1001
|
Abstract
We have made rapid progress in recent years in identifying the genetic causes of many human diseases. However, despite this recent progress, our mechanistic understanding of these diseases is often incomplete. This is a problem because it limits our ability to develop effective disease treatments. To overcome this limitation, we need new concepts to describe and comprehend the complex mechanisms underlying human diseases. Condensate formation by phase separation emerges as a new principle to explain the organization of living cells. In this review, we present emerging evidence that aberrant forms of condensates are associated with many human diseases, including cancer, neurodegeneration, and infectious diseases. We examine disease mechanisms driven by aberrant condensates, and we point out opportunities for therapeutic interventions. We conclude that phase separation provides a useful new framework to understand and fight some of the most severe human diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany; .,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; .,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
1002
|
Abstract
New findings suggest that transcription enhancers work by recruitment of a large dynamic network of coactivators and other factors responsible for gene activation. Formation of these condensates is driven by DNA-bound transcription factors, their intrinsically disordered activation domains, and dynamic low-specificity interactions within the complex.
Collapse
Affiliation(s)
- Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
1003
|
Falo-Sanjuan J, Lammers NC, Garcia HG, Bray SJ. Enhancer Priming Enables Fast and Sustained Transcriptional Responses to Notch Signaling. Dev Cell 2019; 50:411-425.e8. [PMID: 31378591 PMCID: PMC6706658 DOI: 10.1016/j.devcel.2019.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022]
Abstract
Information from developmental signaling pathways must be accurately decoded to generate transcriptional outcomes. In the case of Notch, the intracellular domain (NICD) transduces the signal directly to the nucleus. How enhancers decipher NICD in the real time of developmental decisions is not known. Using the MS2-MCP system to visualize nascent transcripts in single cells in Drosophila embryos, we reveal how two target enhancers read Notch activity to produce synchronized and sustained profiles of transcription. By manipulating the levels of NICD and altering specific motifs within the enhancers, we uncover two key principles. First, increased NICD levels alter transcription by increasing duration rather than frequency of transcriptional bursts. Second, priming of enhancers by tissue-specific transcription factors is required for NICD to confer synchronized and sustained activity; in their absence, transcription is stochastic and bursty. The dynamic response of an individual enhancer to NICD thus differs depending on the cellular context.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | - Hernan G Garcia
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA; Department of Physics, UC Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
1004
|
Krystel-Whittemore M, Taylor MS, Rivera M, Lennerz JK, Le LP, Dias-Santagata D, Iafrate AJ, Deshpande V, Chebib I, Nielsen GP, Wu CL, Nardi V. Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization. Hum Pathol 2019; 93:65-73. [PMID: 31430493 DOI: 10.1016/j.humpath.2019.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
EWSR1 is a 'promiscuous' gene that can fuse with many different partner genes in phenotypically identical tumors or partner with the same genes in morphologically and behaviorally different neoplasms. Our study set out to examine the EWSR1 fusions identified at our institution over a 3-year period, using various methods, their association with specific entities and possible detection of novel partners and associations. Sixty-three consecutive cases investigated for EWSR1 gene fusions between 2015 and 2018 at our institution were included in this study. Fusions were identified by either break-apart fluorescence in-situ hybridization (FISH), our clinical RNA-based assay for fusion transcript detection or both. Twenty-eight cases were concurrently tested by FISH and NGS, 24 were tested by FISH alone and 11 by NGS alone. Of the 28 cases with dual testing, 24 were positive by both assays for an EWSR1 gene fusion, 3 cases were discordant with a positive FISH assay and a negative NGS assay, and 1 case was discordant with a negative FISH assay but a positive NGS assay. Three novel fusions were identified: a complex rearrangement involving three genes (EWSR1/RBFOX2/ERG) in Ewing sarcoma, a EWSR1/TCF7L2 fusion in a colon adenocarcinoma, and a EWSR1/TFEB fusion in a translocation-associated renal cell carcinoma. Both colonic adenocarcinoma and renal cell carcinoma had not been previously associated with EWSR1 rearrangements to our knowledge. In a subset of cases, detection of a specific partner had an impact on the histological diagnosis and patient management. In our experience, the use of a targeted NGS-based fusion assay is superior to EWSR1 break-apart FISH for the detection of known and novel EWSR1 rearrangements and fusion partners, particularly given the emerging understanding that distinct fusion partners result in different diseases with distinct prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Melissa Krystel-Whittemore
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Martin S Taylor
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Miguel Rivera
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Jochen K Lennerz
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Long P Le
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Dora Dias-Santagata
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Anthony John Iafrate
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Vikram Deshpande
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivan Chebib
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Gunnlaugur Petur Nielsen
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Chin-Lee Wu
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA
| | - Valentina Nardi
- Massachusetts General Hospital, Department of Pathology, and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
1005
|
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 2019; 38:e101379. [PMID: 31267591 PMCID: PMC6694294 DOI: 10.15252/embj.2018101379] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.
