1051
|
Yang D, Wang H, Sun C, Zhao H, Hu K, Qin W, Ma R, Yin F, Qin X, Zhang Q, Liang Y, Li Z. Development of a high quantum yield dye for tumour imaging. Chem Sci 2017; 8:6322-6326. [PMID: 28989666 PMCID: PMC5628574 DOI: 10.1039/c7sc02698f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
A fluorescent dye, FEB, with high fluorescence quantum yield for tumour imaging is reported. FEB dyes can be efficiently synthesized in three steps and then easily modified with either PEG or PEG-iRGD to yield FEB-2000 or FEB-2000-iRGD, respectively. Both modified dyes showed negligible toxicity and were thus able to be adopted for in vivo tumour imaging. PEG modification endowed the dye FEB-2000 with both long circulating times and good tumour targeting properties in a MDA-MB-231 xenograft model. Further conjugation with iRGD to generate FEB-2000-iRGD showed minimal targeting enhancement. These results provide a template for the efficient preparation of FEB dyes for use in tumour imaging, thus providing a foundation for future modifications.
Collapse
Affiliation(s)
- Dan Yang
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Huasen Wang
- Department of Materials Science and Engineering , South University of Science and Technology of China , Shenzhen 518055 , China .
| | - Chengjie Sun
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Hui Zhao
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Kuan Hu
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Weirong Qin
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Rui Ma
- Department of Materials Science and Engineering , South University of Science and Technology of China , Shenzhen 518055 , China .
| | - Feng Yin
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Xuan Qin
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Qianling Zhang
- Shenzhen Key Laboratory of Functional Polymer , College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Yongye Liang
- Department of Materials Science and Engineering , South University of Science and Technology of China , Shenzhen 518055 , China .
| | - Zigang Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| |
Collapse
|
1052
|
Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017; 145:168-177. [PMID: 28866477 DOI: 10.1016/j.biomaterials.2017.08.037] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Chemo-photothermal nanotheranostics has the advantage of synergistic therapeutic effect, providing opportunities for optimized cancer therapy. However, current chemo-photothermal nanotheranostic systems generally comprise more than three components, encountering the potential issues of unstable nanostructures and unexpected conflicts in optical and biophysical properties among different components. We herein synthesize an amphiphilic semiconducting polymer (PEG-PCB) and utilize it as a multifunctional nanocarrier to simplify chemo-photothermal nanotheranostics. PEG-PCB has a semiconducting backbone that not only serves as the diagnostic component for near-infrared (NIR) fluorescence and photoacoustic (PA) imaging, but also acts as the therapeutic agent for photothermal therapy. In addition, the hydrophobic backbone of PEG-PCB provides strong hydrophobic and π-π interactions with the aromatic anticancer drug such as doxorubicin for drug encapsulation and delivery. Such a trifunctionality of PEG-PCB eventually results in a greatly simplified nanotheranostic system with only two components but multimodal imaging and therapeutic capacities, permitting effective NIR fluorescence/PA imaging guided chemo-photothermal therapy of cancer in living mice. Our study thus provides a molecular engineering approach to integrate essential properties into one polymer for multimodal nanotheranostics.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore
| | - Yuan Fang
- State of Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore
| | - Dan Ding
- State of Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
1053
|
Ding F, Chen S, Zhang W, Tu Y, Sun Y. UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg Med Chem 2017; 25:5179-5184. [PMID: 28869084 DOI: 10.1016/j.bmc.2017.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/31/2017] [Accepted: 08/20/2017] [Indexed: 01/05/2023]
Abstract
Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Seng Chen
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wanshu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yufeng Tu
- Department of Cardiology, The Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
1054
|
Jiang Y, Upputuri PK, Xie C, Lyu Y, Zhang L, Xiong Q, Pramanik M, Pu K. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. NANO LETTERS 2017; 17:4964-4969. [PMID: 28654292 DOI: 10.1021/acs.nanolett.7b02106] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoacoustic (PA) imaging holds great promise for preclinical research and clinical practice. However, most studies rely on the laser wavelength in the first near-infrared (NIR) window (NIR-I, 650-950 nm), while few studies have been exploited in the second NIR window (NIR-II, 1000-1700 nm), mainly due to the lack of NIR-II absorbing contrast agents. We herein report the synthesis of a broadband absorbing PA contrast agent based on semiconducting polymer nanoparticles (SPN-II) and apply it for PA imaging in NIR-II window. SPN-II can absorb in both NIR-I and NIR-II regions, providing the feasibility to directly compare PA imaging at 750 nm with that at 1064 nm. Because of the weaker background PA signals from biological tissues in NIR-II window, the signal-to-noise ratio (SNR) of SPN-II resulted PA images at 1064 nm can be 1.4-times higher than that at 750 nm when comparing at the imaging depth of 3 cm. The proof-of-concept application of NIR-II PA imaging is demonstrated in in vivo imaging of brain vasculature in living rats, which showed 1.5-times higher SNR as compared with NIR-I PA imaging. Our study not only introduces the first broadband absorbing organic contrast agent that is applicable for PA imaging in both NIR-I and NIR-II windows but also reveals the advantages of NIR-II over NIR-I in PA imaging.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Lulu Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637459, Singapore
| |
Collapse
|
1055
|
McNamara LE, Rill TA, Huckaba AJ, Ganeshraj V, Gayton J, Nelson RA, Sharpe EA, Dass A, Hammer NI, Delcamp JH. Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chemistry 2017; 23:12494-12501. [DOI: 10.1002/chem.201702209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Louis E. McNamara
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Tana A. Rill
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Aron J. Huckaba
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Vigneshraja Ganeshraj
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Jacqueline Gayton
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Rachael A. Nelson
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Emily Anne Sharpe
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Amala Dass
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi 322 Coulter Hall University MS 38677 USA
| |
Collapse
|
1056
|
Sava Gallis DF, Rohwer LES, Rodriguez MA, Barnhart-Dailey MC, Butler KS, Luk TS, Timlin JA, Chapman KW. Multifunctional, Tunable Metal-Organic Framework Materials Platform for Bioimaging Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22268-22277. [PMID: 28613824 DOI: 10.1021/acsami.7b05859] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herein, we describe a novel multifunctional metal-organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (∼614-1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline. To assess their viability as optical bioimaging agents, we successfully synthesized the nanoscale Eu analog as a proof-of-concept system in this series. In vitro studies show that it is cell-permeable in individual RAW 264.7 mouse macrophage and HeLa human cervical cancer tissue culture cells. The efficient discrimination between the Eu emission and cell autofluorescence was achieved with hyperspectral confocal fluorescence microscopy, used here for the first time to characterize MOF materials. Importantly, this is the first report that documents the long-term conservation of the intrinsic emission in live cells of a fluorophore-based MOF to date (up to 48 h). This finding, in conjunction with the materials' very low toxicity, validates the biocompatibility in these systems and qualifies them as promising for use in long-term tracking and biodistribution studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karena W Chapman
- X-ray Science Division, Advanced Photon Source, X-ray Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
1057
|
Park JE, Kim J, Nam JM. Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem Sci 2017; 8:4696-4704. [PMID: 28936337 PMCID: PMC5596414 DOI: 10.1039/c7sc01441d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Localised surface plasmon resonance endows plasmonic nanostructures with unique, powerful properties such as photoluminescence enhancement, which is a phenomenon based on the interaction between light and a metal nanostructure. In particular, photoluminescence modulation and enhancement are of importance to many research fields such as photonics, plasmonics and biosensing. In this minireview, we introduce basic principles of plasmonic-nanostructure photoluminescence and recently reported plasmonic nanostructures exhibiting surface-enhanced fluorescence and direct photoluminescence, with one-photon photoluminescence being of particular interest. Gaining insights into these systems not only helps understand the fundamental concepts of plasmonic nanostructures but also advances and extends their applications.
