1051
|
Abstract
Metabolic disease is a well established major public health problem in the adult population. However, the origins of metabolic disease of adults can begin early in life. In addition, in recent years, there has been a disturbing increase in the number of children developing the full presentation of metabolic disease as a result of the increase in obesity in this population. Therefore, pediatricians and pediatric physician-scientists are essential both for instituting preventive measures and developing new therapies. This challenge has been met with a substantial increase in research into both the clinical and basic science of metabolism. A connection between glucocorticoids and the origins of metabolic disease is one enticing clue because of the clinical similarity between patients with glucocorticoid excess and those with metabolic disease. This perspective highlights one series of investigations that has advanced our understanding of the development of metabolic disease. In this work, a unifying link was found by investigating the role of glucocorticoids on cell fate and differentiation of mesenchymal stem cells. We conclude that elucidating the mechanisms by which glucocorticoids modulate cell fate decisions holds promise for developing new therapies and preventative measures.
Collapse
Affiliation(s)
- Brian J. Feldman
- Departments of Pediatrics and Cellular and Molecular Pharmacology, University of California, San Francisco San Francisco, CA 94143
| |
Collapse
|
1052
|
Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 2009; 24:50-61. [PMID: 18715135 PMCID: PMC2689082 DOI: 10.1359/jbmr.080817] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined by their ability to self-renew and differentiate into the cells that form mesodermal tissues such as bone and fat. Low magnitude mechanical signals (LMMS) have been shown to be anabolic to bone and have been recently reported to suppress the development of fat in normal animals fed a regular diet. Using male C57BL/6J mice, the ability of LMMS (0.2g, 90-Hz signal applied for 15 min/d, 5 d/wk) to simultaneously promote bone formation and prevent diet-induced obesity was correlated to mechanical influences on the molecular environment of the bone marrow, as indicated by the population dynamics and lineage commitment of MSCs. Six weeks of LMMS increased the overall marrow-based stem cell population by 37% and the number of MSCs by 46%. Concomitant with the increase in stem cell number, the differentiation potential of MSCs in the bone marrow was biased toward osteoblastic and against adipogenic differentiation, as reflected by upregulation of the transcription factor Runx2 by 72% and downregulation of PPARgamma by 27%. The phenotypic impact of LMMS on MSC lineage determination was evident at 14 wk, where visceral adipose tissue formation was suppressed by 28%, whereas trabecular bone volume fraction in the tibia was increased by 11%. Translating this to the clinic, a 1-yr trial in young women (15-20 yr; n = 48) with osteopenia showed that LMMS increased trabecular bone in the spine and kept visceral fat at baseline levels, whereas control subjects showed no change in BMD, yet an increase in visceral fat. Mechanical modulation of stem cell proliferation and differentiation indicates a unique therapeutic target to aid in tissue regeneration and repair and may represent the basis of a nonpharmacologic strategy to simultaneously prevent obesity and osteoporosis.
Collapse
|
1053
|
Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009; 136:309-319.e9. [PMID: 19022256 DOI: 10.1053/j.gastro.2008.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The pancreatic mass is determined by the coordinated expansion and differentiation of progenitor cells and is maintained via tight control of cell replacement rates. The basic helix-loop-helix transcription factor c-Myc is one of the main regulators of these processes in many organs. We studied the requirement of c-Myc in controlling the generation and maintenance of pancreatic mass. METHODS We conditionally inactivated c-Myc in Pdx1+ pancreatic progenitor cells. Pancreata of mice lacking c-Myc (c-Myc(P-/-) mice) were analyzed during development and ageing. RESULTS Pancreatic growth in c-Myc(P-/-) mice was impaired starting on E12.5, in early primordia, because of decreased proliferation and altered differentiation of exocrine progenitors; islet progenitors were spared. Acinar cell maturation was defective in the adult hypotrophic pancreas, which hampered exocrine mass maintenance in aged animals. From 2 to 10 months of age, the c-Myc(P-/-) pancreas was progressively remodeled without inflammatory injury. Loss of acinar cells increased with time, concomitantly with adipose tissue accumulation. Using a genetic cell lineage tracing analysis, we demonstrated that pancreatic adipose cells were derived directly from transdifferentiating acinar cells. This epithelial-to-mesenchyme transition was also observed in normal aged specimens and in pancreatitis. CONCLUSIONS These results provide evidence indicating that c-Myc activity is required for growth and maturation of the exocrine pancreas, and sheds new light on the ontogeny of pancreatic adipose cells in processes of organ degenerescence and tissue involution.