Collapse
Affiliation(s)
- Sinan Kilic
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Eliana Bianco
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
- Present address:
Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Jone Michelena
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| |
Collapse
|
1006
|
3D Chromosomal Landscapes in Hematopoiesis and Immunity. Trends Immunol 2019; 40:809-824. [PMID: 31422902 DOI: 10.1016/j.it.2019.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Epigenetic dysregulation plays a profound role in the pathogenesis of hematological malignancies, which is often the result of somatic mutations of chromatin regulators. Previously, these mutations were largely considered to alter gene expression in two dimensions, by activating or repressing chromatin states; however, research in the last decade has highlighted the increasing impact of the 3D organization of the genome in gene regulation and disease pathogenesis. Here, we summarize the current principles of 3D chromatin organization, how the integrity of the 3D genome governs immune cell development and malignant transformation, as well as how underlying (epi-)genetic drivers of 3D chromatin alterations might act as potential novel therapeutic targets for hematological malignancies.
Collapse
|
1007
|
Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Clark NM, Jing H, Emenecker R, Han S, Tycksen E, Hwang I, Sozzani R, Jez JM, Pappu RV, Strader LC. Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Mol Cell 2019; 76:177-190.e5. [PMID: 31421981 DOI: 10.1016/j.molcel.2019.06.044] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David A Korasick
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Katherine H Schreiber
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hongwei Jing
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ryan Emenecker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Soeun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
1008
|
Mathsyaraja H, Freie B, Cheng PF, Babaeva E, Catchpole JT, Janssens D, Henikoff S, Eisenman RN. Max deletion destabilizes MYC protein and abrogates Eµ- Myc lymphomagenesis. Genes Dev 2019; 33:1252-1264. [PMID: 31395740 PMCID: PMC6719623 DOI: 10.1101/gad.325878.119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Although MAX is regarded as an obligate dimerization partner for MYC, its function in normal development and neoplasia is poorly defined. We show that B-cell-specific deletion of Max has a modest effect on B-cell development but completely abrogates Eµ-Myc-driven lymphomagenesis. While Max loss affects only a few hundred genes in normal B cells, it leads to the global down-regulation of Myc-activated genes in premalignant Eµ-Myc cells. We show that the balance between MYC-MAX and MNT-MAX interactions in B cells shifts in premalignant B cells toward a MYC-driven transcriptional program. Moreover, we found that MAX loss leads to a significant reduction in MYC protein levels and down-regulation of direct transcriptional targets, including regulators of MYC stability. This phenomenon is also observed in multiple cell lines treated with MYC-MAX dimerization inhibitors. Our work uncovers a layer of Myc autoregulation critical for lymphomagenesis yet partly dispensable for normal development.
Collapse
Affiliation(s)
- Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Pei-Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ekaterina Babaeva
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jonathen T Catchpole
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Derek Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
1009
|
Brouwer I, Lenstra TL. Visualizing transcription: key to understanding gene expression dynamics. Curr Opin Chem Biol 2019; 51:122-129. [DOI: 10.1016/j.cbpa.2019.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
|
1010
|
Walter NG. Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter? Bioessays 2019; 41:e1800244. [PMID: 31245864 PMCID: PMC6684156 DOI: 10.1002/bies.201800244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Collapse
|
1011
|
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 2019; 572:543-548. [PMID: 31391587 PMCID: PMC6706314 DOI: 10.1038/s41586-019-1464-0] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.
Collapse
Affiliation(s)
- Yang Eric Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - John C Manteiga
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jan-Hendrik Spille
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Jenna K Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Charli B Fant
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
1012
|
Lewis MW, Li S, Franco HL. Transcriptional control by enhancers and enhancer RNAs. Transcription 2019; 10:171-186. [PMID: 31791217 PMCID: PMC6948965 DOI: 10.1080/21541264.2019.1695492] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/02/2022] Open
Abstract
The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shen Li
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
1013
|
Lorton BM, Shechter D. Cellular consequences of arginine methylation. Cell Mol Life Sci 2019; 76:2933-2956. [PMID: 31101937 PMCID: PMC6642692 DOI: 10.1007/s00018-019-03140-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein-protein and protein-nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform-catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)-has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins-the latter two of which are intimately connected with biological liquid-liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
1014
|
Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol 2019; 90:45-53. [PMID: 31078563 PMCID: PMC6714048 DOI: 10.1016/j.humpath.2019.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/05/2019] [Indexed: 12/27/2022]
Abstract