Collapse
Affiliation(s)
- Jeong-Eun Park
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| | - Jiyeon Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| |
Collapse
|
1058
|
Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials 2017; 134:202-215. [DOI: 10.1016/j.biomaterials.2017.04.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023]
|
1059
|
Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700995. [PMID: 29623009 PMCID: PMC5879786 DOI: 10.1002/adfm.201700995] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Compared with imaging in the visible (400 - 650 nm) and near-infrared window I (NIR-I, 650 - 900 nm) regions, imaging in near-infrared window II (NIR-II, 1,000-1,700 nm) is a highly promising in vivo imaging modality with improved resolution and deeper tissue penetration. In this work, a small molecule NIR-II dye,5,5'-(1H,5H-benzo[1,2-c:4,5-c'] bis[1,2,5]thiadiazole)-4,8-diyl)bis(N,N-bis(4-(3-((tert-butyldimethylsilyl)oxy)propyl)phenyl) thiophen-2-amine), has been successfully encapsulated into phospholipid vesicles to prepare a probe CQS1000. Then this novel NIR-II probe has been studied for in vivo multifunctional biological imaging. Our results indicate that the NIR-II vesicle CQS1000 can noninvasively and dynamically visualize and monitor many physiological and pathological conditions of circulatory systems, including lymphatic drainage and routing, angiogenesis of tumor and vascular deformity such as arterial thrombus formation and ischemia with high spatial and temporal resolution. More importantly, by virtue of the favorable half-life of blood circulation of CQS1000, NIR-II imaging is capable of aiding us to accomplish precise resection of tumor such as osteosarcoma, and to accelerate the process of lymph nodes dissection to complete sentinel lymph node biopsy for better decision-making during the tumor surgery. Overall, CQS1000 is a highly promising NIR-II probe for multifunctional biomedical imaging in physiological and pathological conditions, surpassing traditional NIR-I imaging modality and pathologic assessments for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Chunrong Qu
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yao Sun
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Lei Zhang
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Eastlake Road, Wuhan 430071, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Rd, Lucas P095, Stanford, CA 94305-5484, USA
| |
Collapse
|
1060
|
Guo H, He X, Liu M, Zhang Z, Hu Z, Tian J. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1337-1346. [PMID: 28182554 DOI: 10.1109/tmi.2017.2658661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.
Collapse
|
1061
|
Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL. Optical Surgical Navigation for Precision in Tumor Resections. Mol Imaging Biol 2017; 19:357-362. [PMID: 28271367 PMCID: PMC5567813 DOI: 10.1007/s11307-017-1054-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optical imaging methods have significant potential as effective intraoperative tools to visualize tissues, cells, and biochemical events aimed at objective assessment of the tumor margin and guiding the surgeon to adequately resect the tumor while sparing critical tissues. The wide variety of approaches to guide resection, the range of parameters that they detect, and the interdisciplinary nature involving biology, chemistry, engineering, and medicine suggested that there was a need for an organization that could review, discuss, refine, and help prioritize methods to optimize patient care and pharmaceutical and instrument development. To address these issues, the World Molecular Imaging Society created the Optical Surgical Navigation (OSN) interest group to bring together scientists, engineers, and surgeons to develop the field to benefit patients. Here, we provide an overview of approaches currently under clinical investigation for optical surgical navigation and offer our perspective on upcoming strategies.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Nutte Teraphongphom
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - Michael F Tweedle
- Department of Radiology, The Wright Center for Innovation in Biomedical Imaging, The Ohio State University College of Medicine, Columbus, OH, USA
| | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University, Cleveland, OH, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery and Radiology, Stanford University, Stanford, CA, USA.
- Ann and John Doerr Medical Director, Stanford Cancer Center, Stanford, CA, USA.
| |
Collapse
|
1062
|
Kirberger SE, Maltseva SD, Manulik JC, Einstein SA, Weegman BP, Garwood M, Pomerantz WCK. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19 F MRI Agents. Angew Chem Int Ed Engl 2017; 56:6440-6444. [PMID: 28471097 PMCID: PMC5493043 DOI: 10.1002/anie.201700426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/13/2017] [Indexed: 12/28/2022]
Abstract
19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking.
Collapse
Affiliation(s)
- Steven E Kirberger
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Sofia D Maltseva
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Joseph C Manulik
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Samuel A Einstein
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - Bradley P Weegman
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
1063
|
He L, Brasino M, Mao C, Cho S, Park W, Goodwin AP, Cha JN. DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700504. [PMID: 28481463 PMCID: PMC6697551 DOI: 10.1002/smll.201700504] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/18/2017] [Indexed: 05/18/2023]
Abstract
DNA-mediated assembly of core-satellite structures composed of Zr(IV)-based porphyrinic metal-organic framework (MOF) and NaYF4 ,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1 O2 ) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well-defined MOF-UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1 O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF-UCNP core-satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.