Collapse
Affiliation(s)
- Claire Bonal
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
1054
|
Nagase T, Sanada H, Nakagami G, Sari Y, Minematsu T, Sugama J. Clinical and Molecular Perspectives of Deep Tissue Injury: Changes in Molecular Markers in a Rat Model. BIOENGINEERING RESEARCH OF CHRONIC WOUNDS 2009. [DOI: 10.1007/978-3-642-00534-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
1055
|
Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG, Chua SC, Kim JK, Kaestner KH, Karsenty G. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. ACTA ACUST UNITED AC 2008; 183:1235-42. [PMID: 19103808 PMCID: PMC2606962 DOI: 10.1083/jcb.200809113] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1056
|
White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008; 39:715-28. [PMID: 18996284 DOI: 10.1016/j.arcmed.2008.09.005] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/19/2008] [Indexed: 02/08/2023]
Abstract
Due to the public health problem represented by obesity, the study of adipose tissue, particularly of the adipocyte, is central to the understanding of metabolic abnormalities associated with the development of obesity. The concept of adipocyte as endocrine and functional cell is not totally understood and can be currently defined as the capacity of the adipocyte to sense, manage, and send signals to maintain energy equilibrium in the body. Adipocyte functionality is lost during obesity and has been related to adipocyte hypertrophy, disequilibrium between lipogenesis and lipolysis, impaired transcriptional regulation of the key factors that control adipogenesis, and lack of sensitivity to external signals, as well as a failure in the signal transduction process. Thus, dysfunctional adipocytes contribute to abnormal utilization of fatty acids causing lipotoxicity in non-adipose tissue such as liver, pancreas and heart, among others. To understand the metabolism of the adipocyte it is necessary to have an overview of the developmental process of new adipocytes, regulation of adipogenesis, lipogenesis and lipolysis, endocrine function of adipocytes and metabolic consequences of its dysfunction. Finally, the key role of adipose tissue is shown by studies in transgenic animals or in animal models of diet-induced obesity that indicate the contribution of adipose tissue during the development of metabolic syndrome. Thus, understanding of the molecular process that occurs in the adipocyte will provide new tools for the treatment of metabolic abnormalities during obesity.
Collapse
|
1057
|
Staszkiewicz J, Gimble J, Cain C, Dietrich M, Burk D, Kirk-Ballard H, Gawronska-Kozak B. Flow cytometric and immunohistochemical detection of in vivo BrdU-labeled cells in mouse fat depots. Biochem Biophys Res Commun 2008; 378:539-44. [PMID: 19056354 DOI: 10.1016/j.bbrc.2008.11.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 01/12/2023]
Abstract
This study has determined the natural frequency and localization of progenitor/stem cells within fat depots in situ based on their ability to retain DNA nucleotide label (BrdU). Neonate and mature male C57BL6/J mice were injected intraperitoneally with BrdU- and label-retaining cells (LRC) were quantified in fat depots by immunohistochemical, immunofluorescent, and flow cytometric methods. In neonates, LRC constituted 27% of the cells in inguinal fat (iWAT) and 65% in interscapular brown fat (BAT) after Day 10 and 26% of the cells in epididymal fat (eWAT) after Day 28. After 52 days, the LRC accounted for 0.72% of iWAT, 0.53% of eWAT and 1.05% of BAT, respectively. The BrdU-labeled cells localized to two areas: single cells distributed among adipocytes or those adjacent to the blood vessels wall. In mature C57BL6/J mice, flow cytometric analysis determined that a majority of the LRC were also positive for stem cell antigen-1 (Sca-1).