The classification of bone neoplasms composed of small round cells is experiencing a transformation after the discovery of various gene fusion rearrangements that determine diagnosis, behavior, and response to therapy. We present herein 4 new cases of small round cell tumor of the bone that harbor NFATc2 rearrangements involving either EWSR1 or FUS genes. We studied the clinical presentation, pathologic features, genetics (FISH, targeted RNA sequencing) and outcome in these 4 patients. We also reviewed the literature describing similar cases. All our patients were male. The median age at diagnosis was 33.5 years. All tumors presented in long bones of the extremities as a large destructive mass with a mean size of 12.5 cm. All cases were hypercellular with prominent collagenous stroma and consisted of small to medium size round cells arranged in cords, thin trabeculae, and pseudoacinar structures. Most cases showed focal or diffuse membrane staining for CD99; whereas S100, synaptophysin and chromogranin were negative. EMA showed cytoplasmic staining in one case. Genetic studies identified EWSR1-NFATc2 fusion in 3 cases, and FUS-NFATc2 fusion in one case. Two patients were treated with neoadjuvant chemotherapy using Ewing sarcoma regimens, and surgical excision was performed on 3 patients; necrosis was minimal. Follow-up is limited; after a median follow-up of 8.7 months, one patient developed local recurrence and metastases to the lungs. Poorly differentiated round cell sarcoma with EWSR1/FUS-NFATc2 fusions are uncommon. The tumors have consistent clinical findings, morphology, and immunoprofile that in combination are distinctive and differ from that of Ewing sarcoma. Importantly, these tumors do not respond to Ewing sarcoma chemotherapy regimens.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - G Petur Nielsen
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Cristina Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Taylor
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | | | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
1015
|
Despang A, Schöpflin R, Franke M, Ali S, Jerković I, Paliou C, Chan WL, Timmermann B, Wittler L, Vingron M, Mundlos S, Ibrahim DM. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat Genet 2019; 51:1263-1271. [PMID: 31358994 DOI: 10.1038/s41588-019-0466-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
The genome is organized in three-dimensional units called topologically associating domains (TADs), through a process dependent on the cooperative action of cohesin and the DNA-binding factor CTCF. Genomic rearrangements of TADs have been shown to cause gene misexpression and disease, but genome-wide depletion of CTCF has no drastic effects on transcription. Here, we investigate TAD function in vivo in mouse limb buds at the Sox9-Kcnj2 locus. We show that the removal of all major CTCF sites at the boundary and within the TAD resulted in a fusion of neighboring TADs, without major effects on gene expression. Gene misexpression and disease phenotypes, however, were achieved by redirecting regulatory activity through inversions and/or the repositioning of boundaries. Thus, TAD structures provide robustness and precision but are not essential for developmental gene regulation. Aberrant disease-related gene activation is not induced by a mere loss of insulation but requires CTCF-dependent redirection of enhancer-promoter contacts.
Collapse
Affiliation(s)
- Alexandra Despang
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- BCRT-Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany
| | - Robert Schöpflin
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- BCRT-Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Franke
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain
| | - Salaheddine Ali
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- BCRT-Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany
| | - Ivana Jerković
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- CNRS-Institute of Human Genetics, Montpellier, France
| | - Christina Paliou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wing-Lee Chan
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
- BCRT-Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany.
| | - Daniel M Ibrahim
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
- BCRT-Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
1016
|
Heist T, Fukaya T, Levine M. Large distances separate coregulated genes in living Drosophila embryos. Proc Natl Acad Sci U S A 2019; 116:15062-15067. [PMID: 31285341 PMCID: PMC6660726 DOI: 10.1073/pnas.1908962116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of cellular signals. Many enhancers map quite far from their target genes, on the order of tens or even hundreds of kilobases. There is extensive evidence that remote enhancers are brought into proximity with their target promoters via long-range looping interactions. However, the exact physical distances of these enhancer-promoter interactions remain uncertain. Here, we employ high-resolution imaging of living Drosophila embryos to visualize the distances separating linked genes that are coregulated by a shared enhancer. Cotransvection assays (linked genes on separate homologs) suggest a surprisingly large distance during transcriptional activity: at least 100-200 nm. Similar distances were observed when a shared enhancer was placed into close proximity with linked reporter genes in cis. These observations are consistent with the occurrence of "transcription hubs," whereby clusters (or condensates) of multiple RNA polymerase II complexes and associated cofactors are periodically recruited to active promoters. The dynamics of this process might be responsible for rapid fluctuations in the distances separating the transcription of coregulated reporter genes during transvection. We propose that enhancer-promoter communication depends on a combination of classical looping and linking models.
Collapse
Affiliation(s)
- Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Takashi Fukaya
- Institute for Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
1017
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
1018
|
Wang N, Liu C. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control. Curr Opin Genet Dev 2019; 55:59-65. [PMID: 31306885 DOI: 10.1016/j.gde.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/30/2022]
Abstract
As an essential feature of three-dimensional (3D) genome organization, compartmentalization of chromatin in the nucleus is tightly linked to various chromatin activities. Recent work on liquid-liquid phase separation (LLPS), which drives the formation of miscellaneous membrane-less compartments in cells, suggests that it is a critical aspect of chromatin compartmentalization. In this review, we provide an overview of recent work in the animal field that focuses on understanding how LLPS is involved in 3D chromatin organization and transcriptional regulation. By combining scattered information in 3D plant genomics, we attempt to interpret some known plant chromatin organization patterns in the context of LLPS. Moreover, we discuss and speculate factors that can undergo phase separation to modulate chromatin structure and gene expression in plants.
