1001
|
Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA. Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 1998; 282:2088-92. [PMID: 9851931 DOI: 10.1126/science.282.5396.2088] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.
Collapse
Affiliation(s)
- J T Nguyen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
1002
|
Bottomley MJ, Salim K, Panayotou G. Phospholipid-binding protein domains. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:165-83. [PMID: 9838094 DOI: 10.1016/s0005-2760(98)00141-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Research into cellular mechanisms for signal transduction is currently one of the most exciting and rapidly advancing fields of biological study. It has been known for some time that numerous intracellular signals are transmitted by specific protein-protein interactions, as exemplified by those involving the Src homology domains. However, after some controversy, it has recently been widely accepted that specific protein-phospholipid interactions also play key roles in many signal transduction pathways. In this review, landmark discoveries and recent advances describing protein domains known to associate with phospholipids are discussed. Particular emphasis is placed on the interactions of proteins with phospholipids acting as second messengers in signalling pathways. For this purpose, the pleckstrin homology (PH) domain is highlighted, since studies of this domain provided some of the earliest, detailed data about protein-phospholipid interactions occurring downstream of growth factor-mediated receptor stimulation. Moreover, studies of PH domains have given insight into the mechanisms of certain diseases, revealed a number of intriguing functional variations on a common structural theme and recently culminated in providing the missing links in erstwhile mysteries of phosphoinositide-dependent signal transduction pathways. Finally, a short discussion is devoted to the developing field of protein-phospholipid interactions that influence cytoskeletal organisation.
Collapse
Affiliation(s)
- M J Bottomley
- Structural Biology Programme, EMBL, Heidelberg, Germany
| | | | | |
Collapse
|
1003
|
Abstract
Because of the small size of their genome, viral genes have been forerunners in helping us understand gene expression. It is also because of their small size that viruses have elaborated the amazing variety of strategies that enables them to produce all the proteins they require for their multiplication. As a consequence, many of the strategies of expression known to occur in cell systems were first demonstrated in viruses. The aim of this review is to highlight the contribution of viruses to our knowledge of cell processes.
Collapse
|
1004
|
Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J Neurosci 1998. [PMID: 9786987 DOI: 10.1523/jneurosci.18-21-08805.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a member of the membrane-associated guanylate kinase (MAGUK) family of PDZ domain-containing proteins. MAGUKs are widely expressed in the brain and are critical elements of the cytoskeleton and of certain synapses. In the ultrastructural studies that are described here, PSD-93 localizes to both postsynaptic densities and dendritic microtubules of cerebellar Purkinje neurons. The microtubule localization is paralleled by a high-affinity in vivo interaction of PSD-93 via its guanylate kinase (GK) domain with microtubule-associated protein 1A (MAP1A). GK domain truncations that mimic genetically identified mutations of a Drosophila MAGUK, discs-large, disrupt the GK/MAP-1A interaction. Additional biochemical experiments demonstrate that intact MAGUKs do not bind to MAP1A as effectively as do isolated GK domains. This appears to be attributable to an intramolecular inhibition of the GK domain by the PDZs, because GK binding activity of full-length MAGUKs is partially restored by a variety of PDZ ligands, including the C termini of NMDA receptor 2B, adenomatous polyposis coli (APC), and CRIPT. Beyond demonstrating a novel cytoskeletal link for PSD-93, these experiments support a model in which intramolecular interactions between the multiple domains of MAGUKs regulate intermolecular associations and thereby may play a role in the proper targeting and function of MAGUK proteins.
Collapse
|
1005
|
LaFevre-Bernt M, Sicheri F, Pico A, Porter M, Kuriyan J, Miller WT. Intramolecular regulatory interactions in the Src family kinase Hck probed by mutagenesis of a conserved tryptophan residue. J Biol Chem 1998; 273:32129-34. [PMID: 9822689 DOI: 10.1074/jbc.273.48.32129] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular interactions between the Src homology domains (SH2 and SH3) and the catalytic domains of Src family kinases result in repression of catalytic activity. The crystal structure of the Src family kinase Hck, with its regulatory domains intact, has been solved. It predicts that a conserved residue, Trp260, at the end of the linker between the SH2 and the catalytic domains plays an important role in regulation by the SH3 and SH2 domains. We have mutated this residue and compared the activities of C-terminally phosphorylated wild type Hck and W260A Hck. The W260A mutant has a higher specific activity than wild type Hck. The W260A mutant requires autophosphorylation at Tyr416 for full activity, but it is not activated by ligand binding to the SH3 or SH2 domains. This mutation also changes the accessibility of the SH2 and SH3 domains to their cognate peptide ligands. Our results indicate that Trp260 plays a critical role in the coupling of the regulatory domains to the catalytic domain, as well as in positioning the ligand binding surfaces.
Collapse
Affiliation(s)
- M LaFevre-Bernt
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
1006
|
Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Mol Cell Biol 1998; 18:6698-710. [PMID: 9774683 PMCID: PMC109253 DOI: 10.1128/mcb.18.11.6698] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.
Collapse
Affiliation(s)
- M Daub
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1007
|
Sieg DJ, Ilić D, Jones KC, Damsky CH, Hunter T, Schlaepfer DD. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO J 1998; 17:5933-47. [PMID: 9774338 PMCID: PMC1170921 DOI: 10.1093/emboj/17.20.5933] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.
Collapse
Affiliation(s)
- D J Sieg
- The Scripps Research Institute, Department of Immunology, IMM-26, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
1008
|
Ma YC, Huang XY. Identification of the binding site for Gqalpha on its effector Bruton's tyrosine kinase. Proc Natl Acad Sci U S A 1998; 95:12197-201. [PMID: 9770463 PMCID: PMC22808 DOI: 10.1073/pnas.95.21.12197] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqalpha binds directly to the nonreceptor Bruton's tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqalpha, not inactive GDP-bound Gqalpha, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqalpha also eliminate Btk stimulation by Gqalpha, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqalpha to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.
Collapse
Affiliation(s)
- Y C Ma
- Department of Physiology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
1009
|
Yi Q, Bystroff C, Rajagopal P, Klevit RE, Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol 1998; 283:293-300. [PMID: 9761691 DOI: 10.1006/jmbi.1998.2072] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies of the conformations of peptides spanning the length of the alpha-spectrin SH3 domain suggested that SH3 domains lack independently folding substructures. Using a local structure prediction method based on the I-sites library of sequence-structure motifs, we identified a seven residue peptide in the src SH3 domain predicted to adopt a native-like structure, a type II beta-turn bridging unpaired beta-strands, that was not contained intact in any of the SH3 domain peptides studied earlier. NMR characterization confirmed that the isolated peptide, FKKGERL, adopts a structure similar to that adopted in the native protein: the NOE and 3JNHalpha coupling constant patterns were indicative of a type II beta-turn, and NOEs between the Phe and the Leu side-chains suggest that they are juxtaposed as in the prediction and the native structure. These results support the idea that high-confidence I-sites predictions identify protein segments that are likely to form native-like structures early in folding.