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
1058
|
Youm YH, Yang H, Sun Y, Smith RG, Manley NR, Vandanmagsar B, Dixit VD. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J Biol Chem 2008; 284:7068-77. [PMID: 19054770 DOI: 10.1074/jbc.m808302200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With progressive aging, adipocytes are the major cell types that constitute the bulk of thymic microenvironment. Understanding the origin of thymic adipocytes and mechanisms responsible for age-related thymic adiposity is thus germane for the design of long lasting thymic rejuvenation strategies. We have recently identified that ghrelin, an orexigenic anti-inflammatory peptide, can partially reverse age-related thymic involution. Here we demonstrate that Ghrl and ghrelin receptor (growth hormone secretagogue receptor (GHSR)) are expressed in thymic stromal cells and that their expression declines with physiological aging. Genetic ablation of ghrelin and GHSR leads to loss of thymic epithelial cells (TEC) and an increase in adipogenic fibroblasts in the thymus, suggesting potential cellular transitions. Using FoxN1Cre;R26RstopLacZ double transgenic mice, we provide qualitative evidence that thymic epithelial cells can transition to mesenchymal cells that express proadipogenic regulators in the thymus. We found that loss of functional Ghrl-GHSR interactions facilitates EMT and induces thymic adipogenesis with age. In addition, the compromised thymic stromal microenvironment due to lack of Ghrl-GHSR interactions is associated with reduced number of naive T cells. These data suggest that Ghrl may be a novel regulator of EMT and preserves thymic stromal cell microenvironment by controlling age-related adipocyte development within the thymus.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
1059
|
Abstract
Type 2 diabetes and cardiovascular disease represent a serious threat to the health of the population worldwide. Although overall adiposity and particularly visceral adiposity are established risk factors for these diseases, in the recent years fatty liver emerged as an additional and independent factor. However, the pathophysiology of fat accumulation in the liver and the cross-talk of fatty liver with other tissues involved in metabolism in humans are not fully understood. Here we discuss the mechanisms involved in the pathogenesis of hepatic fat accumulation, particularly the roles of body fat distribution, nutrition, exercise, genetics, and gene-environment interaction. Furthermore, the effects of fatty liver on glucose and lipid metabolism, specifically via induction of subclinical inflammation and secretion of humoral factors, are highlighted. Finally, new aspects regarding the dissociation of fatty liver and insulin resistance are addressed.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine, Otfried-Müller-Strasse 10, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
1060
|
Abstract
Adipose tissue mass can expand throughout adult life. Therefore, proliferative adipocyte precursor cells must stand at the ready to respond to increased demand for energy storage. Recent provocative studies have identified discrete immature cell populations from which brown and white adipocytes are derived. This work not only brings fundamental insight into adipose tissue formation but also provides new tools to study how adipogenesis is regulated in pathological conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- Kye Won Park
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
1061
|
Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2008; 20:801-8. [PMID: 19037106 DOI: 10.1091/mbc.e08-06-0647] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sirtuin family of proteins possesses NAD-dependent deacetylase and ADP ribosyltransferase activities. They are found to respond to nutrient deprivation and profoundly regulate metabolic functions. We have previously reported that caloric restriction increases the expression of one of the seven mammalian sirtuins, SIRT2, in tissues such as white adipose tissue. Because adipose tissue is a key metabolic organ playing a critical role in whole body energy homeostasis, we went on to explore the function of SIRT2 in adipose tissue. We found short-term food deprivation for 24 h, already induces SIRT2 expression in white and brown adipose tissues. Additionally, cold exposure elevates SIRT2 expression in brown adipose tissue but not in white adipose tissue. Intraperitoneal injection of a beta-adrenergic agonist (isoproterenol) enhances SIRT2 expression in white adipose tissue. Retroviral expression of SIRT2 in 3T3-L1 adipocytes promotes lipolysis. SIRT2 inhibits 3T3-L1 adipocyte differentiation in low-glucose (1 g/l) or low-insulin (100 nM) condition. Mechanistically, SIRT2 suppresses adipogenesis by deacetylating FOXO1 to promote FOXO1's binding to PPARgamma and subsequent repression on PPARgamma transcriptional activity. Overall, our results indicate that SIRT2 responds to nutrient deprivation and energy expenditure to maintain energy homeostasis by promoting lipolysis and inhibiting adipocyte differentiation.
