10201
|
Growth hormone secretagogues protect mouse cardiomyocytes from in vitro ischemia/reperfusion injury through regulation of intracellular calcium. PLoS One 2012; 7:e35265. [PMID: 22493744 PMCID: PMC3320867 DOI: 10.1371/journal.pone.0035265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/14/2012] [Indexed: 01/08/2023] Open
Abstract
Background Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R) models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms. Methodology/Principal Findings Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca2+]i) transients and caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a), and phosphorylated phospholamban (p-PLB), respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca2+]i transient amplitude and caffeine-releasable SR Ca2+ content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM) and BIM28163 (100 nM), completely blocked the effects of GHS on both cell shortening and [Ca2+]i transients. Conclusion/Significance Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca2+ content) to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury.
Collapse
|
10202
|
Marley K, Maier CS, Helfand SC. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma. Vet Comp Oncol 2012; 10:214-22. [PMID: 22487216 DOI: 10.1111/j.1476-5829.2012.00325.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival.
Collapse
Affiliation(s)
- K Marley
- Department of Clinical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
10203
|
Association of double-positive FOXA1 and FOXP1 immunoreactivities with favorable prognosis of tamoxifen-treated breast cancer patients. Discov Oncol 2012; 3:147-59. [PMID: 22476979 DOI: 10.1007/s12672-012-0111-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/16/2012] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of the steroid hormones estrogen and progesterone. Forkhead box A1 (FOXA1) is a member of the forkhead box transcription factor family and functions as a pioneer factor of the estrogen receptor (ER) in breast cancer. In the present study, we demonstrate that FOXA1 mRNA was upregulated by estrogen and that estrogen receptor-α (ERα) recruitment to ER-binding sites in the vicinity of the FOXA1 gene was increased by estrogen in ERα-positive MCF-7 breast cancer cells. The estrogen-induced FOXA1 upregulation was repressed by 4-hydroxytamoxifen treatment. We also demonstrated that the proliferation and the migration of MCF-7 cells were decreased by FOXA1-specific small interfering RNA (siRNA; siFOXA1). Furthermore, siFOXA1 decreased the estrogen response element-driven transcription and the estrogen-dependent upregulation of ERα target genes in MCF-7 cells. Next, the immunohistochemical analyses of FOXA1 were performed using two groups of breast cancer specimens. The nuclear immunoreactivity of FOXA1 was detected in 80 (74%) of 108 human invasive breast cancers and was negatively correlated with tumor grade and positively correlated with hormone receptor status, including ERα and progesterone receptor, pathological tumor size, and immunoreactivity of FOXP1, another FOX family transcription factor. FOXA1 immunoreactivity was significantly elevated in the relapse-free breast cancer patients treated with tamoxifen. Notably, the double-positive immunoreactivities of FOXA1 and FOXP1 were significantly associated with a favorable prognosis for the relapse-free and overall survival of patients with tamoxifen-treated breast cancer, with lower P values compared with FOXA1 or FOXP1 immunoreactivity alone. These results suggest that FOXA1 plays an important role in the proliferation and migration of breast cancer cells by modulating estrogen signaling and that the double-positive immunoreactivities of FOXA1 and FOXP1 are associated with a favorable prognosis of tamoxifen-treated breast cancer.
Collapse
|
10204
|
Varewijck AJ, Janssen JAMJL, Vähätalo M, Hofland LJ, Lamberts SWJ, Yki-Järvinen H. Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases IGF-I bioactivity similarly. Diabetologia 2012; 55:1186-94. [PMID: 22237688 PMCID: PMC3296010 DOI: 10.1007/s00125-011-2435-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/05/2011] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to compare IGF-I bioactivity 36 weeks after the addition of insulin glargine (A21Gly,B31Arg,B32Arg human insulin) or NPH insulin to metformin therapy in type 2 diabetic patients who had poor glucose control under metformin monotherapy. METHODS In the Lantus plus Metformin (LANMET) study, 110 poorly controlled insulin-naive type 2 diabetic patients were randomised to receive metformin with either insulin glargine (G+MET) or NPH insulin (NPH+MET). In the present study, IGF-I bioactivity was measured, retrospectively, in 104 out of the 110 initially included LANMET participants before and after 36 weeks of insulin therapy. IGF-I bioactivity was measured using an IGF-I kinase receptor activation assay. RESULTS After 36 weeks of insulin therapy, insulin doses were comparable between the G+MET (68 ± 5.7 U/day) and NPH+MET (71 ± 6.2 U/day) groups (p = 0.68). Before insulin therapy, circulating IGF-I bioactivity was similar between the G+MET (134 ± 9 pmol/l) and NPH+MET (135 ± 10 pmol/l) groups (p = 0.83). After 36 weeks, IGF-I bioactivity had decreased significantly (p = 0.001) and did not differ between the G+MET (116 ± 9 pmol/l) and NPH+MET (117 ± 10 pmol/l) groups (p = 0.91). At baseline and after insulin therapy, total IGF-I concentrations were comparable in both groups (baseline: G+MET 13.3 ± 1.0 vs NPH+MET 13.3 ± 1.0 nmol/l, p = 0.97; and 36 weeks: 13.4 ± 1.0 vs 13.1 ± 0.9 nmol/l, p = 0.71). Total IGF-I concentration did not change during insulin therapy (13.3 ± 0.7 vs 13.3 ± 0.7 nmol/l, baseline vs 36 weeks, p = 0.86). CONCLUSIONS/INTERPRETATION Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases serum IGF-I bioactivity in a similar manner.