Collapse
Affiliation(s)
- Q Yi
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
1010
|
Abstract
Phosphatidylinositol, a component of eukaryotic cell membranes, is unique among phospholipids in that its head group can be phosphorylated at multiple free hydroxyls. Several phosphorylated derivatives of phosphatidylinositol, collectively termed phosphoinositides, have been identified in eukaryotic cells from yeast to mammals. Phosphoinositides are involved in the regulation of diverse cellular processes, including proliferation, survival, cytoskeletal organization, vesicle trafficking, glucose transport, and platelet function. The enzymes that phosphorylate phosphatidylinositol and its derivatives are termed phosphoinositide kinases. Recent advances have challenged previous hypotheses about the substrate selectivity of different phosphoinositide kinase families. Here we re-examine the pathways of phosphoinositide synthesis and the enzymes involved.
Collapse
Affiliation(s)
- D A Fruman
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
1011
|
Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65-79. [PMID: 9763421 PMCID: PMC2132800 DOI: 10.1083/jcb.143.1.65] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Revised: 09/03/1998] [Indexed: 11/22/2022] Open
Abstract
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Delta, fab1(tsf), and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Delta mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.
Collapse
Affiliation(s)
- J D Gary
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668, USA
| | | | | | | | | |
Collapse
|
1012
|
Abstract
The protein tyrosine kinase Src is expressed widely in the central nervous system and is abundant in neurons. Over the past several years, evidence has accumulated showing that one function of Src is to regulate the activity of N-methyl-D-aspartate (NMDA) receptors and other ion channels. NMDA receptors are a principal subtype of glutamate receptor that mediates fast excitatory transmission at most central synapses. Recently it has been discovered that, by means of up-regulating the function of NMDA receptors, Src mediates the induction of long-term potentiation (LTP) in the CA1 region of the hippocampus. This finding led to a new model for induction of LTP whereby tetanic stimulation produces a rapid activation of Src, causing enhanced NMDA receptor function. This enhanced NMDA receptor function boosts the entry of Ca2+, which may thereby trigger the downstream signalling cascade, ending in potentiation of non-NMDA receptors. This functional role for Src may be important in physiological and pathophysiological processes in the central nervous system.
Collapse
Affiliation(s)
- M W Salter
- Division of Neuroscience, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
1013
|
Papin C, Denouel-Galy A, Laugier D, Calothy G, Eychène A. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 1998; 273:24939-47. [PMID: 9733801 DOI: 10.1074/jbc.273.38.24939] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the raf oncogene family encode serine/threonine protein kinases, which activate the mitogen-activated protein kinase kinase MEKs (MAPK or ERK kinases) through direct interaction and phosphorylation. Several recent studies have revealed interesting differences between two members of this family, Raf-1 and B-Raf, regarding their activation, regulation, and kinase activity. In particular, B-Raf was shown to display higher MEK kinase activity than Raf-1. By using both two-hybrid analysis and coimmunoprecipitation experiments, we demonstrate here that B-Raf also markedly differs from Raf-1 by a higher affinity for MEK. We previously reported that the B-raf gene encodes multiple protein isoforms resulting from complex alternative splicing of two exons (exons 8b and 10) located upstream of B-Raf kinase domain. In the present study, we show that these naturally occurring modifications within the protein sequence markedly modulate both the biochemical and oncogenic properties of B-Raf. The presence of exon 10 sequences enhances the affinity for MEK, the basal kinase activity, as well as the mitogenic and transforming properties of full-length B-Raf, whereas the presence of exon 8b sequences seems to have opposite effects. Therefore, alternative splicing represents a novel regulatory mechanism for a protein of the Raf family.
Collapse
Affiliation(s)
- C Papin
- Unité Mixte de Recherche 146 du CNRS, Institut Curie, Centre Universitaire, Laboratoire 110, 91405 Orsay Cédex, France
| | | | | | | | | |
Collapse
|
1014
|
Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 1998; 94:829-39. [PMID: 9753329 DOI: 10.1016/s0092-8674(00)81741-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphoinositide kinases play central roles in signal transduction by phosphorylating the inositol ring at specific positions. The structure of one such enzyme, type IIbeta phosphatidylinositol phosphate kinase, reveals a protein kinase ATP-binding core and demonstrates that all phosphoinositide kinases belong to one superfamily. The enzyme is a disc-shaped homodimer with a 33 x 48 A basic flat face that suggests an electrostatic mechanism for plasma membrane targeting. Conserved basic residues form a putative phosphatidylinositol phosphate specificity site. The substrate-binding site is open on one side, consistent with dual specificity for phosphatidylinositol 3- and 5-phosphates. A modeled complex with membrane-bound substrate and ATP shows how a phosphoinositide kinase can phosphorylate its substrate in situ at the membrane interface.
Collapse
Affiliation(s)
- V D Rao
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA
| | | | | | | | | |
Collapse
|
1015
|
Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Structure 1998; 6:1141-51. [PMID: 9753693 DOI: 10.1016/s0969-2126(98)00115-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND SH2 domains have a fundamental role in signal transduction. These domains interact with proteins containing phosphorylated tyrosine residues and, in doing so, mediate the interactions of proteins involved in tyrosine kinase signalling. The issue of specificity in SH2 domain interactions is therefore of great interest in terms of understanding tyrosine kinase signal-transduction pathways and in the discovery of drugs to inhibit them. Water molecules are found at the interfaces of many complexes, however, to date little attention has been paid to their role in dictating specificity. RESULTS Here we use a combination of nanoflow electrospray ionization mass spectrometry (ESI-MS), isothermal titration calorimetry and structural data to investigate the effect of water molecules in complexes formed between the SH2 domain of tyrosine kinase Src and tyrosyl phosphopeptides. Binding studies have been performed using a series of different peptides that were selected to allow changes in the water content at the complex interface and demonstrate changes in specificity. ESI-MS enables quantification of the number of water molecules that interact with a higher affinity than those generally found solvating the biomolecular complex. CONCLUSIONS Comparing the interactions of different peptides, we show that an intricate network of water molecules have a key role in dictating specificity. The use of mass spectrometry to quantify tightly bound water molecules may prove of general use in structural biology, where an independent determination of the water molecules associated with a structure would be advantageous. Furthermore, the ability to assess whether given water molecules are important in high-affinity binding could make this method a precious tool in drug design.
Collapse
Affiliation(s)
- E Chung
- Oxford Centre for Molecular Sciences University of Oxford New Chemistry Laboratory South Parks Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | | | | | |
Collapse
|
1016
|
Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94:625-34. [PMID: 9741627 DOI: 10.1016/s0092-8674(00)81604-9] [Citation(s) in RCA: 543] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caveolin-1 functions as a membrane adaptor to link the integrin alpha subunit to the tyrosine kinase Fyn. Upon integrin ligation, Fyn is activated and binds, via its SH3 domain, to Shc. Shc is subsequently phosphorylated at tyrosine 317 and recruits Grb2. This sequence of events is necessary to couple integrins to the Ras-ERK pathway and promote cell cycle progression. These findings reveal an unexpected function of caveolin-1 and Fyn in integrin signaling and anchorage-dependent cell growth.