Collapse
Affiliation(s)
- Fei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
1062
|
Abstract
Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of cardiovascular disease (CVD) and diabetes. Recent genome-wide association studies have identified several novel susceptibility genes for MetSyn traits, and studies in rodent models have provided important molecular insights. However, as yet, only a small fraction of the genetic component is known. Systems-based approaches that integrate genomic, molecular and physiological data are complementing traditional genetic and biochemical approaches to more fully address the complexity of MetSyn.
Collapse
|
1063
|
Abstract
Obesity is a metabolic disorder, which has been recognized as a global epidemic. It contributes to insulin resistance, the major cause of Type 2 diabetes, as well as to the development of other related diseases. Our basic premise is that a better understanding of how adult stem cells of the pancreas contribute to the maintenance of the pancreatic beta-cell pool against the increased metabolic demands associated with obesity may provide new therapeutic targets for treating diabetes. At the same time, if we knew more about the biology of adipocyte formation, maintenance and deposition in obese individuals, perhaps some control over the adipocyte tissue mass of these individuals would be facilitated and treatment of obesity would become available. Many investigations in the field are therefore aimed at describing how adipocyte stem cells function in the various sites of fat deposition and the extent to which these stem cells contribute to both brown and white adipocytes. Studies on the differentiation of human embryonic stem cells along the pancreatic and adipocyte lineages may therefore better inform approaches to these studies.
Collapse
|
1064
|
Shah A, Mehta N, Reilly MP. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr 2008; 32:638-44. [PMID: 18974244 PMCID: PMC3088110 DOI: 10.1177/0148607108325251] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adiposity-associated inflammation and insulin resistance are strongly implicated in the development of type 2 diabetes and atherosclerotic cardiovascular disease. This article reviews the mechanisms of adipose inflammation, because these may represent therapeutic targets for insulin resistance and for prevention of metabolic and cardiovascular consequences of obesity. The initial insult in adipose inflammation and insulin resistance, mediated by macrophage recruitment and endogenous ligand activation of Toll-like receptors, is perpetuated through chemokine secretion, adipose retention of macrophages, and elaboration of pro-inflammatory adipocytokines. Activation of various kinases modulates adipocyte transcription factors, including peroxisome proliferator-activated receptor-gamma and NFkappaB, attenuating insulin signaling and increasing adipocytokine and free fatty acid secretion. Inflammation retards adipocyte differentiation and further exacerbates adipose dysfunction and inflammation. Paracrine and endocrine adipose inflammatory events induce a local and systemic inflammatory, insulin-resistant state promoting meta-bolic dyslipidemia, type 2 diabetes, and cardiovascular disease. Developing therapeutic strategies that target both adipose inflammation and insulin resistance may help to prevent type 2 diabetes and cardiovascular disease in the emerging epidemic of obesity.
Collapse
Affiliation(s)
- Arti Shah
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Nehal Mehta
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Muredach P. Reilly
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
1065
|
Affiliation(s)
- C Ronald Kahn
- Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
1066
|
Gaetani S. A sideways glance: does the color matter? A revised model of the origin of white and brown fat cells. GENES AND NUTRITION 2008; 3:99-100. [PMID: 18937001 DOI: 10.1007/s12263-008-0092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sancia Gaetani
- INRAN, National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178, Rome, Italy,
| |
Collapse
|
1067
|
Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, Spurlock M, Novakofski J, Fernyhough ME, Bergen WG. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 2008; 87:1218-46. [PMID: 18849378 DOI: 10.2527/jas.2008-1427] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The quality and value of the carcass in domestic meat animals are reflected in its protein and fat content. Preadipocytes and adipocytes are important in establishing the overall fatness of a carcass, as well as being the main contributors to the marbling component needed for consumer preference of meat products. Although some fat accumulation is essential, any excess fat that is deposited into adipose depots other than the marbling fraction is energetically unfavorable and reduces efficiency of production. Hence, this review is focused on current knowledge about the biology and regulation of the important cells of adipose tissue: preadipocytes and adipocytes.