Collapse
Affiliation(s)
- Liangcan He
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Michael Brasino
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Chenchen Mao
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Suehyun Cho
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Wounjhang Park
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| |
Collapse
|
1064
|
Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, Eliceiri KW, Kuo JS, Weichert JP. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017; 14:347-364. [PMID: 28094261 PMCID: PMC5683405 DOI: 10.1038/nrclinonc.2016.212] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings.
Collapse
Affiliation(s)
- Ray R Zhang
- Department of Radiology, University of Wisconsin-Madison (UW-Madison), 600 Highland Avenue, Madison, Wisconsin 53792, USA
- Department of Neurological Surgery, UW-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, USA
| | - Alexandra B Schroeder
- Medical Engineering, Morgridge Institute for Research, 330 North Orchard Street, Madison, Wisconsin 53715, USA
- Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison Wisconsin 53706, USA
- Department of Medical Physics, UW-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Joseph J Grudzinski
- Department of Medical Physics, UW-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford Cancer Center, 875 Blake Wilbur Drive, Stanford, California 94305, USA
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, Alabama 35294, USA
| | - Anatoly N Pinchuk
- Department of Radiology, University of Wisconsin-Madison (UW-Madison), 600 Highland Avenue, Madison, Wisconsin 53792, USA
| | - Kevin W Eliceiri
- Medical Engineering, Morgridge Institute for Research, 330 North Orchard Street, Madison, Wisconsin 53715, USA
- Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison Wisconsin 53706, USA
- Department of Medical Physics, UW-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
- Carbone Cancer Center, UW-Madison, 600 Highland Avenue Madison, Wisconsin 53792, USA
| | - John S Kuo
- Department of Neurological Surgery, UW-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, USA
- Carbone Cancer Center, UW-Madison, 600 Highland Avenue Madison, Wisconsin 53792, USA
| | - Jamey P Weichert
- Department of Radiology, University of Wisconsin-Madison (UW-Madison), 600 Highland Avenue, Madison, Wisconsin 53792, USA
- Department of Medical Physics, UW-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
- Carbone Cancer Center, UW-Madison, 600 Highland Avenue Madison, Wisconsin 53792, USA
| |
Collapse
|
1065
|
Sweet C, Pramanik A, Jones S, Ray PC. Two-Photon Fluorescent Molybdenum Disulfide Dots for Targeted Prostate Cancer Imaging in the Biological II Window. ACS OMEGA 2017; 2:1826-1835. [PMID: 30023645 PMCID: PMC6044829 DOI: 10.1021/acsomega.7b00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/28/2017] [Indexed: 05/19/2023]
Abstract
Molybdenum disulfide (MoS2) quantum dots (QDs) derived from this two-dimensional (2D) transition metal dichalcogenide are emerging zero-dimensional materials that possess very good optical properties. Bioimaging using light in the biological II window (950-1350 nm) is a next-generation approach that will allow clinicians to achieve deeper tissue imaging with better image contrast and reduced phototoxicity and photobleaching. This article reports the development of a water-soluble, zero-dimensional antibody-conjugated transition metal dichalcogenide MoS2 QD-based two-photon luminescence (TPL) probe for the targeted bioimaging of cancer cells in the biological II window. The data indicates that MoS2 QDs exhibit an extremely high two-photon absorption cross-section (σ = 58960 GM) and two-photon brightness (4.7 × 103 GM) because of the quantum confinement and edge effects. Experimental data show that anti-PSMA antibody-attached MoS2 QDs can be used for selective two-photon imaging of live prostate cancer cells using 1064 nm light because of the high two-photon brightness, very good photostability, and very good biocompatibility of these MoS2 QDs. The data demonstrate that the bioconjugated MoS2 QDs can distinguish targeted and nontargeted cells. This study illuminates the high two-photon brightness mechanism of MoS2 QDs and provides a zero-dimensional transition metal dichalcogenide-based selective TPL agent for high-efficiency live cell imaging.
Collapse
Affiliation(s)
- Carrie Sweet
- Department of Chemistry and
Biochemistry, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217-0510, United States
| | - Avijit Pramanik
- Department of Chemistry and
Biochemistry, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217-0510, United States
| | - Stacy Jones
- Department of Chemistry and
Biochemistry, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217-0510, United States
| | - Paresh Chandra Ray
- Department of Chemistry and
Biochemistry, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217-0510, United States
| |
Collapse
|
1066
|
Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano AX, Fan Q, Chew L, Zhu M, Cheng K, Hong X, Dai H, Cheng Z. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 2017; 8:15269. [PMID: 28524850 PMCID: PMC5454457 DOI: 10.1038/ncomms15269] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/14/2017] [Indexed: 12/23/2022] Open
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. Near-infrared (NIR) fluorescence imaging >1,000 nm allows deep tissue imaging, but available organic dyes display poor brightness and temporal resolution. Here, the authors synthesize a NIR dye that, upon binding serum proteins, exhibits a 110-fold increase in intensity, giving an 11% quantum yield.
Collapse
Affiliation(s)
- Alexander L Antaris
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Hao Chen
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| | - Shuo Diao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Zhe Zhang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| | - Shoujun Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Joy Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Alexander X Lozano
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Quli Fan
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| | - Leila Chew
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| | - Kai Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, USA
| |
Collapse
|
1067
|
Zhang Y, Autry SA, McNamara LE, Nguyen ST, Le N, Brogdon P, Watkins DL, Hammer NI, Delcamp JH. Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability. J Org Chem 2017; 82:5597-5606. [DOI: 10.1021/acs.joc.7b00422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanbing Zhang
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Shane A. Autry
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Louis E. McNamara
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Suong T. Nguyen
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Ngoc Le
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Phillip Brogdon
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Davita L. Watkins
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jared H. Delcamp
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
1068
|
Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol 2017; 35:691-712. [PMID: 28514998 DOI: 10.1016/j.tibtech.2017.04.007] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
Affibody molecules are small (6.5-kDa) affinity proteins based on a three-helix bundle domain framework. Since their introduction 20 years ago as an alternative to antibodies for biotechnological applications, the first therapeutic affibody molecules have now entered clinical development and more than 400 studies have been published in which affibody molecules have been developed and used in a variety of contexts. In this review, we focus primarily on efforts over the past 5 years to explore the potential of affibody molecules for medical applications in oncology, neurodegenerative, and inflammation disorders, including molecular imaging, receptor signal blocking, and delivery of toxic payloads. In addition, we describe recent examples of biotechnological applications, in which affibody molecules have been exploited as modular affinity fusion partners.