Collapse
Affiliation(s)
- A. J. Varewijck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - J. A. M. J. L. Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | | | - L. J. Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - S. W. J. Lamberts
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - H. Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10205
|
Effects of bisphenol A on the expression of cytochrome P450 aromatase (CYP19) in human fetal osteoblastic and granulosa cell-like cell lines. Toxicol Lett 2012; 210:95-9. [DOI: 10.1016/j.toxlet.2012.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 11/21/2022]
|
10206
|
Chen H, Chu G, Zhao L, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Rev-erbα regulates circadian rhythms and StAR expression in rat granulosa cells as identified by the agonist GSK4112. Biochem Biophys Res Commun 2012; 420:374-9. [DOI: 10.1016/j.bbrc.2012.02.164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022]
|
10207
|
Abstract
Ovarian cancer in women is a complex and deadly disease, where the molecular events that initiate and control tumor formation remain poorly defined. Therefore, mouse models provide one approach for determining the mechanisms by which specific oncogenic factors cause ovarian surface epithelial cell and granulosa cell transformation. This minireview summarizes the phenotypes of current mouse models that have been generated and some of the underlying mechanisms they have provided.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
10208
|
Abstract
There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|
10209
|
Park S, Ahn HK, Park LC, Hwang DW, Ji JH, Maeng CH, Cho SH, Lee JY, Park KT, Ahn JS, Park YH, Im YH. Implications of different CA 15-3 levels according to breast cancer subtype at initial diagnosis of recurrent or metastatic breast cancer. Oncology 2012; 82:180-7. [PMID: 22433564 DOI: 10.1159/000336081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND CA 15-3 is derived from proteolytic shedding of the extracellular domain of mucin 1 (MUC1) glycoprotein. Luminal subtype breast cancer shows a higher expression in MUC1 genes, and a positive relationship between MUC1 expression and estrogen receptor (ER) expression has been reported. In this study, we attempted to determine the difference of CA 15-3 level according to the subtype of breast cancer. METHODS From January 2000 to December 2009, a total of 707 patients who were diagnosed with metastatic or recurrent breast cancer at Samsung Medical Center were included in this study. Among these, 536 patients with available clinical data including pretreatment CA 15-3 and immunohistochemistry for ER, progesterone receptor (PgR) and hormone receptor 2 (HER2) were analyzed in this study. Patients were classified into 3 groups according to their receptor status: ER-positive (ER+) and/or PgR+ irrespective of HER2 (HR+), ER-/PgR-/HER2+ (HER2-enriched) and ER-/PgR-/HER2- (triple negative, TN). RESULTS The supranormal values of CA 15-3 were frequently observed in HR+ breast cancer compared to other types (45.6% for HR+, 24.4% for HER2-enriched and 28.8% for TN; p < 0.001). The increase of marker levels differed significantly among the 3 groups (24 U/ml for HR+, 13 U/ml for HER2-enriched and 18 U/ml for TN; p < 0.001). CONCLUSIONS The increase of both marker levels and the frequency of supranormal values of CA 15-3 were more frequently observed in HR+ breast cancer, which is positively associated with MUC1 expression. These results could potentially serve as a basis for expanding the clinical implications of CA 15-3 in the field of clinical trials for novel targeted therapies in breast cancer.
Collapse
Affiliation(s)
- Silvia Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10210
|
Tsuji M, Tamai Y, Wada K, Nakamura K, Hayashi M, Takeda N, Yasuda K, Nagata C. Associations of intakes of fat, dietary fiber, soy isoflavones, and alcohol with levels of sex hormones and prolactin in premenopausal Japanese women. Cancer Causes Control 2012; 23:683-9. [DOI: 10.1007/s10552-012-9935-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/24/2012] [Indexed: 12/25/2022]
|
10211
|
Piao HL, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:33-42. [PMID: 22350981 PMCID: PMC3686545 DOI: 10.1007/s10911-012-9245-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/08/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, non-coding RNAs (ncRNAs) have become a new paradigm of gene regulation. ncRNAs are classified into two major groups based on their size: long non-coding RNAs (lncRNAs) and small non-coding RNAs (including microRNAs, piRNAs, snoRNAs, and endogenous siRNAs). Here we review the recently emerging role of ncRNAs in mammary development, tumorigenesis, and metastasis, with the focus being on microRNAs (miRNAs) and lncRNAs. These findings shed new light on normal development and malignant progression, and suggest the potential for using ncRNAs as new biomarkers of breast cancer and targets for treatment.
Collapse
|
10212
|
Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia 2012; 17:65-77. [PMID: 22350980 PMCID: PMC4561555 DOI: 10.1007/s10911-012-9244-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/29/2012] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is a complex process during which cells undergo genetic and epigenetic alterations. These changes can lead tumor cells to acquire characteristics that enable movement from the primary site of origin when conditions become unfavorable. Such characteristics include gain of front-rear polarity, increased migration/invasion, and resistance to anoikis, which facilitate tumor survival during metastasis. An epithelial to mesenchymal transition (EMT) constitutes one way that cancer cells can gain traits that promote tumor progression and metastasis. Two microRNA (miRNA) families, the miR-200 and miR-221 families, play crucial opposing roles that affect the differentiation state of breast cancers. These two families are differentially expressed between the luminal A subtype of breast cancer as compared to the less well-differentiated triple negative breast cancers (TNBCs) that exhibit markers indicative of an EMT. The miR-200 family promotes a well-differentiated epithelial phenotype, while high miR-221/222 results in a poorly differentiated, mesenchymal-like phenotype. This review focuses on the mechanisms (specific proven targets) by which these two miRNA families exert opposing effects on cellular plasticity during breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Erin N. Howe
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dawn R. Cochrane
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer K. Richer
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10213
|
Meiyanto E, Hermawan A, Anindyajati A. Natural Products for Cancer-Targeted Therapy: Citrus Flavonoids as Potent Chemopreventive Agents. Asian Pac J Cancer Prev 2012; 13:427-36. [DOI: 10.7314/apjcp.2012.13.2.427] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10214
|
Expression of CD44v6 and Its Association with Prognosis in Epithelial Ovarian Carcinomas. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:908206. [PMID: 22482084 PMCID: PMC3317067 DOI: 10.1155/2012/908206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/04/2011] [Accepted: 12/08/2011] [Indexed: 12/02/2022]
Abstract
The aim of this study was to evaluate CD44v6 protein expression and its prognostic value of CD44v6 in ovarian carcinoma. The expression of CD44v6 was analyzed in 62 patients with ovarian carcinoma by immunohistochemical method. The data obtained were analyzed by univariate and multivariate analyses. The present study clearly demonstrates that tumor tissues from 41 (66.1%) patients showed positive expression with CD44v6. The expression of CD44v6 was significantly correlated with histological type, FIGO stage and histological grade of ovarian carcinomas. Concerning the prognosis, the survival period of patients with CD44v6 positive was shorter than that of patients with CD44v6 negative (36.6% versus 66.7%, 5-year survival, P < 0.05). Univariate analysis showed that CD44v6 expression, histological type, FIGO stage and histological grade were associated with 5-year survival, and CD44v6 expression was associated with histological type, FIGO stage and histological grade and 5-year survival. In multivariate analysis, using the COX-regression model, CD44v6 expression was important prognostic factor. In conclusion, these results suggest that CD44v6 may be related to histological type, FIGO stage and histological grade of ovarian carcinomas, and CD44v6 may be an important molecular marker for poor prognosis in ovarian carcinomas.