Collapse
Affiliation(s)
- G J Hausman
- USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1068
|
Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 2008; 135:240-9. [PMID: 18835024 DOI: 10.1016/j.cell.2008.09.036] [Citation(s) in RCA: 729] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/14/2008] [Accepted: 09/23/2008] [Indexed: 02/06/2023]
Abstract
The increased white adipose tissue (WAT) mass associated with obesity is the result of both hyperplasia and hypertrophy of adipocytes. However, the mechanisms controlling adipocyte number are unknown in part because the identity of the physiological adipocyte progenitor cells has not been defined in vivo. In this report, we employ a variety of approaches, including a noninvasive assay for following fat mass reconstitution in vivo, to identify a subpopulation of early adipocyte progenitor cells (Lin(-):CD29(+):CD34(+):Sca-1(+):CD24(+)) resident in adult WAT. When injected into the residual fat pads of A-Zip lipodystrophic mice, these cells reconstitute a normal WAT depot and rescue the diabetic phenotype that develops in these animals. This report provides the identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo.
Collapse
Affiliation(s)
- Matthew S Rodeheffer
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
1069
|
Abstract
Although the functions of white fat and brown fat are increasingly well understood, their developmental origins remain unclear. A recent study published in Nature (Seale et al., 2008) identifies a population of progenitor cells that gives rise to brown fat and skeletal muscle but not white fat.
Collapse
Affiliation(s)
- Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
1070
|
Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322:583-6. [PMID: 18801968 DOI: 10.1126/science.1156232] [Citation(s) in RCA: 843] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White adipose (fat) tissues regulate metabolism, reproduction, and life span. Adipocytes form throughout life, with the most marked expansion of the lineage occurring during the postnatal period. Adipocytes develop in coordination with the vasculature, but the identity and location of white adipocyte progenitor cells in vivo are unknown. We used genetically marked mice to isolate proliferating and renewing adipogenic progenitors. We found that most adipocytes descend from a pool of these proliferating progenitors that are already committed, either prenatally or early in postnatal life. These progenitors reside in the mural cell compartment of the adipose vasculature, but not in the vasculature of other tissues. Thus, the adipose vasculature appears to function as a progenitor niche and may provide signals for adipocyte development.
Collapse
Affiliation(s)
- Wei Tang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
1071
|
PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454:961-7. [PMID: 18719582 DOI: 10.1038/nature07182] [Citation(s) in RCA: 1798] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/19/2008] [Indexed: 12/17/2022]
Abstract
Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.
Collapse
|
1072
|
New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454:1000-4. [PMID: 18719589 DOI: 10.1038/nature07221] [Citation(s) in RCA: 850] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/27/2008] [Indexed: 02/06/2023]
Abstract
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Collapse
|
1073
|
Cellular program controlling the recovery of adipose tissue mass: An in vivo imaging approach. Proc Natl Acad Sci U S A 2008; 105:12985-90. [PMID: 18753616 DOI: 10.1073/pnas.0805621105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular program responsible for the restoration of adipose tissue mass after weight loss is largely uncharacterized. Leptin mRNA levels are highly correlated with adipose tissue mass, and leptin expression can thus be used as a surrogate for changes in the amount of adipose tissue. To further study the responses of adipocytes to changes in weight, we created a transgenic mouse expressing the luciferase reporter gene under the control of leptin regulatory sequences, which allows noninvasive imaging of the leptin expression of mice in vivo. We used these animals to show that weight loss induced by fasting or leptin treatment results in the retention of lipid-depleted adipocytes in adipose depots. To further study the cellular response to weight regain after leptin treatment, a leptin withdrawal protocol was used to induce a state of acute leptin deficiency in wild type mice. Acute leptin deficiency led to the transient deposition of large amounts of glycogen within pre-existing, lipid-depleted adipocytes. This was followed by rapid reaccumulation of lipid. Transcriptional profiling revealed that this cellular response was associated with induction of mRNAs for the entire pathway of enzymes necessary to convert glucose into acetyl-CoA and glycerol, key substrates for the synthesis of triglycerides.