Collapse
Affiliation(s)
- Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| | - Torbjörn Gräslund
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | - Fredrik Y Frejd
- Unit of Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala, Sweden; Affibody AB, Gunnar Asplunds Allé 24, SE-171 69 Solna, Sweden
| | - Per-Åke Nygren
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| |
Collapse
|
1069
|
|
1070
|
Kirberger SE, Maltseva SD, Manulik JC, Einstein SA, Weegman BP, Garwood M, Pomerantz WCK. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19
F MRI Agents. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven E. Kirberger
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Sofia D. Maltseva
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Joseph C. Manulik
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Samuel A. Einstein
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - Bradley P. Weegman
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - Michael Garwood
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - William C. K. Pomerantz
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
1071
|
Feng Y, Zhu S, Antaris AL, Chen H, Xiao Y, Lu X, Jiang L, Diao S, Yu K, Wang Y, Herraiz S, Yue J, Hong X, Hong G, Cheng Z, Dai H, Hsueh AJ. Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 2017; 8:3703-3711. [PMID: 28626555 PMCID: PMC5465568 DOI: 10.1039/c6sc04897h] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022] Open
Abstract
In vivo imaging of hormone receptors provides the opportunity to visualize target tissues under hormonal control in live animals. Detecting longer-wavelength photons in the second near-infrared window (NIR-II, 1000-1700 nm) region affords reduced photon scattering in tissues accompanied by lower autofluorescence, leading to higher spatial resolution at up to centimeter tissue penetration depths. Here, we report the conjugation of a small molecular NIR-II fluorophore CH1055 to a follicle stimulating hormone (FSH-CH) for imaging ovaries and testes in live mice. After exposure to FSH-CH, specific NIR-II signals were found in cultured ovarian granulosa cells containing FSH receptors. Injection of FSH-CH allowed live imaging of ovarian follicles and testicular seminiferous tubules in female and male adult mice, respectively. Using prepubertal mice, NIR-II signals were detected in ovaries containing only preantral follicles. Resolving earlier controversies regarding the expression of FSH receptors in cultured osteoclasts, we detected for the first time specific FSH receptor signals in bones in vivo. The present imaging of FSH receptors in live animals using a ligand-conjugated NIR-II fluorophore with low cell toxicity and rapid clearance allows the development of non-invasive molecular imaging of diverse hormonal target cells in vivo.
Collapse
Affiliation(s)
- Yi Feng
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Shoujun Zhu
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | | | - Hao Chen
- Key Laboratory of Virology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Stanford University , Stanford , CA 94305 , USA .
| | - Yuling Xiao
- Key Laboratory of Virology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Xiaowei Lu
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Linlin Jiang
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Shuo Diao
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | - Kuai Yu
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | - Yan Wang
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Sonia Herraiz
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Jingying Yue
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | - Xuechuan Hong
- Key Laboratory of Virology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Guosong Hong
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Stanford University , Stanford , CA 94305 , USA .
| | - Hongjie Dai
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | - Aaron J Hsueh
- Program of Reproductive and Stem Cell Biology , Department of Obstetrics and Gynecology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
1072
|
Sun Y, Ding M, Zeng X, Xiao Y, Wu H, Zhou H, Ding B, Qu C, Hou W, Er-Bu A, Zhang Y, Cheng Z, Hong X. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 2017; 8:3489-3493. [PMID: 28507722 PMCID: PMC5418643 DOI: 10.1039/c7sc00251c] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/18/2017] [Indexed: 12/22/2022] Open
Abstract
Though high brightness and biocompatible small NIR-II dyes are highly desirable in clinical or translational cancer research, their fluorescent cores are relatively limited and their synthetic processes are somewhat complicated. Herein, we have explored the design and synthesis of novel NIR-II fluorescent materials (H1) without tedious chromatographic isolation with improved fluorescence performance (QY ≈ 2%) by introducing 2-amino 9,9-dialkyl-substituted fluorene as a donor into the backbone. Several types of water-soluble and biocompatible NIR-II probes: SXH, SDH, and H1 NPs were constructed via different chemical strategies based on H1, and then their potential to be used in in vivo tumor imaging and image-guided surgery in the NIR-II region was explored. High levels of uptake were obtained for both passive and active tumor targeting probes SXH and SDH. Furthermore, high resolution imaging of blood vessels on tumors and the whole body of living mice using H1 NPs for the first time has demonstrated precise NIR-II image-guided sentinel lymph node (SLN) surgery.
Collapse
Affiliation(s)
- Yao Sun
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Mingmin Ding
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Xiaodong Zeng
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Yuling Xiao
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Huaping Wu
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Hui Zhou
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Bingbing Ding
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Chunrong Qu
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Wei Hou
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Aga Er-Bu
- Medical College , Tibet University , Lasa , 850000 , China
| | - Yejun Zhang
- Suzhou NIR-Optics Technologies Co., Ltd , Suzhou , 215123 , China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Stanford University , California 94305-5344 , USA
| | - Xuechuan Hong
- State Key Laboratory of Virology , Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) , Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Medical College , Tibet University , Lasa , 850000 , China
| |
Collapse
|
1073
|
Han S, Samanta A, Xie X, Huang L, Peng J, Park SJ, Teh DBL, Choi Y, Chang YT, All AH, Yang Y, Xing B, Liu X. Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700244. [PMID: 28295739 DOI: 10.1002/adma.201700244] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprising hairpin-DNA-modified gold nanoparticles is presented. This approach imparts the upconversion nanoprobes with excellent biocompatibility and circumvents the problem of particle agglomeration. By combining single-band anti-Stokes near-infrared emission and the photothermal effect mediated by the coupling of gold to upconversion nanoparticles, a simple, versatile nanoparticulate system for simultaneous deep-tissue imaging and drug molecule release in vivo is demonstrated.