Collapse
|
10215
|
Lim M, Chuong CM, Roy-Burman P. PI3K, Erk signaling in BMP7-induced epithelial-mesenchymal transition (EMT) of PC-3 prostate cancer cells in 2- and 3-dimensional cultures. Discov Oncol 2012; 2:298-309. [PMID: 21948155 DOI: 10.1007/s12672-011-0084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We reported previously that bone morphogenetic protein 7 (BMP7) could induce epithelial-mesenchymal transition (EMT) in PC-3 prostate cancer cells grown in tissue culture plates. In this study, we examined BMP7-induced morphological and molecular expression changes that are characteristic of EMT using these cells under both two- (2D) and three-dimensional (3D) culture conditions. Filamentous outgrowths from spheroid structures that were formed from PC-3 cells in 3D cultures were strikingly evident when the spheroids were exposed to extracellular BMP7. This morphological change in 3D was accompanied by down-regulation of E-cadherin, which is an essential adhesion molecule for the integrity of epithelial phenotype. Invasiveness of the cancer cells was significantly enhanced with BMP7 treatment along with activation and up-regulation of proteases such as MMP1, MMP13, and urokinase plasminogen activator. Signal transduction of EMT conversion was examined by the use of certain pathway-specific inhibitors. Of the chemical inhibitors tested, inhibitors of PI3 kinase and Erk were found to suppress BMP-induced morphological changes both in 2D and 3D conditions. These results suggest that, besides the Smad signaling pathways, BMP-induced activation of PI3K and Erk contribute to EMT morphologic conversion of the PC-3 prostate cancer cells. Together, the results support the notion that the complexity of EMT may be better evaluated in terms of both spatial and temporal processes in 3D cell culture models that are physiologically more relevant than the cell growth in tissue culture plates.
Collapse
Affiliation(s)
- Minyoung Lim
- Program in Genetic, Molecular, and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | | |
Collapse
|
10216
|
|
10217
|
Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. PLoS One 2012; 7:e31579. [PMID: 22363680 PMCID: PMC3282747 DOI: 10.1371/journal.pone.0031579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/09/2012] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.
Collapse
|
10218
|
Wu Z, Gholami AM, Kuster B. Systematic identification of the HSP90 candidate regulated proteome. Mol Cell Proteomics 2012; 11:M111.016675. [PMID: 22337586 DOI: 10.1074/mcp.m111.016675] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP90 is a central player in the folding and maturation of many proteins. More than two hundred HSP90 clients have been identified by classical biochemical techniques including important signaling proteins with high relevance to human cancer pathways. HSP90 inhibition has thus become an attractive therapeutic concept and multiple molecules are currently in clinical trials. It is therefore of fundamental biological and medical importance to identify, ideally, all HSP90 clients and HSP90 regulated proteins. To this end, we have taken a global and a chemical proteomic approach in geldanamycin treated cancer cell lines using stable isotope labeling with amino acids in cell culture and quantitative mass spectrometry. We identified >6200 proteins in four different human cell lines and ~1600 proteins showed significant regulation upon drug treatment. Gene ontology and pathway/network analysis revealed common and cell-type specific regulatory effects with strong connections to unfolded protein binding and protein kinase activity. Of the 288 identified protein kinases, 98 were geldanamycin treatment including >50 kinases not formerly known to be regulated by HSP90. Protein turn-over measurements using pulsed stable isotope labeling with amino acids in cell culture showed that protein down-regulation by HSP90 inhibition correlates with protein half-life in many cases. Protein kinases show significantly shorter half lives than other proteins highlighting both challenges and opportunities for HSP90 inhibition in cancer therapy. The proteomic responses of the HSP90 drugs geldanamycin and PU-H71 were highly similar suggesting that both drugs work by similar molecular mechanisms. Using HSP90 immunoprecipitation, we validated several kinases (AXL, DDR1, TRIO) and other signaling proteins (BIRC6, ISG15, FLII), as novel clients of HSP90. Taken together, our study broadly defines the cellular proteome response to HSP90 inhibition and provides a rich resource for further investigation relevant for the treatment of cancer.
Collapse
Affiliation(s)
- Zhixiang Wu
- Technische Universität München, Freising, Germany
| | | | | |
Collapse
|
10219
|
Hiyoshi M, Tsuno NH, Otani K, Kawai K, Nishikawa T, Shuno Y, Sasaki K, Hongo K, Kaneko M, Sunami E, Takahashi K, Nagawa H, Kitayama J. Adiponectin receptor 2 is negatively associated with lymph node metastasis of colorectal cancer. Oncol Lett 2012; 3:756-760. [PMID: 22740988 DOI: 10.3892/ol.2012.583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/01/2012] [Indexed: 01/22/2023] Open
Abstract
Adiponectin is a hormone secreted by adipose tissue and has a variety of functions including the inhibition of tumor growth. The expression and function of the two major adiponectin receptors, AdipoR1 and AdipoR2, in malignant tissue have not been well characterized. In the present study, we evaluated the mRNA levels of AdipoR1 and AdipoR2 expression in 48 surgically resected colorectal cancer specimens, as well as normal colonic mucosa, by quantitative RT-PCR. The values obtained were standardized by β-actin mRNA, and the correlation between their relative expression levels and the clinicopathological characteristics of the patients was examined. The relative expression levels of AdipoR1 and AdipoR2 were significantly reduced in cancer tissue compared with normal tissue (AdipoR1: 0.97±0.39 vs. 1.37±0.41, P<0.0001; AdipoR2: 0.92±0.31 vs. 1.60±0.46, P<0.0001). AdipoR1 and AdipoR2 levels were further reduced in tumors with nodal metastases and the difference was statistically significant in the case of AdipoR2 (0.79±0.27 vs. 1.02±0.30, P=0.012). The results of this study demonstrated that the expression levels of adiponectin receptors are reduced in cancer specimens compared to normal tissue, indicating a downregulation in the course of the development and progression of colorectal cancer. Since adiponectin is abundantly present in the whole body and has inhibitory effects on cancer cells, this downregulation of the receptors may be an escape mechanism of malignant cells from the suppressive effects of adiponectin.
Collapse
Affiliation(s)
- Masaya Hiyoshi
- Department of Surgical Oncology, Faculty of Medical Sciences, the University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10220
|
Wang X, Kaplan DL. Hormone-responsive 3D multicellular culture model of human breast tissue. Biomaterials 2012; 33:3411-20. [PMID: 22309836 DOI: 10.1016/j.biomaterials.2012.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022]
Abstract
A hormone-responsive 3D human tissue-like culture system was developed in which human primary mammary epithelial cells (MECs) were co-cultured with two types of predominant mammary stromal cells on silk protein scaffolds. Silk porous scaffolds with incorporated extracellular matrix provided a compatible environment for epithelial structure morphogenesis and differentiation. The presence of stromal cells promoted MEC proliferation, induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast, only alveolar structures were observed in monocultures. The alveolar structures generated from the heterotypic cultures in vitro exhibited proper polarity similar to human breast tissue in vivo. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the heterotypic cultures, where casein-α and -β mRNA expression were increased significantly. Additionally, this 3D multicellular culture model displayed an estrogen-responsive physiologically relevant response, evidenced by enhanced cell proliferation, aberrant morphology, changes in gene expression profile and few polarized lumen structures after estrogen treatment. This culture system offers an excellent opportunity to explore the role of cell-cell and cell-substrate interactions during mammary gland development, the consequences of hormone receptor activation on MEC behavior and morphogenesis, as well as their alteration during neoplastic transformation in human breast tissue.