Collapse
Affiliation(s)
- Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
1019
|
Tsai A, Alves MRP, Crocker J. Multi-enhancer transcriptional hubs confer phenotypic robustness. eLife 2019; 8:e45325. [PMID: 31294690 PMCID: PMC6650246 DOI: 10.7554/elife.45325] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
We previously showed in Drosophila melanogaster embryos that low-affinity Ultrabithorax (Ubx)-responsive shavenbaby (svb) enhancers drive expression using localized transcriptional environments and that active svb enhancers on different chromosomes tended to colocalize (Tsai et al., 2017). Here, we test the hypothesis that these multi-enhancer 'hubs' improve phenotypic resilience to stress by buffering against decreases in transcription factor concentrations and transcriptional output. Deleting a redundant enhancer from the svb locus led to reduced trichome numbers in embryos raised at elevated temperatures. Using high-resolution fluorescence microscopy, we observed lower Ubx concentration and transcriptional output in this deletion allele. Transcription sites of the full svb cis-regulatory region inserted into a different chromosome colocalized with the svb locus, increasing Ubx concentration, the transcriptional output of svb, and partially rescuing the phenotype. Thus, multiple enhancers could reinforce a local transcriptional hub to buffer against environmental stresses and genetic perturbations, providing a mechanism for phenotypical robustness.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Mariana RP Alves
- European Molecular Biology LaboratoryHeidelbergGermany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | | |
Collapse
|
1020
|
Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W, Hernandez K, Liu P, Chen J, Chen M, Huang THM, Chen L, Liu Z. A Non-canonical Role of YAP/TEAD Is Required for Activation of Estrogen-Regulated Enhancers in Breast Cancer. Mol Cell 2019; 75:791-806.e8. [PMID: 31303470 DOI: 10.1016/j.molcel.2019.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
YAP/TEAD are nuclear effectors of the Hippo pathway, regulating organ size and tumorigenesis largely through promoter-associated function. However, their function as enhancer regulators remains poorly understood. Through an in vivo proximity-dependent labeling (BioID) technique, we identified YAP1 and TEAD4 protein as co-regulators of ERα on enhancers. The binding of YAP1/TEAD4 to ERα-bound enhancers is augmented upon E2 stimulation and is required for the induction of E2/ERα target genes and E2-induced oncogenic cell growth. Furthermore, their enhancer binding is a prerequisite for enhancer activation marked by eRNA transcription and for the recruitment of the enhancer activation machinery component MED1. The binding of TEAD4 on active ERE-containing enhancers is independent of its DNA-binding behavior, and instead, occurs through protein-tethering trans-binding. Our data reveal a non-canonical function of YAP1 and TEAD4 as ERα cofactors in regulating cancer growth, highlighting the potential of YAP/TEAD as possible actionable drug targets for ERα+ breast cancer.
Collapse
Affiliation(s)
- Chi Zhu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Li Li
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Oncology, The Second People's Hospital of Jiaozuo, Jiaozuo City, Henan 454001, China
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mingjun Bi
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hu Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenyue Su
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karen Hernandez
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pingping Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Junqiang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Mingqiu Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
1021
|
Kribelbauer JF, Rastogi C, Bussemaker HJ, Mann RS. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Annu Rev Cell Dev Biol 2019; 35:357-379. [PMID: 31283382 DOI: 10.1146/annurev-cellbio-100617-062719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Richard S Mann
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA; .,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10031, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
1022
|
Gentsch GE, Owens NDL, Smith JC. The Spatiotemporal Control of Zygotic Genome Activation. iScience 2019; 16:485-498. [PMID: 31229896 PMCID: PMC6593175 DOI: 10.1016/j.isci.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, Paris 75015, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
1023
|
Khanna N, Zhang Y, Lucas JS, Dudko OK, Murre C. Chromosome dynamics near the sol-gel phase transition dictate the timing of remote genomic interactions. Nat Commun 2019; 10:2771. [PMID: 31235807 PMCID: PMC6591236 DOI: 10.1038/s41467-019-10628-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/20/2019] [Indexed: 11/08/2022] Open
Abstract
Diverse antibody repertoires are generated through remote genomic interactions involving immunoglobulin variable (VH), diversity (DH) and joining (JH) gene segments. How such interactions are orchestrated remains unknown. Here we develop a strategy to track VH-DHJH motion in B-lymphocytes. We find that VH and DHJH segments are trapped in configurations that allow only local motion, such that spatially proximal segments remain in proximity, while spatially remote segments remain remote. Within a subset of cells, however, abrupt changes in VH-DHJH motion are observed, plausibly caused by temporal alterations in chromatin configurations. Comparison of experimental and simulated data suggests that constrained motion is imposed by a network of cross-linked chromatin chains characteristic of a gel phase, yet poised near the sol phase, a solution of independent chromatin chains. These results suggest that chromosome organization near the sol-gel phase transition dictates the timing of genomic interactions to orchestrate gene expression and somatic recombination.