Collapse
Affiliation(s)
- K K Wary
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
1017
|
Pisabarro MT, Serrano L, Wilmanns M. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. J Mol Biol 1998; 281:513-21. [PMID: 9698566 DOI: 10.1006/jmbi.1998.1932] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Abl-SH3 domain is implicated in negative regulation of the Abl kinase by mediating protein-protein interactions. High-affinity SH3 ligands could compete for these interactions and specifically activate the Abl kinase, providing control and a better understanding of the molecular interactions that underlie diseases where SH3 domains are involved. The p41 peptide (APSYSPPPPP) is a member of a group of peptide ligands designed to bind specifically the Abl-SH3 domain. It binds to Abl-SH3 with a Kd of 1.5 microM, whereas its affinity for the Fyn-SH3 domain is 273 microM. We have determined the crystal structure of the Abl-SH3 domain in complex with the high-affinity peptide ligand p41 at 1.6 A resolution. In the crystal structure, this peptide adopts a polyproline type II helix conformation through residue 5 to 10, and it binds in type I orientation to the Abl-SH3 domain. The tyrosine side-chain in position 4 of the peptide is hydrogen bonded to two residues in the RT-loop of the Abl-SH3 domain. The tight fit of this side-chain into the RT-loop pocket is enhanced by conformational adjustment of the main chain at position 5. The SH3 ligand peptides can be divided into two distinct parts. The N-terminal part binds to the SH3 domain in the region formed by the valley between the nSrc and RT-loops. It determines the specificity for different SH3 domains. The C-terminal part adopts a polyproline type II helix conformation. This binds to a well-conserved hydrophobic surface of the SH3 domain. Analysis of two "half"-peptides, corresponding to these ligand parts, shows that both are essential components for strong binding to the SH3 domains. The crystal structure of the Abl-SH3:p41 complex explains the high affinity and specificity of the p41 peptide towards the Abl-SH3 domain, and reveals principles that will be exploited for future design of small, high-affinity ligands to interfere efficiently with the in vivo regulation of Abl kinase activity.
Collapse
Affiliation(s)
- M T Pisabarro
- EMBL, Structures & Biocomputing, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| | | | | |
Collapse
|
1018
|
Affiliation(s)
- Mande Holford
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Tom W Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| |
Collapse
|
1019
|
Affiliation(s)
- A Weiss
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, 94143-0795, USA
| | | |
Collapse
|
1020
|
Lock P, Abram CL, Gibson T, Courtneidge SA. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J 1998; 17:4346-57. [PMID: 9687503 PMCID: PMC1170768 DOI: 10.1093/emboj/17.15.4346] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We describe a method for identifying tyrosine kinase substrates using anti-phosphotyrosine antibodies to screen tyrosine-phosphorylated cDNA expression libraries. Several potential Src substrates were identified including Fish, which has five SH3 domains and a recently discovered phox homology (PX) domain. Fish is tyrosine-phosphorylated in Src-transformed fibroblasts (suggesting that it is a target of Src in vivo) and in normal cells following treatment with several growth factors. Treatment of cells with cytochalasin D also resulted in rapid tyrosine phosphorylation of Fish, concomitant with activation of Src. These data suggest that Fish is involved in signalling by tyrosine kinases, and imply a specialized role in the actin cytoskeleton.
Collapse
Affiliation(s)
- P Lock
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
1021
|
Liu Y, Shah K, Yang F, Witucki L, Shokat KM. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src. Bioorg Med Chem 1998; 6:1219-26. [PMID: 9784863 DOI: 10.1016/s0968-0896(98)00099-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Engineered proteins with specificity for unnatural substrates or ligands are useful tools for studying or manipulating complex biological systems. We have engineered the prototypical tyrosine kinase v-Src to accept an unnatural ATP analogue N6-(benzyl) ATP in order to identify v-Src's direct cellular substrates. Here we have used molecular modeling to analyze the binding mode of N6-(benzyl) ATP. Based on this modeling we proposed that a new ATP analogue (N6-(2-phenethyl) ATP might be a better substrate than N6-(benzyl) ATP for the I338G mutant of v-Src. In fact the newly proposed analogue (N6-(2-phenethyl) ATP is a somewhat improved substrate for the engineered kinase (kcat = 0.6 min-1, KM = 8 microM). We also synthesized and screened three analogues of N6-(benzyl) ATP: N6-(2-methylbenzyl), ATP N6-(3-methylbenzyl), and ATP N6-(4-methylbenzyl) ATP to further probe the dimensions and shape of the introduced pocket. Results from screening newly synthesized ATP analogues agreed well with our modeling predictions. We conclude that rather than engineering a 'new' pocket by mutation of Ile 338 in v-Src to the smaller Ala or Gly residues, the I338G and I338A mutants possess a 'path' for the N6 substituent on ATP to gain access to an existing pocket in the ATP binding site. We expect to be able to extend the engineering of v-Src's ATP specificity to other kinase families based on our understanding of the binding modes of ATP analogues to engineered kinases.
Collapse
Affiliation(s)
- Y Liu
- Department of Chemistry, Princeton University, NJ 08544, USA
| | | | | | | | | |
Collapse
|
1022
|
Grantcharova VP, Riddle DS, Santiago JV, Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. NATURE STRUCTURAL BIOLOGY 1998; 5:714-20. [PMID: 9699636 DOI: 10.1038/1412] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental and theoretical studies on the folding of small proteins such as the chymotrypsin inhibitor 2 (CI-2) and the P22 Arc repressor suggest that the folding transition state is an expanded version of the native state with most interactions partially formed. Here we report that this picture does not hold generally: a hydrogen bond network involving two beta-turns and an adjacent hydrophobic cluster appear to be formed in the folding transition state of the src SH3 domain, while the remainder of the polypeptide chain is largely unstructured. Comparison with data on other small proteins suggests that this structural polarization is a consequence of the topology of the SH3 domain fold. The non-uniform distribution of structure in the folding transition state provides a challenging test for computational models of the folding process.
Collapse
Affiliation(s)
- V P Grantcharova
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
1023
|
Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE. Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 1998; 273:19914-21. [PMID: 9677430 DOI: 10.1074/jbc.273.31.19914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human CD2 is a 50-55-kDa cell surface receptor specifically expressed on the surface of T lymphocytes and NK cells. Stimulation of human peripheral blood T cells with mitogenic pairs of anti-CD2 monoclonal antibodies (mAbs) is sufficient to induce interleukin-2 production and T cell proliferation in the absence of an antigen-specific signal through the T cell receptor. CD2 has been shown previously to associate physically with the Src family protein-tyrosine kinases p56(lck) and p59(fyn). We now report that stimulation of T cells with mitogenic pairs of anti-CD2 mAbs enhanced the association of the Fyn polypeptide with the CD2 complex, whereas stimulation with single anti-CD2 mAb had minimal effect. Using glutathione S-transferase (GST) fusion proteins, we found that CD2 bound to the Src homology (SH) 3 domain of Fyn. Interestingly, the CD2-Fyn association was negatively regulated by the Fyn SH2 domain; CD2 bound poorly to GST fusion proteins expressing both the SH2 and SH3 domains of Fyn. However, the inhibitory effect of the Fyn SH2 domain on binding of the Fyn SH3 domain to CD2 was relieved by peptides containing a phosphorylated YEEI sequence that bound directly to the Fyn SH2 domain. In addition, we found that the ability of the Fyn SH2 domain to precipitate tyrosine-phosphorylated proteins, including the CD3zeta chain, was enhanced after T cell stimulation with mitogenic pairs of CD2 mAbs. Finally, overexpression of a mutated Fyn molecule, in which the ability of the Fyn SH2 domain to bind phosphotyrosine-containing proteins was abrogated, inhibited CD2-induced transcriptional activation of the nuclear factor of activated T cells (NFAT), suggesting a functional involvement of the Fyn SH2 domain in CD2-induced T cell signaling. We thus propose that stimulation through the CD2 receptor leads to the tyrosine phosphorylation of intracellular proteins, including CD3zeta itself, which in turn bind to the Fyn-SH2 domain, allowing the direct association of the Fyn SH3 domain with CD2 and the initiation of downstream signaling events.