Collapse
Affiliation(s)
- Xiuli Wang
- Biomedical Engineering Department, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
10221
|
Baumgarten SC, Frasor J. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 2012; 26:360-71. [PMID: 22301780 DOI: 10.1210/me.2011-1302] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 75% of breast tumors express the estrogen receptor (ER), and women with these tumors will receive endocrine therapy. Unfortunately, up to 50% of these patients will fail ER-targeted therapies due to either de novo or acquired resistance. ER-positive tumors can be classified based on gene expression profiles into Luminal A- and Luminal B-intrinsic subtypes, with distinctly different responses to endocrine therapy and overall patient outcome. However, the underlying biology causing this tumor heterogeneity has yet to become clear. This review will explore the role of inflammation as a risk factor in breast cancer as well as a player in the development of more aggressive, therapy-resistant ER-positive breast cancers. First, breast cancer risk factors, such as obesity and mammary gland involution after pregnancy, which can foster an inflammatory microenvironment within the breast, will be described. Second, inflammatory components of the tumor microenvironment, including tumor-associated macrophages and proinflammatory cytokines, which can act on nearby breast cancer cells and modulate tumor phenotype, will be explored. Finally, activation of the nuclear factor κB (NF-κB) pathway and its cross talk with ER in the regulation of key genes in the promotion of more aggressive breast cancers will be reviewed. From these multiple lines of evidence, we propose that inflammation may promote more aggressive ER-positive tumors and that combination therapy targeting both inflammation and estrogen production or actions could benefit a significant portion of women whose ER-positive breast tumors fail to respond to endocrine therapy.
Collapse
Affiliation(s)
- Sarah C Baumgarten
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
10222
|
Guttilla IK, Adams BD, White BA. ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab 2012; 23:73-82. [PMID: 22257677 DOI: 10.1016/j.tem.2011.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
The most common form of breast cancer, luminal A, is estrogen receptor α (ERα)-positive and epithelial, but nevertheless can metastasize. The process of epithelial-mesenchymal transition (EMT) is probably the first step in the metastasis of epithelial cancers. We discuss the characteristics of EMT, including factors that induce EMT, and the relationship of EMT to cancer stem cells (CSCs). Estrogen/ERα signaling maintains an epithelial phenotype and suppresses EMT. An overview of microRNAs in breast cancer is presented, including how microRNA biogenesis is altered in cancer and regulated by ERα. We also discuss the role of the miR-200 family in opposing EMT. Finally, we discuss specific microRNAs that target ERα and regulate EMT in breast cancer, and the role of these microRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Irene K Guttilla
- Saint Joseph College, Department of Biology, 1678 Asylum Avenue, West Hartford, CT 06117, USA
| | | | | |
Collapse
|
10223
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
10224
|
Yamada HY, Yao Y, Wang X, Zhang Y, Huang Y, Dai W, Rao CV. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle 2012; 11:479-88. [PMID: 22262168 PMCID: PMC3315092 DOI: 10.4161/cc.11.3.18994] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Chromosome instability (CIN) is found in 85% of colorectal cancers. Defects in mitotic processes are implicated in high CIN and may be critical events in colorectal tumorigenesis. Shugoshin-1 (SGO1) aids in the maintenance of chromosome cohesion and prevents premature chromosome separation and CIN. In addition, integrity of the centrosome may be compromised due to the deficiency of Cohesin and Sgo1 through the disengagement of centrioles. We report here the generation and characterization of SGO1-mutant mice and show that haploinsufficiency of SGO1 leads to enhanced colonic tumorigenesis. Complete disruption of SGO1 results in embryonic lethality, whereas SGO1+/- mice are viable and fertile. Haploinsufficiency of SGO1 results in genomic instability manifested as missegregation of chromosomes and formation of extra centrosomal foci in both murine embryonic fibroblasts and adult bone marrow cells. Enhanced CIN observed in SGO1-deficient mice resulted in an increase in formation of aberrant crypt foci (ACF) and accelerated development of tumors after exposure to azoxymethane (AOM), a colon carcinogen. Together, these results suggest that haploinsufficiency of SGO1 causes enhanced CIN, colonic preneoplastic lesions and tumorigenesis in mice. SGO1 is essential for the suppression of CIN and tumor formation.
Collapse
Affiliation(s)
- Hiroshi Y Yamada
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Yixin Yao
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Xiaoxing Wang
- Dana-Farber Cancer Institute; Harvard Medical School; Boston, MA USA
| | - Yuting Zhang
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Ying Huang
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Chinthalapally V Rao
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| |
Collapse
|
10225
|
Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, Tang J, Chen X, Dai J, Wei Q, Zhang C, Shen H. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 2012; 33:828-34. [PMID: 22298638 DOI: 10.1093/carcin/bgs030] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It has been demonstrated that there are abundant stable microRNAs (miRNAs) in plasma/serum, which can be detected and are potentially disease specific. However, the lack of suitable endogenous controls for serum miRNA detection is the restriction for the widely usage of this kind of biomarkers and for the between-laboratory comparison of the findings. We first systematically screened for endogenous control miRNAs (ECMs) by testing 10 pooling samples (using both Solexa sequencing and TaqMan low density array) and 50 individual samples (using quantitative reverse transcription-PCR) of different cancer traits and healthy controls. Then we assessed serum miRNAs used as potential biomarkers for breast cancer risk prediction based on a two-stage case-control analysis, including 48 breast cancer patients and 48 controls for the discovery stage and 76 breast cancer patients and 76 controls for validation. We identified two candidate ECMs (miRNA-191 and miRNA-484). Normalized by the two ECMs, we found four miRNAs (miR-16, miR-25, miR-222 and miR-324-3p) that were consistently differentially expressed between breast cancer cases and controls. The area under the receiver operating characteristic curve is 0.954 for the four-miRNA signature in the discovery stage (sensitivity = 0.917 and specificity = 0.896) and 0.928 in the validation stage (sensitivity = 0.921 and specificity = 0.934). In conclusion, the four-miRNA signature from serum may serve as a non-invasive prediction biomarker for breast cancer. Furthermore, we proposed the combination of miRNA-484 and miRNA-191 as endogenous control for serum miRNA detection, at least for most common cancers.
Collapse
Affiliation(s)
- Zhibin Hu
- State key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10226
|
Estrogenic regulation of S6K1 expression creates a positive regulatory loop in control of breast cancer cell proliferation. Oncogene 2012; 31:5073-80. [PMID: 22286763 PMCID: PMC3342462 DOI: 10.1038/onc.2011.657] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The 40S ribosomal S6 kinase 1 (S6K1) is an important regulator of cell growth. Expression of S6K1 is often elevated in breast cancer cells. However, the transcriptional mechanism of S6K1 overexpression is not understood. In this report, we demonstrate that estrogen activates expression of S6K1 via Estrogen Receptor (ER) α in ER-positive breast cancer cells. We also show that estrogen acts on the proximal promoter of the S6K1 gene in a mechanism involving the transcriptional factor GATA-3. Finally, we provide data that support the importance of estrogenic regulation of S6K1 expression in breast cancer cell proliferation. S6K1 directly phosphorylates and regulates ligand-independent activity of ERα, while ERα upregulates S6K1 expression. This S6K1-ERα relationship creates a positive feed-forward loop in control of breast cancer cell proliferation. Furthermore, the co-dependent association between S6K1 and ERα may be exploited in the development of targeted breast cancer therapies.