Collapse
Affiliation(s)
- Nimish Khanna
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yaojun Zhang
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA
| | - Joseph S Lucas
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Olga K Dudko
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Cornelis Murre
- Division of Biological Sciences, 0377, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
1024
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
1025
|
Newman SA. Inherency of Form and Function in Animal Development and Evolution. Front Physiol 2019; 10:702. [PMID: 31275153 PMCID: PMC6593199 DOI: 10.3389/fphys.2019.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
I discuss recent work on the origins of morphology and cell-type diversification in Metazoa – collectively the animals – and propose a scenario for how these two properties became integrated, with the help of a third set of processes, cellular pattern formation, into the developmental programs seen in present-day metazoans. Inherent propensities to generate familiar forms and cell types, in essence a parts kit for the animals, are exhibited by present-day organisms and were likely more prominent in primitive ones. The structural motifs of animal bodies and organs, e.g., multilayered, hollow, elongated and segmented tissues, internal and external appendages, branched tubes, and modular endoskeletons, can be accounted for by the properties of mesoscale masses of metazoan cells. These material properties, in turn, resulted from the recruitment of “generic” physical forces and mechanisms – adhesion, contraction, polarity, chemical oscillation, diffusion – by toolkit molecules that were partly conserved from unicellular holozoan antecedents and partly novel, distributed in the different metazoan phyla in a fashion correlated with morphological complexity. The specialized functions of the terminally differentiated cell types in animals, e.g., contraction, excitability, barrier function, detoxification, excretion, were already present in ancestral unicellular organisms. These functions were implemented in metazoan differentiation in some cases using the same transcription factors as in single-celled ancestors, although controlled by regulatory mechanisms that were hybrids between earlier-evolved processes and regulatory innovations, such as enhancers. Cellular pattern formation, mediated by released morphogens interacting with biochemically responsive and excitable tissues, drew on inherent self-organizing processes in proto-metazoans to transform clusters of holozoan cells into animal embryos and organs.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
1026
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1027
|
McKay DJ, Stutzman AV, Dowen JM. Advancements in mapping 3D genome architecture. Methods 2019; 170:75-81. [PMID: 31201934 DOI: 10.1016/j.ymeth.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Daniel J McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis V Stutzman
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
1028
|
Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers (Basel) 2019; 11:polym11060990. [PMID: 31167414 PMCID: PMC6631845 DOI: 10.3390/polym11060990] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The visible outcome of liquid-liquid phase transitions (LLPTs) in cells is the formation and disintegration of various proteinaceous membrane-less organelles (PMLOs). Although LLPTs and related PMLOs have been observed in living cells for over 200 years, the physiological functions of these transitions (also known as liquid-liquid phase separation, LLPS) are just starting to be understood. While unveiling the functionality of these transitions is important, they have come into light more recently due to the association of abnormal LLPTs with various pathological conditions. In fact, several maladies, such as various cancers, different neurodegenerative diseases, and cardiovascular diseases, are known to be associated with either aberrant LLPTs or some pathological transformations within the resultant PMLOs. Here, we will highlight both the physiological functions of cellular liquid-liquid phase transitions as well as the pathological consequences produced through both dysregulated biogenesis of PMLOs and the loss of their dynamics. We will also discuss the potential downstream toxic effects of proteins that are involved in pathological formations.
Collapse
|
1029
|
van Steensel B, Furlong EEM. The role of transcription in shaping the spatial organization of the genome. Nat Rev Mol Cell Biol 2019; 20:327-337. [PMID: 30886333 PMCID: PMC7116054 DOI: 10.1038/s41580-019-0114-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial organization of the genome into compartments and topologically associated domains can have an important role in the regulation of gene expression. But could gene expression conversely regulate genome organization? Here, we review recent studies that assessed the requirement of transcription and/or the transcription machinery for the establishment or maintenance of genome topology. The results reveal different requirements at different genomic scales. Transcription is generally not required for higher-level genome compartmentalization, has only moderate effects on domain organization and is not sufficient to create new domain boundaries. However, on a finer scale, transcripts or transcription does seem to have a role in the formation of subcompartments and subdomains and in stabilizing enhancer-promoter interactions. Recent evidence suggests a dynamic, reciprocal interplay between fine-scale genome organization and transcription, in which each is able to modulate or reinforce the activity of the other.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, Netherlands.