Collapse
Affiliation(s)
- Sanyang Han
- Department of Orthopedic Surgery, National University of Singapore, Singapore, 119228, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Animesh Samanta
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Juanjuan Peng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Sung Jin Park
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | | | - Yongdoo Choi
- Molecular Imaging & Therapy Branch, National Cancer Center, Gyeonggi-do, 10408, Republic of Korea
| | - Young-Tae Chang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Angelo Homayoun All
- Department of Orthopedic Surgery, National University of Singapore, Singapore, 119228, Singapore
- Singapore Institute of Neurotechnology (SINAPSE), Singapore, 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yanmei Yang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
1074
|
Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. NATURE REVIEWS. MATERIALS 2017; 2:17014. [PMID: 29876137 PMCID: PMC5985817 DOI: 10.1038/natrevmats.2017.14] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.
Collapse
Affiliation(s)
- Seung-Min Park
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Amin Aalipour
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Ophir Vermesh
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94304, USA
| |
Collapse
|
1075
|
Yang Z, Tian R, Wu J, Fan Q, Yung BC, Niu G, Jacobson O, Wang Z, Liu G, Yu G, Huang W, Song J, Chen X. Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging. ACS NANO 2017; 11:4247-4255. [PMID: 28345873 DOI: 10.1021/acsnano.7b01261] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconducting molecules of perylene diimide (PDI) with strong light absorption properties in the near-infrared region and good biocompatibility have received increasing attention in the field of theranostics, especially as photoacoustic (PA) imaging agents. Herein, we report a series of [64Cu]-labeled PDI nanoparticles (NPs) of different sizes (30, 60, 100, and 200 nm) as dual positron emission tomography (PET) and PA imaging probes and photothermal therapy agents. The precise size control of the PDI NPs can be achieved by adjusting the initial concentration of PDI molecules in the self-assembly process, and the photophysical property of different sized PDI NPs was studied in detail. Furthermore, we systematically investigated the size-dependent accumulation of the PDI NPs in the lymphatic system after local administration and in tumors after intravenous injection by PA and PET imaging. The results revealed that 100 nm is the best size for differentiating popliteal and sciatic LNs since the interval is around 60 min for the NPs to migrate from popliteal LNs to sciatic LNs, which is an ideal time window to facilitate surgical sentinel LN biopsy and pathological examination. Furthermore, different migration times of the different-sized PDI NPs will provide more choices for surgeons to map the specific tumor relevant LNs. PDI NP theranostics can also be applied to imaging-guided cancer therapy. The NPs with a size of 60 nm appear to be the best for tumor imaging and photothermal cancer therapy due to the maximum tumor accumulation efficiency. Thus, our study not only presents organic PDI NP theranostics but also introduces different-sized NPs for multiple bioapplications.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Jinjun Wu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| |
Collapse
|
1076
|
Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem Rev 2017; 117:6160-6224. [DOI: 10.1021/acs.chemrev.6b00525] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jia-nan Liu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Wenbo Bu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jianlin Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
1077
|
|
1078
|
Qin QS, Zhang PZ, Sun LD, Shi S, Chen NX, Dong H, Zheng XY, Li LM, Yan CH. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. NANOSCALE 2017; 9:4660-4664. [PMID: 28345715 DOI: 10.1039/c7nr00606c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lanthanide-doped luminescent nanoparticles with both emission and excitation in the near-infrared (NIR-to-NIR) region hold great promise for bioimaging. Herein, core@shell structured LiLuF4:Nd@LiLuF4 (named as Nd@Lu) nanoparticles (NPs) with highly efficient NIR emission were developed for high-performance in vivo bioimaging. Strikingly, the absolute quantum yield of Nd@Lu NPs reached as high as 32%. After coating with polyethylene glycol (PEG), the water-dispersible Nd@Lu NPs showed good bio-compatibility and low toxicity. With efficient NIR emission, the Nd@Lu NPs were clearly detectable in tissues at depths of up to 20 mm. In addition, long-term in vivo biodistribution with a high signal-to-noise ratio of 25.1 was distinctly tracked upon an ultralow-power-density excitation (10 mW cm-2) of 732 nm for the first time.
Collapse
Affiliation(s)
- Qing-Song Qin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pei-Zhi Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Shuo Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Nai-Xiu Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiao-Yu Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Le-Min Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
1079
|
Liu J, Chen C, Ji S, Liu Q, Ding D, Zhao D, Liu B. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem Sci 2017; 8:2782-2789. [PMID: 28553514 PMCID: PMC5426438 DOI: 10.1039/c6sc04384d] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
Near infrared (NIR) fluorescence imaging (700-900 nm) is a promising technology in preclinical and clinical tumor diagnosis and therapy. The availability of excellent NIR fluorescent contrast agents is still the main barrier to implementing this technology. Herein, we report the design and synthesis of two series of NIR fluorescent molecules with long wavelength excitation and aggregation-induced emission (AIE) characteristics by fine-tuning their molecular structures and substituents. Further self-assembly between an amphiphilic block co-polymer and the obtained AIE molecules leads to AIE nanoparticles (AIE NPs), which have absorption maxima at 635 nm and emission maxima between 800 and 815 nm with quantum yields of up to 4.8% in aggregated states. In vitro and in vivo toxicity results demonstrate that the synthesized AIE NPs are biocompatible. Finally, the synthesized AIE NPs have been successfully used for image-guided tumor resection with a high tumor-to-normal tissue signal ratio of 7.2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Qian Liu
- Department of Urology , Tianjin First Central Hospital , Tianjin 300192 , P. R. China .
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , Tianjin 300071 , P. R. China .