Collapse
Affiliation(s)
- H Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Brigham and Woman's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
1024
|
Felberg J, Johnson P. Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions. J Biol Chem 1998; 273:17839-45. [PMID: 9651387 DOI: 10.1074/jbc.273.28.17839] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45 is a transmembrane two-domain tyrosine phosphatase required for efficient signal transduction initiated by lymphocyte antigen receptors. As with most transmembrane two-domain phosphatases, the role of the second phosphatase domain is unclear. In this study, recombinant CD45 cytoplasmic domain proteins purified from bacteria were used to evaluate the function of the individual phosphatase domains. A recombinant protein expressing the membrane-proximal region, first phosphatase domain, and spacer region of CD45 (rD1) was catalytically active and found to exist primarily as a dimer. In contrast to this, a recombinant protein expressing the spacer region, the second phosphatase domain and the carboxy tail of CD45 (rD2) existed as a monomer and had no catalytic activity against any of the substrates tested. Comparison of rD1 with the recombinant protein expressing the entire cytoplasmic domain of CD45 (rD1/D2) indicated that rD1/D2 was 2-3-fold more catalytically active, was more thermostable, and existed primarily as a monomer. Limited trypsin digestion of rD1/D2 provided evidence for a noncovalent association between an N-terminal 27-kDa fragment and a C-terminal 53-kDa fragment, suggesting an intramolecular interaction. Furthermore, rD1 was found to specifically associate with rD2 in an in vitro binding assay. Taken together, these data provide evidence for an intramolecular interaction occurring in the cytoplasmic domain of CD45. In the absence of the C-terminal region containing the second phosphatase domain, intermolecular interactions occur, resulting in dimer formation.
Collapse
Affiliation(s)
- J Felberg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
1025
|
Sicilia RJ, Hibbs ML, Bello PA, Bjorge JD, Fujita DJ, Stanley IJ, Dunn AR, Cheng HC. Common in vitro substrate specificity and differential Src homology 2 domain accessibility displayed by two members of the Src family of protein-tyrosine kinases, c-Src and Hck. J Biol Chem 1998; 273:16756-63. [PMID: 9642231 DOI: 10.1074/jbc.273.27.16756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hck and Src are members of the Src family of protein- tyrosine kinases that carry out distinct and overlapping functions in vivo (Lowell, C. A., Niwa, M., Soriano, P., and Varmus, H. E. (1996) Blood 87, 1780-1792). In an attempt to understand how Hck and Src can function both independently and in concert, we have compared 1) their in vitro substrate specificity and 2) the accessibility of their Src homology 2 (SH2) domain. Using several synthetic peptides, we have demonstrated that Hck and Src recognize similar structural features in the substrate peptides, suggesting that both kinases have the intrinsic ability to carry out overlapping cellular functions by phosphorylating similar cellular proteins in vivo. Using a phosphotyrosine-containing peptide that has previously been shown to bind the SH2 domain of Src family kinases with high affinity, we found that although Src could bind to the phosphopeptide, Hck showed no interaction. The inability of Hck to bind the phosphopeptide was not a result of a stable intramolecular interaction between its SH2 domain and C-terminal regulatory phosphotyrosine residue (Tyr-520), as most Hck molecules in the purified Hck preparation were not tyrosine-phosphorylated. In contrast to intact Hck, a recombinant truncation analog of Hck was able to bind the phosphopeptide with an affinity similar to that of the Src SH2 domain, suggesting that conformational constraints are imposed on intact Hck that limit accessibility of its SH2 domain to the phosphopeptide. Furthermore, the difference in SH2 domain accessibility is a potential mechanism that enables Src and Hck to perform their respective unique functions by 1) targeting them to different subcellular compartments, whereupon they phosphorylate different cellular proteins, and/or 2) facilitating direct binding to their cellular substrates.
Collapse
Affiliation(s)
- R J Sicilia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
1026
|
Khan IH, Sawai ET, Antonio E, Weber CJ, Mandell CP, Montbriand P, Luciw PA. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. J Virol 1998; 72:5820-30. [PMID: 9621042 PMCID: PMC110384 DOI: 10.1128/jvi.72.7.5820-5830.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 03/26/1998] [Indexed: 02/07/2023] Open
Abstract
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) is dispensable for viral replication in T-cell lines; however, it is essential for high virus loads and progression to simian AIDS (SAIDS) in SIV-infected adult rhesus macaques. Nef proteins from HIV type 1 (HIV-1), HIV-2, and SIV contain a proline-Xaa-Xaa-proline (PxxP) motif. The region of Nef with this motif is similar to the Src homology region 3 (SH3) ligand domain found in many cell signaling proteins. In virus-infected lymphoid cells, Nef interacts with a cellular serine/threonine kinase, designated Nef-associated kinase (NAK). In this study, analysis of viral clones containing point mutations in the nef gene of the pathogenic clone SIVmac239 revealed that several strictly conserved residues in the PxxP region were essential for Nef-NAK interaction. The results of this analysis of Nef mutations in in vitro kinase assays indicated that the PxxP region in SIV Nef was strikingly similar to the consensus sequence for SH3 ligand domains possessing the minus orientation. To test the significance of the PxxP motif of Nef for viral pathogenesis, each proline was mutated to an alanine to produce the viral clone SIVmac239-P104A/P107A. This clone, expressing Nef that does not associate with NAK, was inoculated into seven juvenile rhesus macaques. In vitro kinase assays were performed on virus recovered from each animal; the ability of Nef to associate with NAK was restored in five of these animals as early as 8 weeks after infection. Analysis of nef genes from these viruses revealed patterns of genotypic reversion in the mutated PxxP motif. These revertant genotypes, which included a second-site suppressor mutation, restored the ability of Nef to interact with NAK. Additionally, the proportion of revertant viruses increased progressively during the course of infection in these animals, and two of these animals developed fatal SAIDS. Taken together, these results demonstrated that in vivo selection for the ability of SIV Nef to associate with NAK was correlated with the induction of SAIDS. Accordingly, these studies implicate a role for the conserved SH3 ligand domain for Nef function in virally induced immunodeficiency.