Collapse
|
10227
|
Abstract
Carcinomatous mastitis is a severe form of breast cancer and its diagnosis is essentially clinical and histological. The first examination to perform is still mammography, not only to provide evidence supporting this diagnosis but also to search for a primary intramammary lesion and assess local/regional spread. It is essential to study the contralateral breast for bilaterality. Ultrasound also provides evidence supporting inflammation, but appears to be better for detecting masses and analysing lymph node areas. The role of MRI is debatable, both from a diagnostic point of view and for monitoring during treatment, and should be reserved for selected cases. An optimal, initial radiological assessment will enable the patient to be monitored during neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- J-P Alunni
- Imagerie des Trois-Rivières, clinique du Pont-de-Chaume, 330, avenue Marcel-Unal, 82000 Montauban, France.
| |
Collapse
|
10228
|
Rowas SA, Haddad R, Gawri R, Al Ma'awi AA, Chalifour LE, Antoniou J, Mwale F. Effect of in utero exposure to diethylstilbestrol on lumbar and femoral bone, articular cartilage, and the intervertebral disc in male and female adult mice progeny with and without swimming exercise. Arthritis Res Ther 2012; 14:R17. [PMID: 22269139 PMCID: PMC3392807 DOI: 10.1186/ar3696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/23/2012] [Indexed: 11/29/2022] Open
Abstract
Introduction Developmental exposure to estrogens has been shown to affect the musculoskeletal system. Furthermore, recent studies have shown that environmental exposure to estrogen-like compounds is much higher than originally anticipated. The aim of this study was to determine the effects of diethylstilbestrol (DES), a well-known estrogen agonist, on articular cartilage, intervertebral disc (IVD), and bone phenotype. Methods C57Bl/6 pregnant mice were dosed orally with vehicle (peanut oil) or 0.1, 1.0, and 10 μg/kg/day of DES on gestational days 11 to 14. Male and female pups were allowed to mature without further treatment until 3 months of age, when swim and sedentary groups were formed. After euthanasia, bone mineral density (BMD), bone mineral content (BMC), bone area (BA), and trabecular bone area (TBA) of the lumbar vertebrae and femur were measured by using a PIXImus Bone Densitometer System. Intervertebral disc proteoglycan was measured with the DMMB assay. Histologic analysis of proteoglycan for IVD and articular cartilage was performed with safranin O staining, and degeneration parameters were scored. Results The lumbar BMC was significantly increased in female swimmers at both the highest and lowest dose of DES, whereas the femoral BMC was increased only at the highest. The males, conversely, showed a decreased BMC at the highest dose of DES for both lumbar and femoral bone. The female swim group had an increased BA at the highest dose of DES, whereas the male counterpart showed a decreased BA for femoral bone. The TBA showed a similar pattern. Proteoglycan analysis of lumbar IVDs showed a decrease at the lowest doses but a significant increase at the highest doses for both males and females. Histologic examination showed morphologic changes of the IVD and articular cartilage for all doses of DES. Conclusions DES significantly affected the musculoskeletal system of adult mice. Results suggest that environmental estrogen contaminants can have a detrimental effect on the developmental lumbar bone growth and mineralization in mice. Further studies measuring the impact of environmental estrogen mimics, such as bisphenol A, are then warranted.
Collapse
Affiliation(s)
- Sora Al Rowas
- Lady Davis Institute for Medical Research, Sir Mortimer B, Davis-Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
10229
|
Kubo I, Yokota N, Fuchiwaki Y, Nakane Y. Characteristics of Molecularly Imprinted Polymer Thin Layer for Bisphenol A and Response of the MIP-Modified Sensor. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/861643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examine the characteristics of molecularly imprinted polymer (MIP) layers for bisphenol A (BPA) to investigate the effect of their thickness on the performance of the BPA sensor. MIP thin layers for bisphenol A were polymerized on a sputtered gold electrode by UV light irradiation for 2 to 30 min. Their thickness, as determined by a QCM analyzer, was 3.6 ± 0.3 nm after 5 min of irradiation and increased as the irradiation time increased to 30 min. AFM images of the MIP-modified surface suggested that the gold electrode was covered with a smooth MIP layer. The anodic peaks of BPA and ascorbic acid caused by gold electrode and the MIP-modified electrode were compared, and the electrode with MIP polymerized for 5 min showed more selectivity to BPA than that polymerized for 2 min. The MIP thin layer thus has potential as a sensing element of a chemical sensor.
Collapse
Affiliation(s)
- Izumi Kubo
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Yokota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
| | - Yusuke Fuchiwaki
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yuko Nakane
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
10230
|
Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS One 2012; 7:e30113. [PMID: 22253899 PMCID: PMC3258259 DOI: 10.1371/journal.pone.0030113] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/09/2011] [Indexed: 01/16/2023] Open
Abstract
The bovine mammary gland is a favorable organ for studying mammary cell hierarchy due to its robust milk-production capabilities that reflect the adaptation of its cell populations to extensive expansion and differentiation. It also shares basic characteristics with the human breast, and identification of its cell composition may broaden our understanding of the diversity in cell hierarchy among mammals. Here, Lin− epithelial cells were sorted according to expression of CD24 and CD49f into four populations: CD24medCD49fpos (putative stem cells, puStm), CD24negCD49fpos (Basal), CD24highCD49fneg (putative progenitors, puPgt) and CD24medCD49fneg (luminal, Lum). These populations maintained differential gene expression of lineage markers and markers of stem cells and luminal progenitors. Of note was the high expression of Stat5a in the puPgt cells, and of Notch1, Delta1, Jagged1 and Hey1 in the puStm and Basal populations. Cultured puStm and Basal cells formed lineage-restricted basal or luminal clones and after re-sorting, colonies that preserved a duct-like alignment of epithelial layers. In contrast, puPgt and Lum cells generated only luminal clones and unorganized colonies. Under non-adherent culture conditions, the puPgt and puStm populations generated significantly more floating colonies. The increase in cell number during culture provides a measure of propagation potential, which was highest for the puStm cells. Taken together, these analyses position puStm cells at the top of the cell hierarchy and denote the presence of both bi-potent and luminally restricted progenitors. In addition, a population of differentiated luminal cells was marked. Finally, combining ALDH activity with cell-surface marker analyses defined a small subpopulation that is potentially stem cell- enriched.