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 , Singapore .
| |
Collapse
|
1080
|
Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, Zhang X, Yang J, Zhang X, Sun H, Liu W, Liang Y, Dai H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605497. [PMID: 28117499 DOI: 10.1002/adma.201605497] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Indexed: 05/24/2023]
Abstract
A new design for second near-infrared window (NIR-II) molecular fluorophores based on a shielding unit-donor-acceptor-donor-shielding unit (S-D-A-D-S) structure is reported. With 3,4-ethylenedioxy thiophene as the donor and fluorene as the shielding unit, the best performance fluorophores IR-FE and IR-FEP exhibit an emission quantum yield of 31% in toluene and 2.0% in water, respectively, representing the brightest organic dyes in NIR-II region reported so far.
Collapse
Affiliation(s)
- Qinglai Yang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
- Research Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Huasen Wang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Bin Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Shoujun Zhu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yeteng Zhong
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Junying Wang
- Department of Physics, School of Sciences and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Hao Wan
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Antaris
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Rui Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Xiao Zhang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Jingyi Yang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Department of Physics, School of Sciences and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Weiqiang Liu
- Research Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Yongye Liang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
1081
|
Chen C, Song Z, Zheng X, He Z, Liu B, Huang X, Kong D, Ding D, Tang BZ. AIEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. Chem Sci 2017; 8:2191-2198. [PMID: 28507673 PMCID: PMC5407270 DOI: 10.1039/c6sc03859j] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Photosensitizers are generally treated as key components for photodynamic therapy. In contrast, we herein report an aggregation-induced emission luminogen (AIEgen)-based photosensitizer (TPE-Py-FFGYSA) that can serve as a non-toxic adjuvant to amplify the antitumor efficacy of paclitaxel, a well-known anticancer drug, with a synergistic effect of "0 + 1 > 1". Besides the adjuvant function, TPE-Py-FFGYSA can selectively light up EphA2 protein clusters overexpressed in cancer cells in a fluorescence turn-on mode, by taking advantage of the specific YSA peptide (YSAYPDSVPMMS)-EphA2 protein interaction. The simple incorporation of FFG as a self-assembly-aided unit between AIEgen (TPE-Py) and YSA significantly enhances the fluorescent signal output of TPE-Py when imaging EphA2 clusters in live cancer cells. Cytotoxicity and western blot studies reveal that the reactive oxygen species (ROS) generated by TPE-Py-FFGYSA upon exposure to light do not kill cancer cells, but instead provide an intracellular oxidative environment to help paclitaxel have much better efficacy. This study thus not only extends the application scope of photosensitizers, but also offers a unique theranostic system with the combination of diagnostic imaging and adjuvant antitumor therapy.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Bioactive Materials , Ministry of Education , State Key Laboratory of Medicinal Chemical Biology , College of Life Sciences , Nankai University , Tianjin 300071 , China .
| | - Zhegang Song
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Division of Biomedical Engineering , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China .
| | - Xiaoyan Zheng
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Division of Biomedical Engineering , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China .
| | - Zikai He
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Division of Biomedical Engineering , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China .
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 .
| | - Xuhui Huang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Division of Biomedical Engineering , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China .
| | - Deling Kong
- Key Laboratory of Bioactive Materials , Ministry of Education , State Key Laboratory of Medicinal Chemical Biology , College of Life Sciences , Nankai University , Tianjin 300071 , China .
| | - Dan Ding
- Key Laboratory of Bioactive Materials , Ministry of Education , State Key Laboratory of Medicinal Chemical Biology , College of Life Sciences , Nankai University , Tianjin 300071 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Division of Biomedical Engineering , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China .
| |
Collapse
|
1082
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
1083
|
Santos HDA, Ruiz D, Lifante G, Jacinto C, Juarez BH, Jaque D. Time resolved spectroscopy of infrared emitting Ag 2S nanocrystals for subcutaneous thermometry. NANOSCALE 2017; 9:2505-2513. [PMID: 28150830 DOI: 10.1039/c6nr08534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a systematic investigation on the temperature dependence of fluorescence decay dynamics of infrared emitting colloidal Ag2S nanocrystals (NCs) with different surface coatings. The drastic lifetime reduction in the biological temperature range (20-50 °C) makes Ag2S NCs outstanding candidates for high sensitivity subcutaneous lifetime-based thermal sensing in the second biological window (1000-1400 nm). Indeed, the lifetime thermal sensitivity of Ag2S NCs has been found to be as large as 3-4% °C-1 at an operating wavelength of 1250 nm. Their application for lifetime-based luminescence nanothermometry has been demonstrated through simple ex vivo experiments specially designed to elucidate the magnitude of subcutaneous thermal gradients. Experimental data were found to be in excellent agreement with numerical simulations.
Collapse
Affiliation(s)
- H D A Santos
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - D Ruiz
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - G Lifante
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - C Jacinto
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - B H Juarez
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain and Applied Physical-Chemistry Department, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - D Jaque
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
1084
|
Bai X, Wang J, Mu X, Yang J, Liu H, Xu F, Jing Y, Liu L, Xue X, Dai H, Liu Q, Sun YM, Liu C, Zhang XD. Ultrasmall WS2 Quantum Dots with Visible Fluorescence for Protection of Cells and Animal Models from Radiation-Induced Damages. ACS Biomater Sci Eng 2017; 3:460-470. [DOI: 10.1021/acsbiomaterials.6b00714] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xueting Bai
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Junying Wang
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Jiang Yang
- Environment,
Energy and Natural Resources Center, Department of Environmental Science
and Engineering, Fudan University, No. 220, Handan Road, Shanghai 200433, China
| | - Haixia Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Fujuan Xu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Yaqi Jing
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Lingfang Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xuhui Xue
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haitao Dai
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Qiang Liu
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuan-Ming Sun
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Changlong Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
1085
|
Hu Z, Chi C, Liu M, Guo H, Zhang Z, Zeng C, Ye J, Wang J, Tian J, Yang W, Xu W. Nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging allows precise image-guided tumor-removal surgery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1323-1331. [PMID: 28115248 DOI: 10.1016/j.nano.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 01/16/2023]
Abstract
Fluorescent molecular imaging technique has been actively explored for optical image-guided cancer surgery in pre-clinical and clinical research and has attracted many attentions. However, the efficacy of the fluorescent image-guided cancer surgery can be compromised by the low signal-to-noise ratio caused by the external light excitation. This study presents a novel nanoparticle-mediated radiopharmaceutical-excited fluorescent (REF) image-guided cancer surgery strategy, which employs the internal dual-excitation of europium oxide nanoparticles through both gamma rays and Cerenkov luminescence emitted from radiopharmaceuticals. The performance of the novel image-guided surgery technique was systematically evaluated using subcutaneous breast cancer 4 T1 tumor models, orthotropic and orthotropic-ectopic hepatocellular carcinoma tumor-bearing mice. The results reveal that the novel REF image-guided cancer surgery technique exhibits high performance of detecting invisible ultra-small size tumor (even less than 1 mm) and residual tumor tissue. Our study demonstrates the high potential of the novel image-guided cancer surgery for precise tumor resection.