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
1030
|
Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol 2019; 58:95-104. [DOI: 10.1016/j.ceb.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
|
1031
|
Silveira MAD, Bilodeau S. Defining the Transcriptional Ecosystem. Mol Cell 2019; 72:920-924. [PMID: 30576654 DOI: 10.1016/j.molcel.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Fine tuning of the transcriptional program requires the competing action of multiple protein complexes in a well-organized environment. Genome folding creates proximity between genes, leading to accumulation of regulatory factors and formation of local microenvironments. Many roles of this complex organization controlling gene transcription remain to be explored. In this Perspective, we are proposing the existence of a transcriptional ecosystem equilibrium: a mechanism balancing transcriptional regulation between connected genes during environmental disturbances. This model is derived from chromosome architecture studies assigning genes to specific DNA structures and evidence establishing that the transcription machinery and coregulators create dynamic phase separation droplets surrounding active genes. Defining connected genes as ecosystems rather than individuals will cement that transcriptional regulation is a biochemical equilibrium and force a reassessment of direct and indirect responses to environmental disturbances.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
1032
|
Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569:345-354. [PMID: 31092938 DOI: 10.1038/s41586-019-1182-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Collapse
|
1033
|
Kim S, Dunham MJ, Shendure J. A combination of transcription factors mediates inducible interchromosomal contacts. eLife 2019; 8:e42499. [PMID: 31081754 PMCID: PMC6548505 DOI: 10.7554/elife.42499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/11/2019] [Indexed: 12/30/2022] Open
Abstract
The genome forms specific three-dimensional contacts in response to cellular or environmental conditions. However, it remains largely unknown which proteins specify and mediate such contacts. Here we describe an assay, MAP-C (Mutation Analysis in Pools by Chromosome conformation capture), that simultaneously characterizes the effects of hundreds of cis or trans-acting mutations on a chromosomal contact. Using MAP-C, we show that inducible interchromosomal pairing between HAS1pr-TDA1pr alleles in saturated cultures of Saccharomyces yeast is mediated by three transcription factors, Leu3, Sdd4 (Ypr022c), and Rgt1. The coincident, combined binding of all three factors is strongest at the HAS1pr-TDA1pr locus and is also specific to saturated conditions. We applied MAP-C to further explore the biochemical mechanism of these contacts, and find they require the structured regulatory domain of Rgt1, but no known interaction partners of Rgt1. Altogether, our results demonstrate MAP-C as a powerful method for dissecting the mechanistic basis of chromosome conformation.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Maitreya J Dunham
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jay Shendure
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
1034
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
1035
|
Pascual-Garcia P, Capelson M. Nuclear pores in genome architecture and enhancer function. Curr Opin Cell Biol 2019; 58:126-133. [PMID: 31063899 DOI: 10.1016/j.ceb.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/28/2023]
Abstract
Nuclear genome architecture relies on interactions between the genome and various nuclear scaffolds. One such a nuclear scaffold is the nuclear pore complex (NPC), which in addition to its nuclear transport function, can interact with underlying chromatin. In particular, NPCs have been recently reported to associate with a number of enhancers and superenhancers in metazoan genomes, and select NPC components have been shown to promote the formation of specific genomic loops. Here, we provide a brief overview of current models of enhancer function, and discuss recent evidence that NPCs bind enhancers and contribute to topological genome organization. We also examine possible models of how gene and enhancer targeting to NPCs may contribute to tissue-specific genome architecture and expression programs, including the possibility that NPCs may promote phase separation of transcriptional compartments.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
1036
|
United colours of chromatin? Developmental genome organisation in flies. Biochem Soc Trans 2019; 47:691-700. [PMID: 30902925 DOI: 10.1042/bst20180605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022]
Abstract
The organisation of DNA into differing forms of packaging, or chromatin, controls many of the cell fate decisions during development. Although early studies focused on individual forms of chromatin, in the last decade more holistic studies have attempted to determine a complete picture of the different forms of chromatin present within a cell. In the fruit fly, Drosophila melanogaster, the study of chromatin states has been aided by the use of complementary and cell-type-specific techniques that profile the marks that recruit chromatin protein binding or the proteins themselves. Although many questions remain unanswered, a clearer picture of how different chromatin states affect development is now emerging, with more unusual chromatin states such as Black chromatin playing key roles. Here, we discuss recent findings regarding chromatin biology in flies.
Collapse
|
1037
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
1038
|
Dynamic chromatin organization in the cell. Essays Biochem 2019; 63:133-145. [PMID: 30967477 DOI: 10.1042/ebc20180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The organization and regulation of genomic DNA as nuclear chromatin is necessary for proper DNA function inside living eukaryotic cells. While this has been extensively explored, no true consensus is currently reached regarding the exact mechanism of chromatin organization. The traditional view has assumed that the DNA is packaged into a hierarchy of structures inside the nucleus based on the regular 30-nm chromatin fiber. This is currently being challenged by the fluid-like model of the chromatin which views the chromatin as a dynamic structure based on the irregular 10-nm fiber. In this review, we focus on the recent progress in chromatin structure elucidation highlighting the paradigm shift in chromatin folding mechanism from the classical textbook perspective of the regularly folded chromatin to the more dynamic fluid-like perspective.
Collapse
|
1039
|
Michieletto D, Gilbert N. Role of nuclear RNA in regulating chromatin structure and transcription. Curr Opin Cell Biol 2019; 58:120-125. [PMID: 31009871 PMCID: PMC6694202 DOI: 10.1016/j.ceb.2019.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
The importance of three-dimensional chromatin organisation in genome regulation has never been clearer. But in spite of the enormous technological advances to probe chromatin organisation in vivo, there is still a lack of mechanistic understanding of how such an arrangement is achieved. Here we review emerging evidence pointing to an intriguing role of nuclear RNA in shaping large-scale chromatin structure and regulating genome function. We suggest this role may be achieved through the formation of a dynamic nuclear mesh that can exploit ATP-driven processes and phase separation of RNA-binding proteins to tune its assembly and material properties.