Collapse
|
10231
|
Abstract
The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.
Collapse
Affiliation(s)
- Long V Nguyen
- Terry Fox Laboratory, British Columbia Cancer Agency and the University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | |
Collapse
|
10232
|
Price JC, Cronin J, Sheldon IM. Toll-Like Receptor Expression and Function in the COV434 Granulosa Cell Line. Am J Reprod Immunol 2012; 68:205-17. [DOI: 10.1111/j.1600-0897.2011.01103.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/14/2011] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - James Cronin
- Institute of Life Science; School of Medicine; Swansea University; Swansea; UK
| | - Iain Martin Sheldon
- Institute of Life Science; School of Medicine; Swansea University; Swansea; UK
| |
Collapse
|
10233
|
Su LJ, Mahabir S, Ellison GL, McGuinn LA, Reid BC. Epigenetic Contributions to the Relationship between Cancer and Dietary Intake of Nutrients, Bioactive Food Components, and Environmental Toxicants. Front Genet 2012; 2:91. [PMID: 22303385 PMCID: PMC3266615 DOI: 10.3389/fgene.2011.00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Cancer is a multistep process derived from combinational crosstalk between genetic alterations and epigenetic influences through various environmental factors. The observation that epigenetic changes are reversible makes them an attractive target for cancer prevention. Until recently, there have been difficulties studying epigenetic mechanisms in interactions between dietary factors and environmental toxicants. The development of the field of cancer epigenetics during the past decade has been advanced rapidly by genome-wide technologies - which initially employed microarrays but increasingly are using high-throughput sequencing - which helped to improve the quality of the analysis, increase the capacity of sample throughput, and reduce the cost of assays. It is particularly true for applications of cancer epigenetics in epidemiologic studies that examine the relationship among diet, epigenetics, and cancer because of the issues of tissue heterogeneity, the often limiting amount of DNA samples, and the significant cost of the analyses. This review offers an overview of the state of the science in nutrition, environmental toxicants, epigenetics, and cancer to stimulate further exploration of this important and developing area of science. Additional epidemiologic research is needed to clarify the relationship between these complex epigenetic mechanisms and cancer.
Collapse
Affiliation(s)
- L. Joseph Su
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Somdat Mahabir
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Gary L. Ellison
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Laura A. McGuinn
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Britt C. Reid
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| |
Collapse
|
10234
|
Paris O, Ferraro L, Grober OMV, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, Di Benedetto A, Mottolese M, Benes V, Ambrosino C, Nola E, Weisz A. Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 2012; 31:4196-206. [PMID: 22231442 DOI: 10.1038/onc.2011.583] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen effects on mammary epithelial and breast cancer (BC) cells are mediated by the nuclear receptors ERα and ERβ, transcription factors that display functional antagonism with each other, with ERβ acting as oncosuppressor and interfering with the effects of ERα on cell proliferation, tumor promotion and progression. Indeed, hormone-responsive, ERα+ BC cells often lack ERβ, which when present associates with a less aggressive clinical phenotype of the disease. Recent evidences point to a significant role of microRNAs (miRNAs) in BC, where specific miRNA expression profiles associate with distinct clinical and biological phenotypes of the lesion. Considering the possibility that ERβ might influence BC cell behavior via miRNAs, we compared miRNome expression in ERβ+ vs ERβ- hormone-responsive BC cells and found a widespread effect of this ER subtype on the expression pattern of these non-coding RNAs. More importantly, the expression pattern of 67 miRNAs, including 10 regulated by ERβ in BC cells, clearly distinguishes ERβ+, node-negative, from ERβ-, metastatic, mammary tumors. Molecular dissection of miRNA biogenesis revealed multiple mechanisms for direct regulation of this process by ERβ+ in BC cell nuclei. In particular, ERβ downregulates miR-30a by binding to two specific sites proximal to the gene and thereby inhibiting pri-miR synthesis. On the other hand, the receptor promotes miR-23b, -27b and 24-1 accumulation in the cell by binding in close proximity of the corresponding gene cluster and preventing in situ the inhibitory effects of ERα on pri-miR maturation by the p68/DDX5-Drosha microprocessor complex. These results indicate that cell autonomous regulation of miRNA expression is part of the mechanism of action of ERβ in BC cells and could contribute to establishment or maintenance of a less aggressive tumor phenotype mediated by this nuclear receptor.
Collapse
Affiliation(s)
- O Paris
- Department of General Pathology, Second University of Naples, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10235
|
Keskin S, Bengisu E, Tuzlali S, Aydiner A. Complete Response in a Patient with Granulosa Cell Tumor Treated with a Combination of Leuprolide and Tamoxifen. ACTA ACUST UNITED AC 2012; 35:451-3. [DOI: 10.1159/000341078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10236
|
On the role of low-dose effects and epigenetics in toxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:499-550. [PMID: 22945581 DOI: 10.1007/978-3-7643-8340-4_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term "epigenetics" comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.
Collapse
|
10237
|
El-Haibi CP, Singh R, Gupta P, Sharma PK, Greenleaf KN, Singh S, Lillard JW. Antibody Microarray Analysis of Signaling Networks Regulated by Cxcl13 and Cxcr5 in Prostate Cancer. ACTA ACUST UNITED AC 2012; 5:177-184. [PMID: 24009409 DOI: 10.4172/jpb.1000232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced prostate cancer (PCa) often spreads to distant organs, leading to increased morbidity and mortality. It is now well established that chemokines and their cognate receptors play a crucial role in the multi-step process of metastasis. We have previously identified CXCR5 to be highly expressed by PCa tissues and cell lines and its specific ligand, CXCL13, is significantly elevated in the serum of patients with PCa and differentiated PCa cases with other benign prostatic diseases. CXCR5:CXCL13 interactions promote PCa cell invasion, migration, and differential matrix metalloproteinase (MMP) expression. Thus, it is important to understand the molecular and cellular processes that mediate these events. In this study, we quantified changes in apoptosis, cell cycle, and cytoskeleton rearrangement biological pathways from CXCL13-treated hormone refractory PCa cell line (PC3) to better elucidate the signaling pathways activated by CXCL13:CXCR5 interaction. Using antibody arrays that displayed 343 different protein- and phosphorylation-specific antibodies, regulatory networks that control cancer progression signaling cascades were identified. Three regulatory networks were dramatically induced by CXCL13: Akt1/2-cyclin-dependent kinases (Cdk1/2)-Cdk inhibitor 1B (CDKN1B), Integrinβ3-focal adhesion kinase (Fak)/Src-Paxillin(PXN), and Akt-Jun-cAMP response-element binding protein (CREB1). In general, phosphoinositide-3 kinase (PI3K)/Akt and stress-activated protein kinase (SAPK)/c-jun kinase (JNK) were the major signaling pathways modulated by CXCL13 in PCa cells. This cluster analysis revealed proteins whose activation patterns can be attributed to CXCL13:CXCR5 interaction in the androgen-independent PC3 cell line. Taken together, these results suggest that CXCL13 contributes to cell-signaling cascades that regulate advanced PCa cell invasion, growth, and/or survival.