Collapse
Affiliation(s)
- I H Khan
- Department of Medical Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
1027
|
Lancaster B, Rogers MV. A peptide activator of endogenous tyrosine kinase enhances synaptic currents mediated by NMDA receptors. Eur J Neurosci 1998; 10:2302-8. [PMID: 9749758 DOI: 10.1046/j.1460-9568.1998.00241.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartic acid (NMDA) receptor currents in cultured cells or expression systems are increased by the addition of purified tyrosine kinases. However, there is no direct demonstration of this effect at NMDA receptors in intact synapses of rat brain slices. Transmitters which might be used to activate tyrosine kinases in situ are unlikely to have a sufficiently selective action to allow a clear interpretation of their effects. Therefore, we used a phosphotyrosine-containing decapeptide which can be included in recording electrodes to activate postsynaptic src-family tyrosine kinases. This peptide enhanced NMDA responses in dissociated hippocampal CA1 neurons. These effects were not reproduced by a non-phosphorylated peptide or a scrambled-sequence phosphopeptide. The enhancement of NMDA responses was blocked by a tyrosine kinase inhibitor. In brain slices the phosphopeptide, but not control peptide, increased NMDA receptor-mediated synaptic current indicating that endogenous tyrosine kinase can upregulate the response of NMDA receptors at glutamatergic synapses in the hippocampus.
Collapse
Affiliation(s)
- B Lancaster
- Cruciform Project, University College London, UK.
| | | |
Collapse
|
1028
|
Ganju RK, Munshi N, Nair BC, Liu ZY, Gill P, Groopman JE. Human immunodeficiency virus tat modulates the Flk-1/KDR receptor, mitogen-activated protein kinases, and components of focal adhesion in Kaposi's sarcoma cells. J Virol 1998; 72:6131-7. [PMID: 9621077 PMCID: PMC110419 DOI: 10.1128/jvi.72.7.6131-6137.1998] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma (KS) spindle cell growth and spread have been reported to be modulated by various cytokines as well as the human immunodeficiency virus (HIV) gene product Tat. Recently, HIV-1 Tat has been shown to act like a cytokine and bind to the Flk-1/KDR receptor for the vascular endothelial growth factor A (VEGF-A), which is expressed by KS cells. We have characterized signal transduction pathways stimulated by HIV-1 Tat upon its binding to surface receptors on KS cells. We observed that stimulation in KS 38 spindle cells resulted in tyrosine phosphorylation and activation of the Flk-1/KDR receptor. We also report that HIV-1 Tat treatment enhanced the phosphorylation and association of proteins found in focal adhesions, such as the related adhesion focal tyrosine kinase RAFTK, paxillin, and p130(cas). Further characterization revealed the activation of mitogen-activated protein kinase, c-Jun amino-terminal kinase (JNK), and Src kinase. HIV-1 Tat contains a basic domain which can interact with growth factor tyrosine kinase receptors and a classical RGD sequence which may bind to and activate the surface integrin receptors for fibronectin and vitronectin. We observed that stimulation of KS cells with basic as well as RGD sequence-containing Tat peptides resulted in enhanced phosphorylation of RAFTK and activation of MAP kinase. These studies reveal that Tat stimulation activates a number of signal transduction pathways that are associated with cell growth and migration.
Collapse
Affiliation(s)
- R K Ganju
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
1029
|
Rivers A, Gietzen KF, Vielhaber E, Virshup DM. Regulation of casein kinase I epsilon and casein kinase I delta by an in vivo futile phosphorylation cycle. J Biol Chem 1998; 273:15980-4. [PMID: 9632646 DOI: 10.1074/jbc.273.26.15980] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Casein kinase I delta (CKIdelta) and casein kinase I epsilon (CKIepsilon) have been implicated in the response to DNA damage, but the understanding of how these kinases are regulated remains incomplete. In vitro, these kinases rapidly autophosphorylate, predominantly on their carboxyl-terminal extensions, and this autophosphorylation markedly inhibits kinase activity (Cegielska, A., Gietzen, K. F., Rivers, A., and Virshup, D. M. (1998) J. Biol. Chem. 273, 1357-1364). However, we now report that while these kinases are able to autophosphorylate in vivo, they are actively maintained in the dephosphorylated, active state by cellular protein phosphatases. Treatment of cells with the cell-permeable serine/threonine phosphatase inhibitors okadaic acid or calyculin A leads to rapid increases in kinase intramolecular autophosphorylation. Since CKI autophosphorylation decreases kinase activity, this dynamic autophosphorylation/dephosphorylation cycle provides a mechanism for kinase regulation in vivo.
Collapse
Affiliation(s)
- A Rivers
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
1030
|
Johnson LN, Lowe ED, Noble ME, Owen DJ. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 1998; 430:1-11. [PMID: 9678585 DOI: 10.1016/s0014-5793(98)00606-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinases catalyse phospho transfer reactions from ATP to serine, threonine or tyrosine residues in target substrates and provide key mechanisms for control of cellular signalling processes. The crystal structures of 12 protein kinases are now known. These include structures of kinases in the active state in ternary complexes with ATP (or analogues) and inhibitor or peptide substrates (e.g. cyclic AMP dependent protein kinase, phosphorylase kinase and insulin receptor tyrosine kinase); kinases in both active and inactive states (e.g. CDK2/cyclin A, insulin receptor tyrosine kinase and MAPK); kinases in the active state (e.g. casein kinase 1, Lck); and kinases in inactive states (e.g. twitchin kinase, calcium calmodulin kinase 1, FGF receptor kinase, c-Src and Hck). This paper summarises the detailed information obtained with active phosphorylase kinase ternary complex and reviews the results with reference to other kinase structures for insights into mechanisms for substrate recognition and control.
Collapse
Affiliation(s)
- L N Johnson
- Laboratory of Molecular Biophysics and Oxford Centre for Molecular Sciences, University of Oxford, UK.
| | | | | | | |
Collapse
|
1031
|
Pellicena P, Stowell KR, Miller WT. Enhanced phosphorylation of Src family kinase substrates containing SH2 domain binding sites. J Biol Chem 1998; 273:15325-8. [PMID: 9624111 DOI: 10.1074/jbc.273.25.15325] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family protein-tyrosine kinases possess several modular domains important for regulation of catalytic activity and interaction with potential substrates. Here, we explore interactions between the SH2 domain of Hck, a Src family kinase, and substrates containing SH2 domain-binding sites. We have synthesized a series of peptide substrates containing a high affinity SH2 domain binding site, (phospho)Tyr-Glu-Glu-Ile. We show that the presence of this sequence in a peptide results in a dramatic increase in the phosphorylation rate of a second tyrosine located at the N terminus. Enhanced phosphorylation is not a consequence of stimulation of enzymatic activity by C-terminal tail displacement but is imparted instead by a 10-fold reduction in the Km of the phosphotyrosine-containing peptide when compared with a control. The isolated catalytic domain of the non-receptor tyrosine kinase Abl does not show a preference for the pYEEI motif-containing peptide; however, the preference is restored when the SH2 domain of Src is introduced into Abl. Furthermore, enhanced phosphorylation is dependent on the distance between SH2 domain-binding site and phosphorylatable tyrosine, with the minimum distance requirement being seven amino acids. Reversing the orientation of the pYEEI motif with respect to the substrate sequence decreases phosphorylation by down-regulated Hck, but both orientations are utilized equally well by activated Hck. We discuss the possible implications of these results for processive phosphorylation of substrates in vivo by Src family kinases.