Collapse
Affiliation(s)
- Zhenhua Hu
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China; The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Muhan Liu
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongbo Guo
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chaoting Zeng
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jinzuo Ye
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China; The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wanhai Xu
- Department of Urinary Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
1086
|
Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A 2017; 114:962-967. [PMID: 28096386 DOI: 10.1073/pnas.1617990114] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fluorescence imaging multiplicity of biological systems is an area of intense focus, currently limited to fluorescence channels in the visible and first near-infrared (NIR-I; ∼700-900 nm) spectral regions. The development of conjugatable fluorophores with longer wavelength emission is highly desired to afford more targeting channels, reduce background autofluorescence, and achieve deeper tissue imaging depths. We have developed NIR-II (1,000-1,700 nm) molecular imaging agents with a bright NIR-II fluorophore through high-efficiency click chemistry to specific molecular antibodies. Relying on buoyant density differences during density gradient ultracentrifugation separations, highly pure NIR-II fluorophore-antibody conjugates emitting ∼1,100 nm were obtained for use as molecular-specific NIR-II probes. This facilitated 3D staining of ∼170-μm histological brain tissues sections on a home-built confocal microscope, demonstrating multicolor molecular imaging across both the NIR-I and NIR-II windows (800-1,700 nm).
Collapse
|
1087
|
|
1088
|
Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 2017; 46:2237-2271. [DOI: 10.1039/c6cs00908e] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on small molecular ligand-targeted fluorescent imaging probes and fluorescent theranostics, including their design strategies and applications in clinical tumor treatment.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Changjun Lv
- Department of Respiratory Medicine
- Affiliated Hospital of Binzhou Medical University
- Binzhou 256603
- China
| | - Jaebum Choo
- Department of Bionano Engineering
- Hanyang University
- Ansan 426-791
- South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
1089
|
Ge XL, Zhang ZL, Xie ZX, Cui R, Pang DW. Revealing the biodistribution and clearance of Ag2Se near-infrared quantum dots in mice. NEW J CHEM 2017. [DOI: 10.1039/c7nj02126g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-small Ag2Se QDs can be cleared from the mice body mostly by renal excretion without significant long-term organ accumulation.
Collapse
Affiliation(s)
- Xiao-Lei Ge
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform)
- State Key Laboratory of Virology
- and Wuhan Institute of Biotechnology
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform)
- State Key Laboratory of Virology
- and Wuhan Institute of Biotechnology
| | - Zhi-Xiong Xie
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform)
- State Key Laboratory of Virology
- and Wuhan Institute of Biotechnology
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform)
- State Key Laboratory of Virology
- and Wuhan Institute of Biotechnology
| |
Collapse
|
1090
|
Morisue M, Ueno I, Nakanishi T, Matsui T, Sasaki S, Shimizu M, Matsui J, Hasegawa Y. Amorphous porphyrin glasses exhibit near-infrared excimer luminescence. RSC Adv 2017. [DOI: 10.1039/c7ra02752d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amorphous nature of a series of zinc–porphyrins bearing two 3,4,5-tri((S)-3,7-dimethyloctyloxy)phenyl groups at the meso-positions, named “porphyrin glass”, were tolerant of π-conjugation engineering in ethynylene-linked dimers.
Collapse
Affiliation(s)
- Mitsuhiko Morisue
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Ikuya Ueno
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | | | - Takafumi Matsui
- Graduate School of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Jun Matsui
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata
- Japan
| | | |
Collapse
|
1091
|
Wang D, Liu B, Quan Z, Li C, Hou Z, Xing B, Lin J. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. J Mater Chem B 2017; 5:2209-2230. [DOI: 10.1039/c6tb03117j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review primarily focuses on the new advances in the design and theranostic applications of rare earth upconversion nanoparticles (UCNPs)–NIR photothermal absorbers multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zewei Quan
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Chunxia Li
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Bengang Xing
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
1092
|
Wang X, Liu L, Zhu S, Peng J, Li L. Preparation of exciplex-based fluorescent organic nanoparticles and their application in cell imaging. RSC Adv 2017. [DOI: 10.1039/c7ra08142a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel organic fluorescent nanoparticles based on exciplex were prepared and have been successfully applied in live cell imaging.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Jinghong Peng
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
1093
|
Chin AL, Zhong Y, Tong R. Emerging strategies in near-infrared light triggered drug delivery using organic nanomaterials. Biomater Sci 2017; 5:1491-1499. [DOI: 10.1039/c7bm00348j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Near-infrared light has significant advantages for light-triggered drug delivery systems within deep tissues.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Yongliang Zhong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Rong Tong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
1094
|
Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman MLD. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien) 2017; 159:151-167. [PMID: 27878374 PMCID: PMC5177668 DOI: 10.1007/s00701-016-3028-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) is a technique used to enhance visualization of tumor margins in order to increase the extent of tumor resection in glioma surgery. In this paper, we systematically review all clinically tested fluorescent agents for application in FGS for glioma and all preclinically tested agents with the potential for FGS for glioma. METHODS We searched the PubMed and Embase databases for all potentially relevant studies through March 2016. We assessed fluorescent agents by the following outcomes: rate of gross total resection (GTR), overall and progression-free survival, sensitivity and specificity in discriminating tumor and healthy brain tissue, tumor-to-normal ratio of fluorescent signal, and incidence of adverse events. RESULTS The search strategy resulted in 2155 articles that were screened by titles and abstracts. After full-text screening, 105 articles fulfilled the inclusion criteria evaluating the following fluorescent agents: 5-aminolevulinic acid (5-ALA) (44 studies, including three randomized control trials), fluorescein (11), indocyanine green (five), hypericin (two), 5-aminofluorescein-human serum albumin (one), endogenous fluorophores (nine) and fluorescent agents in a pre-clinical testing phase (30). Three meta-analyses were also identified. CONCLUSIONS 5-ALA is the only fluorescent agent that has been tested in a randomized controlled trial and results in an improvement of GTR and progression-free survival in high-grade gliomas. Observational cohort studies and case series suggest similar outcomes for FGS using fluorescein. Molecular targeting agents (e.g., fluorophore/nanoparticle labeled with anti-EGFR antibodies) are still in the pre-clinical phase, but offer promising results and may be valuable future alternatives.