Collapse
Affiliation(s)
- Christelle P El-Haibi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
10238
|
Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:189-224. [PMID: 22970719 PMCID: PMC3476837 DOI: 10.1080/10590501.2012.705159] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.
Collapse
Affiliation(s)
- Natalie B. Aquino
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Mary B. Sevigny
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Jackielyn Sabangan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Maggie C. Louie
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| |
Collapse
|
10239
|
Zhou Q, Eades G. MicroRNA Regulatory Networks Provide Feedback Mechanisms for Steroid Receptor Signaling. ACTA ACUST UNITED AC 2012; 3. [PMID: 24466498 DOI: 10.4172/2157-7536.1000e103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qun Zhou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 2120, USA
| | - Gabriel Eades
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 2120, USA
| |
Collapse
|
10240
|
Abstract
Craniopharyngiomas are slow growing benign tumors of the sellar and parasellar region with an overall incidence rate of approximately 1.3 per million. During adulthood there is a peak incidence between 40 and 44 years. There are two histopathological types, the adamantinomatous and the papillary type. The later type occurs almost exclusively in adult patients. The presenting symptoms develop over years and display a wide spectrum comprising visual, endocrine, hypothalamic, neurological, and neuropsychological manifestations. Currently, the main treatment option consists in surgical excision followed by radiation therapy in case of residual tumor. Whether gross total or partial resection should be preferred has to be balanced on an individual basis considering the extent of the tumor (e.g., hypothalamic invasion). Although the overall long-term survival is good it is often associated with substantial morbidity. Preexisting disorders are often permanent or even exacerbated by treatment. Endocrine disturbances need careful replacement and metabolic sequelae should be effectively treated. Regular follow-up by a multidisciplinary team is a prerequisite for optimal outcome of these patients.
Collapse
Affiliation(s)
- Flavius Zoicas
- Division of Endocrinology and Diabetes, Department of Medicine 1, Friedrich-Alexander University Erlangen-NurembergErlangen, Germany
| | - Christof Schöfl
- *Correspondence: Christof Schöfl, Division of Endocrinology and Diabetes, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany. e-mail:
| |
Collapse
|
10241
|
Quinn-Hosey KM, Roche JJ, Fogarty AM, Brougham CA. Screening for Genotoxicity and Oestrogenicity of Endocrine Disrupting Chemicals <i>in Vitro</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jep.2012.328105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10242
|
Ropolo A, Bagnes CI, Molejon MI, Lo Re A, Boggio V, Gonzalez CD, Vaccaro MI. Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 2012; 12:1-7. [PMID: 22487466 DOI: 10.1016/j.pan.2011.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junin p5, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
10243
|
Thomas P, Pang Y. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 2012; 96:162-71. [PMID: 22687885 PMCID: PMC3489003 DOI: 10.1159/000339822] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/27/2012] [Indexed: 12/15/2022]
Abstract
Membrane progesterone receptors (mPRs) are novel G protein-coupled receptors belonging to the progestin and adipoQ receptor family (PAQR) that mediate a variety of rapid cell surface-initiated progesterone actions in the reproductive system involving activation of intracellular signaling pathways (i.e. nonclassical actions). The mPRs are highly expressed in the brain, but research on their neural functions has only been conducted in a single neuronal cell line, GT1-7 cells, which have negligible nuclear progesterone receptor (PR) expression. GT1-7 cells express mPRα and mPRβ on their plasma membranes which is associated with the presence of high-affinity, specific [(3)H]-progesterone receptor binding. The neurosteroid, allopregnanolone, is an effective ligand for recombinant mPRα with a relative binding affinity of 7.6% that of progesterone. Allopregnanolone acts as a potent mPR agonist on GT1-7 cells, mimicking the progesterone-induced decrease in cAMP accumulation and its antiapoptotic actions at low nanomolar concentrations. The decrease in cAMP levels is associated with rapid progesterone-induced downregulation of GnRH pulsatile secretion from perifused GT1-7 cells. The recent suggestion that mPRs are alkaline ceramidases and mediate sphingolipid signaling is not supported by empirical evidence that TNFα does not bind to mPRs overexpressed in human cells and that exogenous sphingomyelinase is ineffective in mimicking progestin actions through mPRs to induce meiotic maturation of fish oocytes. Taken together, these recent studies indicate that mPRs mediate neuroprotective effects of progesterone and allopregnanolone and are also the likely intermediaries in progesterone-induced inhibition of pulsatile GnRH secretion in GT1-7 cells.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA.
| | | |
Collapse
|
10244
|
Abstract
Lavage of the ductal systems of the breast provides fluid (DLF) containing hormones and products of hormone actions that may represent more accurately the composition of the breast than samples collected from blood or urine. The present study was undertaken to assess the presence of potential cancer biomarkers, their variation among individuals at high risk for breast cancer, and differences associated with menopause and tamoxifen treatment. Seventy seven tamoxifen-eligible subjects with a 5-year breast cancer risk estimate (Gail > 1.6%)(N = 53) or recently diagnosed breast cancer (N = 24) were offered tamoxifen therapy; those not accepting tamoxifen were under observation only. After six months, all subjects underwent ductal lavage (DL) in an unaffected breast. Estradiol (E2), estrone sulfate, androstenedione, dehydroepiandrosterone (DHEA), DHEA sulfate, progesterone, cathepsin D and epidermal growth factor (EGF) were measured in DLF by immunoassays. Data were expressed as the mass of analyte per mg of protein in DLF and normalized by natural log transformation. With the exception of DHEA, none of the analytes measured were significantly lower in postmenopausal women than in premenopausal women. The mean log(e) concentration difference in estradiol was 10.9%. Tamoxifen treatment for 6 months did not result in a significantly greater concentration of E2 or in any of the other analytes in DLF of pre- or postmenopausal women. The between-duct variance of the concentration of free steroids within the same breast averaged 51% less than that between subjects, and was similar to that of non-diffusible proteins. The maintenance of estradiol concentrations in the breast after menopause demonstrates the importance of local biosynthesis. The fact that DLF E2 does not reflect the high serum concentrations of E2 during tamoxifen treatment indicates that breast concentrations of estradiol may be under feedback control. Unlike studies of low risk populations, progesterone concentrations were not significantly less in postmenopausal than in premenopausal women. The similarity in variance of free steroids and protein analytes between ducts of a breast indicates little transfer of steroids between lobules.
