-modulated entorhinal neurons whose firing locations define a periodic triangular or hexagonal array covering the entirety of the animal's available environment. This array of firing is maintained in spite of ongoing changes in the animal's speed and direction, suggesting that grid cells are part of the brain's metric for representation of space. Because the crystal-like structure of the firing fields is created within the nervous system itself, grid cells may provide scientists with direct access to some of the most basic operational principles of cortical circuits.
Collapse
Affiliation(s)
- Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | |
Collapse
|
984
|
Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty. J Neurosci 2009; 28:13390-400. [PMID: 19074012 DOI: 10.1523/jneurosci.2680-08.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner, forming relational representations of environmental cues. The importance of glutamatergic systems in learning and in hippocampal neural synaptic plasticity has been shown. However, the role of dopaminergic systems in the response of hippocampal neural plasticity to novel and familiar spatial stimuli remains unclear. To clarify this important issue, we recorded hippocampal neurons from dopamine D(1) receptor knock-out (D1R-KO) mice and their wild-type (WT) littermates under the manipulation of distinct spatial cues in a familiar and a novel environment. Here we report that in WT mice, the majority of place cells quickly responded to the manipulations of distal and proximal cues in both familiar and novel environments. In contrast, the influence of distal cues on spatial firing in D1R-KO mice was abolished. In the D1R-KO mice, the influence of proximal cues was facilitated in a familiar environment, and in a novel environment most of the place cells were less likely to respond to changes of spatial cues. Our results demonstrate that hippocampal neurons in mice can rapidly and flexibly encode information about space from both distal and proximal cues to cipher a novel environment. This ability is necessary for many types of learning, and lacking D1R can radically alter this learning-related neural activity. We propose that D1R is crucially implicated in encoding spatial information in novel environments, and influences the plasticity of hippocampal representations, which is important in spatial learning and memory.
Collapse
|
985
|
Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of Geometric Borders in the Entorhinal Cortex. Science 2008; 322:1865-8. [PMID: 19095945 DOI: 10.1126/science.1166466] [Citation(s) in RCA: 684] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-apposing activity of these “border cells” is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively sparse, making up less than 10% of the local cell population, but can be found in all layers of the medial entorhinal cortex as well as the adjacent parasubiculum, often intermingled with head-direction cells and grid cells. Border cells may be instrumental in planning trajectories and anchoring grid fields and place fields to a geometric reference frame.
Collapse
Affiliation(s)
- Trygve Solstad
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
986
|
Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields. Neuron 2008; 60:875-89. [DOI: 10.1016/j.neuron.2008.10.044] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/14/2008] [Accepted: 10/23/2008] [Indexed: 11/21/2022]
|
987
|
Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron 2008; 60:137-48. [PMID: 18940594 DOI: 10.1016/j.neuron.2008.09.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/01/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
Abstract
Deciding in which direction to move is a ubiquitous feature of animal behavior, but the neural substrates of locomotor choices are not well understood. The superior colliculus (SC) is a midbrain structure known to be important for controlling the direction of gaze, particularly when guided by visual or auditory cues, but which may play a more general role in behavior involving spatial orienting. To test this idea, we recorded and manipulated activity in the SC of freely moving rats performing an odor-guided spatial choice task. In this context, not only did a substantial majority of SC neurons encode choice direction during goal-directed locomotion, but many also predicted the upcoming choice and maintained selectivity for it after movement completion. Unilateral inactivation of SC activity profoundly altered spatial choices. These results indicate that the SC processes information necessary for spatial locomotion, suggesting a broad role for this structure in sensory-guided orienting and navigation.
Collapse
|
988
|
Meyza KZ, Boguszewski PM, Nikolaev E, Zagrodzka J. Diverse Sensitivity of RHA/Verh and RLA/Verh Rats to Emotional and Spatial Aspects of a Novel Environment as a Result of a Distinct Pattern of Neuronal Activation in the Fear/Anxiety Circuit. Behav Genet 2008; 39:48-61. [DOI: 10.1007/s10519-008-9234-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/30/2008] [Indexed: 11/28/2022]
|
989
|
Abstract
The navigational system of the mammalian cortex comprises a number of interacting brain regions. Grid cells in the medial entorhinal cortex and place cells in the hippocampus are thought to participate in the formation of a dynamic representation of the animal's current location, and these cells are presumably critical for storing the representation in memory. To traverse the environment, animals must be able to translate coordinate information from spatial maps in the entorhinal cortex and hippocampus into body-centered representations that can be used to direct locomotion. How this is done remains an enigma. We propose that the posterior parietal cortex is critical for this transformation.