Collapse
|
1074
|
Wu Y, Kim JY, Zhou S, Smas CM. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues. BMC Genomics 2008; 9:397. [PMID: 18721461 PMCID: PMC2547859 DOI: 10.1186/1471-2164-9-397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023] Open
Abstract
Background The co-morbidities of obesity are tied to location of excess fat in the intra-abdominal as compared to subcutaneous white adipose tissue (WAT) depot. Genes distinctly expressed in WAT depots may impart depot-dependent physiological functions. To identify such genes, we prepared subtractive cDNA libraries from murine subcutaneous (SC) or intra-abdominal epididymal (EP) white adipocytes. Results Differential screening and qPCR validation identified 7 transcripts with 2.5-fold or greater enrichment in EP vs. SC adipocytes. Boc, a component of the hedgehog signaling pathway demonstrated highest enrichment (~12-fold) in EP adipocytes. We also identified a dramatic enrichment in SC adipocytes vs. EP adipocytes and in SC WAT vs. EP WAT for transcript(s) for the major urinary proteins (Mups), small secreted proteins with pheromone functions that are members of the lipocalin family. Expression of Boc and Mup transcript was further assessed in murine tissues, adipogenesis models, and obesity. qPCR analysis reveals that EP WAT is a major site of expression of Boc transcript. Furthermore, Boc transcript expression decreased in obese EP WAT with a concomitant upregulation of Boc transcript in the obese SC WAT depot. Assessment of the Boc binding partner Cdon in adipose tissue and cell fractions thereof, revealed transcript expression similar to Boc; suggestive of a role for the Boc-Cdon axis in WAT depot function. Mup transcripts were predominantly expressed in liver and in the SC and RP WAT depots and increased several thousand-fold during differentiation of primary murine preadipocytes to adipocytes. Mup transcripts were also markedly reduced in SC WAT and liver of ob/ob genetically obese mice compared to wild type. Conclusion Further assessment of WAT depot-enriched transcripts may uncover distinctions in WAT depot gene expression that illuminate the physiological impact of regional adiposity.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|
1075
|
|
1076
|
Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 2008; 3:e2890. [PMID: 18682832 PMCID: PMC2483355 DOI: 10.1371/journal.pone.0002890] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/08/2008] [Indexed: 12/12/2022] Open
Abstract
Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27−/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27−/− mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27−/− mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27−/−and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27−/− mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1α were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27−/− mice. Remarkably, Fsp27−/− MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.
Collapse
|
1077
|
Metoyer CF, Pruitt K. The role of sirtuin proteins in obesity. PATHOPHYSIOLOGY 2008; 15:103-8. [DOI: 10.1016/j.pathophys.2008.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 01/06/2023] Open
|
1078
|
Pantoja C, Huff JT, Yamamoto KR. Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell 2008; 19:4032-41. [PMID: 18653467 DOI: 10.1091/mbc.e08-04-0420] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Differentiation of 3T3-L1 preadipocytes can be induced by a 2-d treatment with a factor "cocktail" (DIM) containing the synthetic glucocorticoid dexamethasone (dex), insulin, the phosphodiesterase inhibitor methylisobutylxanthine (IBMX) and fetal bovine serum (FBS). We temporally uncoupled the activities of the four DIM components and found that treatment with dex for 48 h followed by IBMX treatment for 48 h was sufficient for adipogenesis, whereas treatment with IBMX followed by dex failed to induce significant differentiation. Similar results were obtained with C3H10T1/2 and primary mesenchymal stem cells. The 3T3-L1 adipocytes differentiated by sequential treatment with dex and IBMX displayed insulin sensitivity equivalent to DIM adipocytes, but had lower sensitivity to ISO-stimulated lipolysis and reduced triglyceride content. The nondifferentiating IBMX-then-dex treatment produced transient expression of adipogenic transcriptional regulatory factors C/EBPbeta and C/EBPdelta, and little induction of terminal differentiation factors C/EBPalpha and PPARgamma. Moreover, the adipogenesis inhibitor preadipocyte factor-1 (Pref-1) was repressed by DIM or by dex-then-IBMX, but not by IBMX-then-dex treatment. We conclude that glucocorticoids drive preadipocytes to a novel intermediate cellular state, the dex-primed preadipocyte, during adipogenesis in cell culture, and that Pref-1 repression may be a cell fate determinant in preadipocytes.