Collapse
Affiliation(s)
- P Pellicena
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
1032
|
Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:369-81. [PMID: 9618763 DOI: 10.1007/bf00792597] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C I Smith
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Muir TW, Sondhi D, Cole PA. Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 1998; 95:6705-10. [PMID: 9618476 PMCID: PMC22605 DOI: 10.1073/pnas.95.12.6705] [Citation(s) in RCA: 919] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A protein semisynthesis method-expressed protein ligation-is described that involves the chemoselective addition of a peptide to a recombinant protein. This method was used to ligate a phosphotyrosine peptide to the C terminus of the protein tyrosine kinase C-terminal Src kinase (Csk). By intercepting a thioester generated in the recombinant protein with an N-terminal cysteine containing synthetic peptide, near quantitative chemical ligation of the peptide to the protein was achieved. The semisynthetic tail-phosphorylated Csk showed evidence of an intramolecular phosphotyrosine-Src homology 2 interaction and an unexpected increase in catalytic phosphoryl transfer efficiency toward a physiologically relevant substrate compared with the non-tail-phosphorylated control. This work illustrates that expressed protein ligation is a simple and powerful new method in protein engineering to introduce sequences of unnatural amino acids, posttranslational modifications, and biophysical probes into proteins of any size.
Collapse
Affiliation(s)
- T W Muir
- Laboratory of Synthetic Protein Chemistry, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
1034
|
Lazarus AH, Joy T, Crow AR. Analysis of transmembrane signalling and T cell defects associated with idiopathic thrombocytopenic purpura (ITP). ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1998; 424:21-5. [PMID: 9736214 DOI: 10.1111/j.1651-2227.1998.tb01229.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult chronic idiopathic thrombocytopenic purpura (ITP) is an autoimmune disease characterized by production of autoreactive antibodies to platelet antigens. It is now becoming clear that autoantibody production, in general, is regulated by T helper (Th) cells. Several recent studies have examined potential defects in T cell function in this disease and have demonstrated that patients with ITP possess abnormal lymphocyte activation and Th1/Th2-mediated cytokine production. Although the underlying cause(s) of aberrant T cell function in this disease are not known, studies from other models of autoimmune disease indicate that defects in T cell transmembrane signalling can be causally linked to abnormal T cell activation and cytokine production. This review will present some of the major T cell signalling pathways and discuss how altered T cell signalling may be linked to autoimmunity with an emphasis on ITP. Recent preliminary findings of a potential defect in the signal transduction apparatus in lymphocytes from three patients with ITP will also be presented.
Collapse
Affiliation(s)
- A H Lazarus
- St Michael's Hospital, Department of Medicine, University of Toronto and The Canadian Red Cross Society Blood Services Toronto Centre, Ontario
| | | | | |
Collapse
|
1035
|
Lutzke RA, Plasterk RH. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. J Virol 1998; 72:4841-8. [PMID: 9573250 PMCID: PMC110031 DOI: 10.1128/jvi.72.6.4841-4848.1998] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220-270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220-270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220-270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3' processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN.
Collapse
Affiliation(s)
- R A Lutzke
- Division of Molecular Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
1036
|
Chang BY, Conroy KB, Machleder EM, Cartwright CA. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 1998; 18:3245-56. [PMID: 9584165 PMCID: PMC108906 DOI: 10.1128/mcb.18.6.3245] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1997] [Accepted: 03/02/1998] [Indexed: 02/06/2023] Open
Abstract
To isolate and characterize proteins that interact with the unique domain and SH3 and SH2 domains of Src and potentially regulate Src activity, we used the yeast two-hybrid assay to screen a human lung fibroblast cDNA library. We identified RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, as a Src-binding protein. Using GST-Src fusion proteins, we determined that RACK1 binds to the SH2 domain of Src. Coimmunoprecipitation of Src and RACK1 was demonstrated with NIH 3T3 cells. Purified GST-RACK1 inhibited the in vitro kinase activity of Src in a concentration-dependent manner. GST-RACK1 (2 microM) inhibited the activities of purified Src and Lck tyrosine kinases by 40 to 50% but did not inhibit the activities of three serine/threonine kinases that we tested. Tyrosine phosphorylation on many cellular proteins decreased in 293T cells that transiently overexpressed RACK1. Src activity and cell growth rates decreased by 40 to 50% in NIH 3T3 cells that stably overexpressed RACK1. Flow cytometric analyses revealed that RACK1-overexpressing cells do not show an increased rate of necrosis or apoptosis but do spend significantly more time in G0/G1 than do wild-type cells. Prolongation of G0/G1 could account for the increased doubling time of RACK1-overexpressing cells. We suggest that RACK1 exerts its effect on the NIH 3T3 cell cycle in part by inhibiting Src activity.
Collapse
Affiliation(s)
- B Y Chang
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
1037
|
Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem 1998; 273:11987-90. [PMID: 9575136 DOI: 10.1074/jbc.273.20.11987] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- S R Hubbard
- Department of Pharmacology and Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
1038
|
Williams JC, Wierenga RK, Saraste M. Insights into Src kinase functions: structural comparisons. Trends Biochem Sci 1998; 23:179-84. [PMID: 9612082 DOI: 10.1016/s0968-0004(98)01202-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent structures of Src tyrosine kinases reveal complex mechanisms for regulation of enzymatic activity. The regulatory SH3 and SH2 domains bind to the back of the catalytic kinase domain via a linker region that joins the SH2 domain to the catalytic domain. Members of a subgroup of the Src kinase family show distinct features in this linker and in the loops that interact with it. Hydrophobicity of key residues in this region is important for intramolecular regulation. The kinases Abl, Btk and Csk seem to have the same molecular architecture as Src. Structural comparisons between serine/threonine and tyrosine kinases indicate a specific twisting mechanism involving the N- and C-terminal lobes of the catalytic domain. This motion could provide insights into the various mechanisms used to regulate kinase activity.
Collapse
Affiliation(s)
- J C Williams
- Howard Hughes Medical Institute, Dept of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA.
| | | | | |
Collapse
|
1039
|
Wallace MJ, Fladd C, Batt J, Rotin D. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol Cell Biol 1998; 18:2608-16. [PMID: 9566880 PMCID: PMC110640 DOI: 10.1128/mcb.18.5.2608] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTP delta, and PTP sigma, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTP sigma (PTP sigma-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTP delta (PTP delta-D2) as an interactor of PTP sigma-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTP sigma-D1 and PTP delta-D2, an association which required the presence of the wedge sequence in PTP sigma-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTP alpha. This interaction was not reciprocal, as PTP delta-D1 did not bind PTP sigma-D2. Addition of a glutathione S-transferase (GST)-PTP delta-D2 fusion protein (but not GST alone) to GST-PTP sigma-D1 led to approximately 50% inhibition of the catalytic activity of PTP sigma-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTP sigma-D1 activity was obtained with coimmunoprecipitated PTP delta-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTP sigma (PTP sigma-D2), very similar in sequence to PTP delta-D2, bound poorly to PTP sigma-D1. PTP delta-D1 and LAR-D1 were also able to bind PTP delta-D2, but more weakly than PTP sigma-D1, with a binding hierarchy of PTP sigma-D1 >> PTP delta-D1 > LAR-D1. These results suggest that association between PTP sigma-D1 and PTP delta-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.