Collapse
|
10245
|
Luo D, Zhao GF, Lu ML, Huang H, Chang J, Zheng MY, Gastroenterology DO, University TSAHOKM, 650101 K, Province Y, China. Association of CHD5 and KLF5 expression with prognosis in gastric carcinoma Deng Luo, Gong-Fang Zhao, Ming-Liang Lu, Hua Huang, Jiang Chang, Meng-Yao Zheng. Shijie Huaren Xiaohua Zazhi 2011; 19:3603-3609. [DOI: 10.11569/wcjd.v19.i35.3603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of chromodomain helicase DNA-binding protein 5 (CHD5) and Krüppel-like factor 5 (KLF5) in gastric cancer, and to evaluate whether CHD5 and KLF5 can be used as prognostic markers in gastric cancer.
METHODS: Immunohistochemistry staining was performed to detect the expression of CHD5 and KLF5 proteins in 208 surgical specimens of gastric cancer and 68 noncancerous gastric tissue specimens. The association of CHD5 and KLF5 expression in gastric cancer with the survival time of patients was retrospectively analyzed.
RESULTS: Reduced expression of CHD5 and KLF5 frequently occurred in gastric cancer. The positive rates of CHD5 and KLF5 expression in gastric cancer were 29.33% (61/208) and 38.46% (80/208), respectively. CHD5 expression was correlated with age, histologic differentiation, depth of invasion, regional lymph node metastasis, distant metastasis, and TNM stage (all P < 0.05). KLF5 expression was correlated with histologic differentiation, depth of invasion, lymph node metastasis, distant metastasis, and TNM stage (all P < 0.05). Further multivariate analysis revealed that patient's gender, tumor location, histologic differentiation, distant metastasis, TNM stage, and expression of CHD5 and KLF5 were independent prognostic factors in patients with gastric cancer. The Kaplan-Meier plot showed that the median survival was 21.00 ± 1.36 months in patients with negative expression of CHD5 and 20.00 ± 1.54 months in those with negative expression of KLF5. The median survival time was 55.00 ± 6.97 months in patients with positive CHD5 expression and 45.00±3.27 months in patients with positive KLF5 expression. The cumulative 1- and 3-year survival rates were significantly lower in patients with negative expression of CHD5 and KLF5 than in those with positive expression of these two proteins.
CONCLUSION: Reduced expression of CHD5 and KLF5 in gastric cancer is associated with tumor metastasis and poor survival. Ectopic expression of CHD5 and KLF5 proteins may play an important role in the tumorigenesis and progression of gastric carcinoma.
Collapse
|
10246
|
Vähäkangas K. Chemical exposure as etiology in developmental origin of adult onset human cancer. Front Pharmacol 2011; 2:62. [PMID: 22203803 PMCID: PMC3241136 DOI: 10.3389/fphar.2011.00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/27/2011] [Indexed: 11/13/2022] Open
Abstract
Chemical exposures are in principle preventable causes of cancer. People are exposed to chemicals already during fetal period and the possibility of disturbances in human development by chemical compounds leading to cancer later in life has been proven by diethylstilbestrol. The mechanisms most probably include epigenetic modifications of promoter regions of key genes. The world-wide increases in cancer incidence and concurrent increase in the number and quantity of chemicals in the environment raises concerns about a link between these two. Developmental origin and related mechanisms in chemically induced human cancer are worth pursuing.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- School of Pharmacy, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
10247
|
Romańska-Knight H, Abel P. Prostate cancer stem cells. Cent European J Urol 2011; 64:196-200. [PMID: 24578892 PMCID: PMC3921735 DOI: 10.5173/ceju.2011.04.art1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 01/01/2023] Open
Abstract
The Cancer Stem Cells (CSCs) hypothesis postulates that a minute subpopulation of cells is accountable for cancer initiation and progression. Unlike the stochastic and clonal evolution models, the CSC theory proposes that tumours are hierarchical and only the rare subset of cells at the top of the 'stemness hierarchy tree’ are adequately ‘equipped’ biologically to initiate and drive tumourigenesis. CSCs have been implicated in various solid malignancies including prostate cancer (PCa), where their existence seems to provide an explanation for the failure of tumour eradicating therapies. As CSCs are thought to share many properties with normal stem cells, understanding normal stem cells should shed light on the pathomechanisms of cancer and, importantly, on potential therapeutic interventions. The purpose of this paper is to review the existing data on CSCs in PCa, their putative phenotypic markers, potential role in tumour biology and relevance to therapy.
Collapse
Affiliation(s)
- Hanna Romańska-Knight
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, Poland
| | - Paul Abel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, Great Britain
| |
Collapse
|
10248
|
Crew E, Rahman S, Razzak-Jaffar A, Mott D, Kamundi M, Yu G, Tchah N, Lee J, Bellavia M, Zhong CJ. MicroRNA Conjugated Gold Nanoparticles and Cell Transfection. Anal Chem 2011; 84:26-9. [DOI: 10.1021/ac202749p] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elizabeth Crew
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Sharaara Rahman
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Asma Razzak-Jaffar
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Derrick Mott
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Martha Kamundi
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Gang Yu
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Nuri Tchah
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Jehwan Lee
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Michael Bellavia
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| | - Chaun-Jian Zhong
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York, 13902,
United States
| |
Collapse
|
10249
|
Reciprocal expression of survivin and SMAC/DIABLO in primary breast cancer. Med Oncol 2011; 29:2535-42. [DOI: 10.1007/s12032-011-0129-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/24/2011] [Indexed: 01/22/2023]
|
10250
|
Rehg JE, Ward JM. Morphological and Immunohistochemical Characterization of Sarcomatous Tumors in Wild-Type and Genetically Engineered Mice. Vet Pathol 2011; 49:206-17. [DOI: 10.1177/0300985811429813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malignant soft tissue tumors are commonly observed in wild-type and gene-targeted mice. These tumors have different degrees of differentiation, cellularity, cellular atypia, nuclear pleomorphism, normal and abnormal mitosis, and giant tumor cells with enlarged polylobulated nuclei. They are often diagnosed as pleomorphic sarcoma, undifferentiated sarcoma, fibrosarcoma, malignant fibrous histiocytoma, sarcoma, or sarcoma, not otherwise specified. Pleomorphic sarcomas have no morphological differentiation toward a differentiated mesenchymal or other tumor type in hematoxylin and eosin–stained sections. With the use of immunohistochemistry, human and mouse, tumors associated with these broad nonspecific diagnoses can often be demonstrated to be of a specific cellular lineage. With mouse models being used to delineate the molecular mechanisms, pathogenesis, and cellular origin of human sarcomas, it will be necessary to correlate the morphological and cellular lineage and the molecular profiles of the pleomorphic tumors associated with these mouse models. The results presented here show that with the use of immunohistochemistry, the cellular lineage of many mouse tumors with pleomorphic features can be determined.
Collapse
Affiliation(s)
- J. E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - J. M. Ward
- Global Vet Pathology, Montgomery Village, Maryland
| |
Collapse
|