Collapse
Affiliation(s)
- Carlos Pantoja
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94107-2280, USA
| | | | | |
Collapse
|
1079
|
Abstract
Humans contain essentially two types of adipose tissue: brown adipose tissue (BAT) and white adipose tissue (WAT). The function of WAT is to store fat while that of BAT is to burn fat for heat production. A potential strategy to combat obesity and its related disorders is to induce the conversion of WAT into BAT. In this issue of Genes & Development, Kajimura and colleagues (pp. 1397-1409) have identified a mechanism by which PRDM16, the principal regulator of brown adipocyte formation and function, can simultaneously induce BAT gene expression, while suppressing WAT gene expression. The studies suggest that PRDM16 and its associated coregulators PPARgamma coactivator-1alpha (PGC-1alpha) and C-terminal-binding protein 1/2 (CtBP1/2), which control the switch from WAT to BAT, are potential targets for development of obesity-related therapeutics.
Collapse
Affiliation(s)
- Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
1080
|
Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 2008; 22:1397-409. [PMID: 18483224 DOI: 10.1101/gad.1666108] [Citation(s) in RCA: 357] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.
Collapse
Affiliation(s)
- Shingo Kajimura
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1081
|
Abstract
Adipogenesis is the process of differentiation of adipocytes from mesenchymal multipotent cells through adipocyte precursors. In this issue, a study by the groups of Opas and Michalak (Szabo, E., Y. Qiu, S. Baksh, M. Michalak, and M. Opas. 2008. J. Cell. Biol. 182:103–116) demonstrates that this process is repressed by increasing intracellular Ca2+, which, in turn, is dependent on the expression of calreticulin, the major Ca2+-binding protein of the endoplasmic reticulum lumen.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Vita-Salute San Raffaele University and San Raffaele Institute, 20132 Milan, Italy.
| |
Collapse
|
1082
|
Szabo E, Qiu Y, Baksh S, Michalak M, Opas M. Calreticulin inhibits commitment to adipocyte differentiation. ACTA ACUST UNITED AC 2008; 182:103-16. [PMID: 18606846 PMCID: PMC2447897 DOI: 10.1083/jcb.200712078] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic crt−/− cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator–activated receptor γ (PPARγ). This abundance of calreticulin subsequently negatively regulates the expression of PPARγ, lipoprotein lipase, CCAAT enhancer–binding protein α, and aP2. Thus, calreticulin appears to function as a Ca2+-dependent molecular switch that regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical proadipogenic transcription factors.