Collapse
Affiliation(s)
- Davide Michieletto
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; School of Physics and Astronomy, University of Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
1040
|
Trnka MJ, Pellarin R, Robinson PJ. Role of integrative structural biology in understanding transcriptional initiation. Methods 2019; 159-160:4-22. [PMID: 30890443 PMCID: PMC6617507 DOI: 10.1016/j.ymeth.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Philip J Robinson
- Department of Biological Sciences, Birkbeck University of London, Institute of Structural and Molecular Biology, London, United Kingdom.
| |
Collapse
|
1041
|
Bompadre O, Andrey G. Chromatin topology in development and disease. Curr Opin Genet Dev 2019; 55:32-38. [DOI: 10.1016/j.gde.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
|
1042
|
The anti-cancer drugs curaxins target spatial genome organization. Nat Commun 2019; 10:1441. [PMID: 30926878 PMCID: PMC6441033 DOI: 10.1038/s41467-019-09500-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Recently we characterized a class of anti-cancer agents (curaxins) that disturbs DNA/histone interactions within nucleosomes. Here, using a combination of genomic and in vitro approaches, we demonstrate that curaxins strongly affect spatial genome organization and compromise enhancer-promoter communication, which is necessary for the expression of several oncogenes, including MYC. We further show that curaxins selectively inhibit enhancer-regulated transcription of chromatinized templates in cell-free conditions. Genomic studies also suggest that curaxins induce partial depletion of CTCF from its binding sites, which contributes to the observed changes in genome topology. Thus, curaxins can be classified as epigenetic drugs that target the 3D genome organization. Curaxins are a recently discovered class of anti-cancer agents that disturbs DNA/histone interactions within. Here the authors provide evidence that curaxins affect the spatial genome organization and compromise enhancer-promoter communication necessary for expression of several oncogenes, including MYC.
Collapse
|
1043
|
Abstract
Cancer is fueled by the aberrant activity of oncogenic and tumor suppressive pathways. Transcriptional dysregulation of these pathways play a major role both in the genesis and development of cancer. Dysregulation of transcriptional programs can be mediated by genetic and epigenetic alterations targeting both protein coding genes and non-coding regulatory elements like enhancers and super-enhancers. Super-enhancers, characterized as large clusters of enhancers in close proximity, have been identified as essential oncogenic drivers required for the maintenance of cancer cell identity. As a result, cancer cells are often addicted to the super-enhancer driven transcriptional programs. Furthermore, pharmacological inhibitors targeting key components of super-enhancer assembly and activation have shown great promise in reducing tumor growth and proliferation in several pre-clinical tumor models. This article reviews the current understanding of super-enhancer assembly and activation, the different mechanisms by which cancer cells acquire oncogenic super-enhancers and, finally, the potential of targeting super-enhancers as future therapeutics.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
1044
|
ERα condensates: chronic stimulation is hard to ignore. Nat Struct Mol Biol 2019; 26:153-154. [PMID: 30833783 DOI: 10.1038/s41594-019-0198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1045
|
Delaney CE, Methot SP, Guidi M, Katic I, Gasser SM, Padeken J. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J Cell Biol 2019; 218:820-838. [PMID: 30737265 PMCID: PMC6400574 DOI: 10.1083/jcb.201811038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle-dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.
Collapse
Affiliation(s)
- Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen P Methot
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Micol Guidi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
1046
|
Nair SJ, Yang L, Meluzzi D, Oh S, Yang F, Friedman MJ, Wang S, Suter T, Alshareedah I, Gamliel A, Ma Q, Zhang J, Hu Y, Tan Y, Ohgi KA, Jayani RS, Banerjee PR, Aggarwal AK, Rosenfeld MG. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol 2019; 26:193-203. [PMID: 30833784 PMCID: PMC6709854 DOI: 10.1038/s41594-019-0190-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
A crucial feature of differentiated cells is the rapid activation of enhancer-driven transcriptional programs in response to signals. The potential contributions of physicochemical properties of enhancer assembly in signaling events remain poorly understood. Here we report that in human breast cancer cells, the acute 17β-estradiol-dependent activation of functional enhancers requires assembly of an enhancer RNA-dependent ribonucleoprotein (eRNP) complex exhibiting properties of phase-separated condensates. Unexpectedly, while acute ligand-dependent assembly of eRNPs resulted in enhancer activation sensitive to chemical disruption of phase separation, chronically activated enhancers proved resistant to such disruption, with progressive maturation of eRNPs to a more gel-like state. Acute, but not chronic, stimulation resulted in ligand-induced, condensin-dependent changes in spatial chromatin conformation based on homotypic enhancer association, resulting in cooperative enhancer-activation events. Thus, distinct physicochemical properties of eRNP condensates on enhancers serve as determinants of rapid ligand-dependent alterations in chromosomal architecture and cooperative enhancer activation.
Collapse
Affiliation(s)
- Sreejith J Nair
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dario Meluzzi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Soohwan Oh
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meyer J Friedman
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Amir Gamliel
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yiren Hu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kenneth A Ohgi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ranveer Singh Jayani
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo-SUNY, Buffalo, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
1047
|
Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki T, Tamura S, Tani T, Kimura H, Shribak M, Kanemaki MT, Sasai M, Maeshima K. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J Cell Biol 2019; 218:1511-1530. [PMID: 30824489 PMCID: PMC6504897 DOI: 10.1083/jcb.201811090] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
When a gene is activated, chromatin in the transcribed region is thought to be more open and dynamic. However, Nagashima et al. found that this is not necessarily the case—inhibition of transcription globally increases chromatin motion, revealing the existence of loose genome chromatin networks via transcriptional machinery. Although chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements. RNAPII inhibition or its rapid depletion released the chromatin constraints and increased chromatin dynamics. Perturbation experiments of P-TEFb clusters, which are associated with active RNAPII, had similar results. Furthermore, chromatin mobility also increased in resting G0 cells and UV-irradiated cells, which are transcriptionally less active. Our results demonstrated that chromatin is globally stabilized by loose connections through active RNAPII, which is compatible with models of classical transcription factories or liquid droplet formation of transcription-related factors. Together with our computational modeling, we propose the existence of loose chromatin domain networks for various intra-/interchromosomal contacts via active RNAPII clusters/droplets.