Collapse
Affiliation(s)
- M J Wallace
- Division of Respiratory Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
1040
|
Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Electrophoresis 1998; 19:809-17. [PMID: 9629920 DOI: 10.1002/elps.1150190535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mixed lineage kinase 2 (MLK2) protein contains several structurally distinct domains including an src homology (SH) 3 domain, a kinase catalytic domain, two leucine zippers, a basic motif and a cdc42/rac interactive binding motif. These domains have been recognized mainly for their involvement in protein-protein interactions in signal transduction networks. The SH3 domain in particular has been implicated in control of signaling events. To identify proteins that interact with MLK2, the N-terminal 100 amino acids, including the SH3 domain, were expressed as a glutathione S-transferase (GST) fusion protein. This fusion protein (MLK2N) was used as an affinity ligand to isolate binding proteins from lysates of 35S-radiolabeled MDA-MB231 breast carcinoma cells. When the radiolabeled binding proteins were subjected to 2-DE, proteins of Mr 55,000, 31,500 and 34,000 bound consistently to the MLK2N domain fusion protein, but not to the GST control. Two of the binding proteins were isolated from whole cell lysates by preparative 2-DE and subjected to in-gel digestion and capillary or microbore reverse-phase high performance liquid chromatography (RP-HPLC). Resultant peptides were analyzed by peptide mass fingerprinting, N-terminal Edman degradation or tandem mass spectrometry. The 55,000 protein was identified as the cytoskeletal protein, beta-tubulin, and this was verified by immunoblotting of proteins in the MLK2N binding fraction with anti-tubulin antibodies. The 31,500 protein has been identified as prohibitin, a protein that has been implicated in both signal transduction and cell cycle arrest.
Collapse
Affiliation(s)
- R K Rasmussen
- Trescowthick Research Center, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
1041
|
Okada S, Matsuda M, Anafi M, Pawson T, Pessin JE. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. EMBO J 1998; 17:2554-65. [PMID: 9564038 PMCID: PMC1170597 DOI: 10.1093/emboj/17.9.2554] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin stimulation of Chinese hamster ovary cells expressing the human insulin receptor resulted in a time-dependent decrease in the amount of GTP bound to Rap1. The inactivation of Rap1 was associated with an insulin-stimulated decrease in the amount of Rap1 that was bound to Raf1. In parallel with the dissociation of Raf1 from Rap1, there was an increased association of Raf1 with Ras. Concomitant with the inactivation of Rap1 and decrease in Rap1-Raf1 binding, we observed a rapid insulin-stimulated dissociation of the CrkII-C3G complex which occurred in a Ras-independent manner. The dissociation of the CrkII-C3G was recapitulated in vitro using a GST-C3G fusion protein to precipitate CrkII from whole cell detergent extracts. The association of GST-C3G with CrkII was also dose dependent and demonstrated that insulin reduced the affinity of CrkII for C3G without any effect on CrkII protein levels. Furthermore, the reduction in CrkII binding affinity was reversible by tyrosine dephosphorylation with PTP1B and by mutation of Tyr221 to phenylalanine. Together, these data demonstrate that insulin treatment results in the de-repression of Rap1 inhibitory function on the Raf1 kinase concomitant with Ras activation and stimulation of the downstream Raf1/MEK/ERK cascade.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
1042
|
Affiliation(s)
- H Yakura
- Dept of Microbiology and Immunology, Tokyo Metropolitan Institute for Neuroscience, Japan
| |
Collapse
|
1043
|
Schlaepfer DD, Jones KC, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998; 18:2571-85. [PMID: 9566877 PMCID: PMC110637 DOI: 10.1128/mcb.18.5.2571] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1997] [Accepted: 02/05/1998] [Indexed: 02/07/2023] Open
Abstract
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.
Collapse
Affiliation(s)
- D D Schlaepfer
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
1044
|
Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci 1998; 353:583-605. [PMID: 9602534 PMCID: PMC1692245 DOI: 10.1098/rstb.1998.0228] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible phosphorylation of tyrosines in proteins plays a key role in regulating many different processes in eukaryotic organisms, such as growth control, cell cycle control, differentiation cell shape and movement, gene transcription, synaptic transmission, and insulin action. Phosphorylation of proteins is brought about by enzymes called protein-tyrosine kinases that add phosphate to specific tyrosines in target proteins; phosphate is removed from phosphorylated tyrosines by enzymes called protein-tyrosine phosphatases. Phosphorylated tyrosines are recognized by specialized binding domains on other proteins, and such interactions are used to initiate intracellular signaling pathways. Currently, more than 95 protein-tyrosine kinases and more than 55 protein-tyrosine phosphatase genes are known in Homo sapiens. Aberrant tyrosine phosphorylation is a hallmark of many types of cancer and other human diseases. Drugs are being developed that antagonize the responsible protein-tyrosine kinases and phosphatases in order to combat these diseases.
Collapse
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
1045
|
Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol 1998; 278:253-65. [PMID: 9571048 DOI: 10.1006/jmbi.1998.1690] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SH3 domains are protein binding domains that occur widely among signal transduction proteins. Here, we present the NMR-determined solution structure of the SH3 domain from the cytoplasmic protein tyrosine kinase, Hck. Hck is involved in a number of cell signal transduction pathways, frequently in pathways associated with immune response. SH3 domains bind proteins via a left-handed polyproline type II helix on the target protein. We have assessed the structural impact of binding to a ligand through addition of a peptide corresponding to a proline-rich region of a Hck target, the GTPase activating protein of the Ras pathway. Ligand binding effects small structural changes and stabilizes the SH3 domain structure. Also, we have compared the solution structure of the Hck SH3 domain to the crystal structure of Hck, in which the SH3 domain exhibits an intramolecular binding to an interdomain linker region. These structures are interpreted as the apo- and holo- forms of the Hck SH3 domain.
Collapse
Affiliation(s)
- D A Horita
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD, 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
1046
|
Matsushita M, Yamadori T, Kato S, Takemoto Y, Inazawa J, Baba Y, Hashimoto S, Sekine S, Arai S, Kunikata T, Kurimoto M, Kishimoto T, Tsukada S. Identification and characterization of a novel SH3-domain binding protein, Sab, which preferentially associates with Bruton's tyrosine kinase (BtK). Biochem Biophys Res Commun 1998; 245:337-43. [PMID: 9571151 DOI: 10.1006/bbrc.1998.8420] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein interaction cloning method was used to identify a novel molecule, Sab, which binds to the SH3 domain of Bruton's tyrosine kinase (Btk), the deficient cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia and murine X-linked immunodeficiency. Immunoprecipitation using the anti-Sab antibody identified the protein product of the gene as a 70 kDa molecule. While Sab does not have a proline-rich sequence, it was shown to bind to Btk through the commonly conserved structure among SH3 domains. Remarkably, Sab exhibited a high preference for binding to Btk rather than to other cytoplasmic tyrosine kinases, which suggests a unique role of Sab in the Btk signal transduction pathway.