Collapse
Affiliation(s)
- Eva Szabo
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
1083
|
Levine JA, Davis RM. The Pol-e-pill finally arrives. Diabetes 2008; 57:1784-5. [PMID: 18586910 PMCID: PMC2453630 DOI: 10.2337/db08-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/27/2008] [Indexed: 11/13/2022]
Affiliation(s)
- James A Levine
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | | |
Collapse
|
1084
|
Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys 2008; 31:34-41. [PMID: 18486521 DOI: 10.1016/j.medengphy.2008.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 11/28/2022]
Abstract
Accurate and precise techniques that identify the quantity and distribution of adipose tissue in vivo are critical for investigations of adipose development, obesity, or diabetes. Here, we tested whether in vivo micro-computed tomography (microCT) can be used to provide information on the distribution of total, subcutaneous and visceral fat volume in the mouse. Ninety C57BL/6J mice (weight range: 15.7-46.5 g) were microCT scanned in vivo at 5 months of age and subsequently sacrificed. Whole body fat volume (base of skull to distal tibia) derived from in vivo microCT was significantly (p<0.001) correlated with the ex vivo tissue weight of discrete perigonadal (R(2)=0.94), and subcutaneous (R(2)=0.91) fat pads. Restricting the analysis of tissue composition to the abdominal mid-section between L1 and L5 lumbar vertebrae did not alter the correlations between total adiposity and explanted fat pad weight. Segmentation allowed for the precise discrimination between visceral and subcutaneous fat as well as the quantification of adipose tissue within specific anatomical regions. Both the correlations between visceral fat pad weight and microCT determined visceral fat volume (R(2)=0.95, p<0.001) as well as subcutaneous fat pad weight and microCT determined subcutaneous fat volume (R(2)=0.91, p<0.001) were excellent. Data from these studies establish in vivo microCT as a non-invasive, quantitative tool that can provide an in vivo surrogate measure of total, visceral, and subcutaneous adiposity during longitudinal studies. Compared to current imaging techniques with similar capabilities, such as microMRI or the combination of DEXA with NMR, it may also be more cost-effective and offer higher spatial resolutions.
Collapse
Affiliation(s)
- Y K Luu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
1085
|
Mezentseva NV, Kumaratilake JS, Newman SA. The brown adipocyte differentiation pathway in birds: an evolutionary road not taken. BMC Biol 2008; 6:17. [PMID: 18426587 PMCID: PMC2375860 DOI: 10.1186/1741-7007-6-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/21/2008] [Indexed: 12/30/2022] Open
Abstract
Background Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. Results We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs) with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-γ (PPARγ), and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1α, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. Conclusion These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat.
Collapse
Affiliation(s)
- Nadejda V Mezentseva
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
1086
|
Burcelin R. Leptin and resistin: master enemy adipokines unified in brain to control glucose homeostasis. Endocrinology 2008; 149:443-4. [PMID: 18209210 DOI: 10.1210/en.2007-1507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Remy Burcelin
- Unité Mixte de Recherche 5018 Centre National de la Recherche Scientifique-University Paul Sabatier, Laboratoire de Neurobiologie, Plasticite Tissulaire, et Metabolism Energetique, Toulouse, France.
| |
Collapse
|
1087
|
Li Z, Zhang H, Denhard LA, Liu LH, Zhou H, Lan ZJ. Reduced white fat mass in adult mice bearing a truncated Patched 1. Int J Biol Sci 2008; 4:29-36. [PMID: 18274621 PMCID: PMC2238183 DOI: 10.7150/ijbs.4.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/25/2008] [Indexed: 01/25/2023] Open
Abstract
Hedgehog (Hh) signaling emerges as a potential pathway contributing to fat formation during postnatal development. In this report, we found that Patched 1 (Ptc1), a negative regulator of Hh signaling, was expressed in the epididymal fat pad of adult mice. Reduced total white fat mass and epididymal adipocyte cell size were observed in naturally occurring spontaneous mesenchymal dysplasia (mes) adult mice (Ptc1mes/mes), which carry a deletion of Ptc1 at the carboxyl-terminal cytoplasmic region. Increased expression of truncated Ptc1, Ptc2 and Gli1, the indicators of ectopic activation of Hh signaling, was observed in epididymal fat pads of adult Ptc1mes/mes mice. In contrast, expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, adipocyte P2 and adipsin were reduced in epididymal fat pads of adult Ptc1mes/mes mice. Taken together, our results indicate that deletion of carboxyl-terminal tail of Ptc1 can lead to the reduction of white fat mass during postnatal development.
Collapse
Affiliation(s)
- Zili Li
- Birth Defects Center, Department of Molecular, Cellular, Craniofacial Biology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|