Collapse
Affiliation(s)
- Ryosuke Nagashima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - S S Ashwin
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Michael Babokhov
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Shin Fujishiro
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Ryosuke Imai
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Tadasu Nozaki
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael Shribak
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Masato T Kanemaki
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan.,Molecular Cell Engineering Laboratory, National Institute of Genetics, ROIS, Mishima, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan .,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| |
Collapse
|
1048
|
Kang LJ, Yu ZH, Cai J, He R, Lu JT, Hou C, Wang QS, Li XQ, Zhang R, Feng YM. Reciprocal transrepression between FOXF2 and FOXQ1 controls basal-like breast cancer aggressiveness. FASEB J 2019; 33:6564-6573. [PMID: 30807702 DOI: 10.1096/fj.201801916r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FOXF2 and FOXQ1, forkhead box transcription factor superfamily members, are encoded by neighboring genes located on human chromosome 6p25.3 and play opposite roles in epithelial-mesenchymal transition (EMT) and metastasis in basal-like breast cancer (BLBC). However, the relationship between FOXF2 and FOXQ1 in cancer remains unknown. Here, we found mutual transcriptional repression between FOXF2 and FOXQ1, and the reciprocal negative feedback loop controlled EMT, aggressiveness, and chemoresistance in BLBC cells. We further demonstrated that FOXF2 recruited nuclear receptor corepressor 1 and histone deacetylase 3 to the FOXQ1 promoter to inhibit its transcription in BLBC cells, but FOXQ1 did not exert such an effect on FOXF2. Our findings reveal novel mechanisms underlying the determination of BLBC aggressiveness and the transrepressive function of FOXF2 in a basal-like cell subtype-specific manner. Therefore, blocking the vicious cycle of the abnormal reciprocal feedback loop between FOXF2 and FOXQ1 to induce cell differentiation and restore tissue homeostasis is a promising strategy for the treatment of aggressive BLBC.-Kang, L.-J., Yu, Z.-H., Cai, J., He, R., Lu, J.-T., Hou, C., Wang, Q.-S., Li, X.-Q., Zhang, R., Feng, Y.-M. Reciprocal transrepression between FOXF2 and FOXQ1 controls basal-like breast cancer aggressiveness.
Collapse
Affiliation(s)
- Li-Juan Kang
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zi-Han Yu
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Cai
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Rui He
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun-Tao Lu
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Hou
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
1049
|
Yokoshi M, Fukaya T. Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Dev Growth Differ 2019; 61:343-352. [PMID: 30780195 PMCID: PMC6850047 DOI: 10.1111/dgd.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Transcriptional enhancers are regulatory DNAs that instruct when and where genes should be transcribed in response to a variety of intrinsic and external signals. They contain a cluster of binding sites for sequence-specific transcription factors and co-activators to determine the spatiotemporal specificity of gene activities during development. Enhancers are often positioned in distal locations from their target promoters. In some cases, they work over a million base pairs or more. In the traditional view, enhancers have been thought to stably interact with promoters in a targeted manner. However, quantitative imaging studies provide a far more dynamic picture of enhancer action. Moreover, recent Hi-C methods suggest that regulatory interactions are dynamically regulated by the higher-order chromosome topology. In this review, we summarize the emerging findings in the field and propose that assembly of "transcription hubs" in the context of 3D genome structure plays an important role in transcriptional regulation.
Collapse
Affiliation(s)
- Moe Yokoshi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Fukaya
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
1050
|
Twenty years of Mediator complex structural studies. Biochem Soc Trans 2019; 47:399-410. [PMID: 30733343 PMCID: PMC6393861 DOI: 10.1042/bst20180608] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Mediator is a large multiprotein complex conserved in all eukaryotes that plays an essential role in transcriptional regulation. Mediator comprises 25 subunits in yeast and 30 subunits in humans that form three main modules and a separable four-subunit kinase module. For nearly 20 years, because of its size and complexity, Mediator has posed a formidable challenge to structural biologists. The first two-dimensional electron microscopy (EM) projection map of Mediator leading to the canonical view of its division in three topological modules named Head, Middle and Tail, was published in 1999. Within the last few years, optimization of Mediator purification combined with technical and methodological advances in cryo-electron microscopy (cryo-EM) have revealed unprecedented details of Mediator subunit organization, interactions with RNA polymerase II and parts of its core structure at high resolution. To celebrate the twentieth anniversary of the first Mediator EM reconstruction, we look back on the structural studies of Mediator complex from a historical perspective and discuss them in the light of our current understanding of its role in transcriptional regulation.
Collapse
|