Collapse
Affiliation(s)
- M Matsushita
- Department of Medicine III, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1047
|
Hartson SD, Ottinger EA, Huang W, Barany G, Burn P, Matts RL. Modular folding and evidence for phosphorylation-induced stabilization of an hsp90-dependent kinase. J Biol Chem 1998; 273:8475-82. [PMID: 9525961 DOI: 10.1074/jbc.273.14.8475] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The de novo folding of the individual domains of the src family kinase p56(lck) was examined within the context of full-length p56(lck) molecules produced in rabbit reticulocyte lysate containing active chaperone machinery. The catalytic domain required geldanamycin-inhibitable heat shock protein 90 (hsp90) function to achieve its active protease-resistant conformation, but the src homology 2 (SH2) domain acquired phosphopeptide-binding competence independently of hsp90 function. The SH2 domain of hsp90-bound p56(lck) was folded and functional. In addition to the facilitation by hsp90 of kinase biogenesis, a conditional role in maintenance folding could be demonstrated; although wild type p56(lck) molecules with a negative-regulatory C-terminal tyrosine matured to a nearly hsp90-independent state, p56(lck) molecules with a mutated C-terminal tyrosine continued to require hsp90-mediated maintenance. De novo folding could be distinguished from maintenance folding on the basis of proteolytic fingerprints and the effects of different temperatures on folding behavior. Results indicate that during p56(lck) biogenesis, the SH2 domain rapidly folds independently of hsp90 function, followed by the slower hsp90-dependent folding of the catalytic domain and suggest the final stabilization of p56(lck) structure by phosphorylation-mediated interdomain interactions.
Collapse
Affiliation(s)
- S D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | | | | | | | |
Collapse
|
1048
|
Taylor JM, Hildebrand JD, Mack CP, Cox ME, Parsons JT. Characterization of graf, the GTPase-activating protein for rho associated with focal adhesion kinase. Phosphorylation and possible regulation by mitogen-activated protein kinase. J Biol Chem 1998; 273:8063-70. [PMID: 9525907 DOI: 10.1074/jbc.273.14.8063] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Graf is a GTPase-activating protein for Rho that interacts with focal adhesion kinase and co-localizes with the actin cytoskeleton (Hildebrand, J. D., Taylor, J. M. and Parsons, J. T. (1996) Mol. Cell. Biol. 16, 3169-3178). We examined the expression and regulation of Graf as a prelude to understanding the role of Graf in mediating signal transduction in vivo. We demonstrated that Graf is a ubiquitously expressed 95-kDa protein with high levels observed in heart and brain and cells derived from these tissues. Stimulation of PC12 cells with epidermal growth factor or nerve growth factor induced a phosphatase-reversible mobility shift upon gel electrophoresis, indicative of phosphorylation. In vitro, purified mitogen-activated protein (MAP) kinase catalyzed the phosphorylation of Graf on serine 510, suggesting that Graf phosphorylation may be mediated through MAP kinase signaling. In addition, the mutation of serine 510 to alanine inhibited the epidermal growth factor-induced mobility shift of mutant Graf protein in vivo, consistent with serine 510 being the site of in vivo phosphorylation. Based on these data we suggest that phosphorylation of Graf by MAP kinase or related kinases may be a mechanism by which growth factor signaling modulates Rho-mediated cytoskeletal changes in PC12 and perhaps other cells.
Collapse
Affiliation(s)
- J M Taylor
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
1049
|
Lai JH, Marsilje TH, Choi S, Nair SA, Hangauer DG. The design, synthesis and activity of pentapeptide pp60c-src inhibitors containing L-phosphotyrosine mimics. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:271-81. [PMID: 9560002 DOI: 10.1111/j.1399-3011.1998.tb00424.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Efficient syntheses of 4-(R,S-hydroxyphosphonomethyl)-L-phenylalanine and 4-carboxy-L-phenylalanine within the context of the pentapeptide Ac-Ile-X-Gly-Glu-Phe-NH2 (wherein X = the unnatural amino acid) illustrate the use of a divergent synthetic strategy from an advanced common peptide intermediate to more readily access peptide-based tyrosine kinase inhibitors. The key intermediate, Ac-Ile-Phe(4-formyl)-Gly-Glu(O-tBu)-Phe-NH2, was synthesized by a facile palladium-catalyzed carbonylation of Ac-Ile-Phe(4-iodo)-Gly-Glu(O-tBu)-Phe-NH2. Oxidation of Ac-Ile-Phe(4-formyl)-Gly-Glu(O-tBu)-Phe-NH2 with tetrabutylammonium permanganate or addition of di-t-butylphosphite, both followed by trifluoroacetic acid deprotection, gave the target pentapeptide inhibitors wherein X = 4-carboxy-L-phenylalanine or 4-(R,S-hydroxyphosphonomethyl)-L-phenylalanine, respectively. These two peptides gave somewhat more potent inhibition of the tyrosine kinase pp60c-src than the corresponding pentapeptide wherein X = L-phenylalanine, demonstrating that appended functionalities at the 4-position are accepted and can enhance binding through added interactions within the catalytic region of the active site.
Collapse
Affiliation(s)
- J H Lai
- Department of Medicinal Chemistry, School of Pharmacy, State University of New York at Buffalo, USA.
| | | | | | | | | |
Collapse
|
1050
|
Camarero JA, Cotton GJ, Adeva A, Muir TW. Chemical ligation of unprotected peptides directly from a solid support. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:303-16. [PMID: 9560006 DOI: 10.1111/j.1399-3011.1998.tb00428.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article we describe a new, convenient procedure to carry out intramolecular (cyclization) and intermolecular native chemical ligations of unprotected peptides directly from a solid support. Our solid-phase ligation approach eliminates the need to manipulate peptide (alpha)thioacid and peptide (alpha)thioester intermediates in aqueous solution before the ligation step, thereby leading to a reduction in handling losses and significantly increasing the overall efficiency of the chemical ligation strategy. A key step in our ligation scheme is the ability to generate fully unprotected peptides tethered to a solid support through an (alpha)thioester linkage. This can be achieved efficiently using optimized Boc-solid-phase peptide synthesis on a 3-mercaptopropionamide-polyethylene glycol-poly-(N,N-dimethylacrylamide) copolymer support (HS-PEGA). Once the synthesis is complete, the fully protected peptide (alpha)thioester resin is treated with HF to give the corresponding fully unprotected peptide (alpha)thioester resin. Using this procedure several polypeptides ranging from 15 to 47 residues were synthesized successfully. These peptide-resins were then used to perform both intramolecular (head-to-tail cyclizations) and intermolecular solid-phase ligations. The intramolecular solid-phase ligations proceeded much faster than their intermolecular counterparts, but in both cases the reactions were observed to be remarkably clean. The presence of aromatic thiol cofactors significantly accelerated the relatively slow intermolecular ligations. This novel methodology was then extended to provide a general method for performing sequential intermolecular ligations, allowing easy access to much larger polypeptide and protein systems.
Collapse
Affiliation(s)
- J A Camarero
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|