Collapse
|
990
|
Colgin LL, Moser EI, Moser MB. Understanding memory through hippocampal remapping. Trends Neurosci 2008; 31:469-77. [PMID: 18687478 DOI: 10.1016/j.tins.2008.06.008] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 12/01/2022]
Abstract
Memory interference is a common cause of forgetting. Interference is a byproduct of the need to balance the formation of well-differentiated representations against the ability to retrieve memories from cues that are not identical to the original experience. How the brain accomplishes this has remained elusive. Here we review how insights can be gained from studies of an apparently unrelated phenomenon in the rodent brain--remapping in hippocampal place cells. Remapping refers to the formation of distinct representations in populations of place cells after minor changes in inputs to the hippocampus. Remapping might reflect processes involved generally in decorrelation of overlapping signals. These processes might be crucial for storing large numbers of similar experiences with only minimal interference.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | | | |
Collapse
|
991
|
Skelton MR, Able JA, Grace CE, Herring NR, Schaefer TL, Gudelsky GA, Vorhees CV, Williams MT. (+/-)-3,4-Methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: a comparison of single vs once per week treatment for 5 weeks. Neuropharmacology 2008; 55:1121-30. [PMID: 18674550 DOI: 10.1016/j.neuropharm.2008.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 06/25/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
3,4-Methlylenedioxymethamphetamine (MDMA) administration (4 x 15 mg/kg) on a single day has been shown to cause path integration deficits in rats. While most animal experiments focus on single binge-type models of MDMA use, many MDMA users take the drug on a recurring basis. The purpose of this study was to compare the effects of repeated single-day treatments with MDMA (4 x 15 mg/kg) once weekly for 5 weeks to animals that only received MDMA on week 5 and saline on weeks 1-4. In animals treated with MDMA for 5 weeks, there was an increase in time spent in the open area of the elevated zero maze suggesting a decrease in anxiety or increase in impulsivity compared to the animals given MDMA for 1 week and saline treated controls. Regardless of dosing regimen, MDMA treatment produced path integration deficits as evidenced by an increase in latency to find the goal in the Cincinnati water maze. Animals treated with MDMA also showed a transient hypoactivity that was not present when the animals were re-tested at the end of cognitive testing. In addition, both MDMA-treated groups showed comparable hyperactive responses to a later methamphetamine challenge. No differences were observed in spatial learning in the Morris water maze during acquisition or reversal but MDMA-related deficits were seen on reduced platform-size trials. Taken together, the data show that a single-day regimen of MDMA induces deficits similar to that of multiple weekly treatments.
Collapse
Affiliation(s)
- Matthew R Skelton
- Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
992
|
Treves A, Tashiro A, Witter MP, Moser EI. What is the mammalian dentate gyrus good for? Neuroscience 2008; 154:1155-72. [PMID: 18554812 DOI: 10.1016/j.neuroscience.2008.04.073] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/12/2008] [Accepted: 04/28/2008] [Indexed: 01/01/2023]
Abstract
In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers (MF). The MF form a distinct type of synapses, rich in zinc, that appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the DG and to CA3. Computational models have hypothesized that the function of the MF is to enforce a new, well-separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Although behavioral observations support the notion that the MF are crucial for decorrelating new memory representations from previous ones, a number of findings require that this view be reassessed and articulated more precisely in the spatial and temporal domains. First, neurophysiological recordings indicate that the very sparse dentate activity is concentrated on cells that display multiple but disorderly place fields, unlike both the single fields typical of CA3 and the multiple regular grid-aligned fields of medial entorhinal cortex. Second, neurogenesis is found to occur in the adult DG, leading to new cells that are functionally added to the existing circuitry, and may account for much of its ongoing activity. Third, a comparative analysis suggests that only mammals have evolved a DG, despite some of its features being present also in reptiles, whereas the avian hippocampus seems to have taken a different evolutionary path. Thus, we need to understand both how the mammalian dentate operates, in space and time, and whether evolution, in other vertebrate lineages, has offered alternative solutions to the same computational problems.
Collapse
Affiliation(s)
- A Treves
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University for Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|