Collapse
Affiliation(s)
- Joeky T Senders
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ivo S Muskens
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Aditya V Karhade
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - David J Cote
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Timothy R Smith
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
1095
|
Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window. J Am Chem Soc 2016; 138:16192-16195. [PMID: 27935695 PMCID: PMC5474680 DOI: 10.1021/jacs.6b08973] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a hybrid organic-inorganic system consisting of epitaxial NaYF4:Yb3+/X3+@NaYbF4@NaYF4:Nd3+ (X = null, Er, Ho, Tm, or Pr) core/shell/shell (CSS) nanocrystal with organic dye, indocyanine green (ICG) on the nanocrystal surface. This system is able to produce a set of narrow band emissions with a large Stokes-shift (>200 nm) in the second biological window of optical transparency (NIR-II, 1000-1700 nm), by directional energy transfer from light-harvesting surface ICG, via lanthanide ions in the shells, to the emitter X3+ in the core. Surface ICG not only increases the NIR-II emission intensity of inorganic CSS nanocrystals by ∼4-fold but also provides a broadly excitable spectral range (700-860 nm) that facilitates their use in bioapplications. We show that the NIR-II emission from ICG-sensitized Er3+-doped CSS nanocrystals allows clear observation of a sharp image through 9 mm thick chicken breast tissue, and emission signal detection through 22 mm thick tissue yielding a better imaging profile than from typically used Yb/Tm-codoped upconverting nanocrystals imaged in the NIR-I region (700-950 nm). Our result on in vivo imaging suggests that these ICG-sensitized CSS nanocrystals are suitable for deep optical imaging in the NIR-II region.
Collapse
Affiliation(s)
- Wei Shao
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Guanying Chen
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Andrey Kuzmin
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Hilliard L. Kutscher
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Artem Pliss
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Tymish Y. Ohulchanskyy
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People’s Republic of China
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
1096
|
Del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM. Overcoming Autofluorescence: Long-Lifetime Infrared Nanoparticles for Time-Gated In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10188-10193. [PMID: 27711997 DOI: 10.1002/adma.201603583] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/16/2016] [Indexed: 06/06/2023]
Abstract
The always present and undesired contribution of autofluorescence is here completely avoided by combining a simple time gating technology with long lifetime neodymium doped infrared-emitting nanoparticles.
Collapse
Affiliation(s)
- Blanca Del Rosal
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Dirk H Ortgies
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Nuria Fernández
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Emma Martín Rodríguez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| |
Collapse
|
1097
|
Zhang H, Salo D, Kim DM, Komarov S, Tai YC, Berezin MY. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:126006. [PMID: 27930773 PMCID: PMC5147011 DOI: 10.1117/1.jbo.21.12.126006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/11/2016] [Indexed: 05/20/2023]
Abstract
Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.
Collapse
Affiliation(s)
- Hairong Zhang
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Daniel Salo
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - David M. Kim
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Sergey Komarov
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Yuan-Chuan Tai
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Mikhail Y. Berezin
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Address all correspondence to: Mikhail Y. Berezin, E-mail:
| |
Collapse
|
1098
|
Garland M, Yim JJ, Bogyo M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem Biol 2016; 23:122-136. [PMID: 26933740 DOI: 10.1016/j.chembiol.2015.12.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 01/02/2023]
Abstract
The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resection, and monitor therapeutic response. Therefore, there is a great opportunity for chemists to develop chemically tractable probes that can image cancer in vivo. This review focuses on recent advances in the development of optical probes, as well as their current and future applications in the clinical management of cancer. The progress in probe development described here suggests that optical imaging is an important and rapidly developing field of study that encourages continued collaboration among chemists, biologists, and clinicians to further refine these tools for interventional surgical imaging, as well as for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Megan Garland
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
1099
|
Kim E. Replacement of Dialkyl Amino Group on D-A Type Fluorophores to Increase the Brightness. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eunha Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 16499 Korea
| |
Collapse
|
1100
|
He H, Wang Z, Cheng T, Liu X, Wang X, Wang J, Ren H, Sun Y, Song Y, Yang J, Xia Y, Wang S, Zhang X, Huang F. Visible and Near-Infrared Dual-Emission Carbogenic Small Molecular Complex with High RNA Selectivity and Renal Clearance for Nucleolus and Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28529-28537. [PMID: 27704754 DOI: 10.1021/acsami.6b10737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescence imaging requires bioselective, sensitive, nontoxic molecular probes to detect the precise location of lesions for fundamental research and clinical applications. Typical inorganic semiconductor nanomaterials with large sizes (>10 nm) can offer high-quality fluorescence imaging due to their fascinating optical properties but are limited to low selectivity as well as slow clearance pathway. We here report an N- and O-rich carbogenic small molecular complex (SMC, MW < 1000 Da) that exhibits high quantum yield (up to 80%), nucleic acid-binding enhanced excitation-dependent fluorescence (EDF), and a near-infrared (NIR) emission peaked at 850 nm with an ultralarge Stokes shift (∼500 nm). SMCs show strong rRNA affinity, and the resulting EDF enhancement allows multicolor visualization of nucleoli in cells for clear statistics. Furthermore, SMCs can be efficiently accumulated in tumor in vivo after injection into tumor-bearing mice. The NIR emission affords high signal/noise ratio imaging for delineating the true extent of tumor. Importantly, about 80% of injected SMCs can be rapidly excreted from the body in 24 h. No appreciable toxicological responses were observed up to 30 days by hematological, biochemical, and pathological examinations. SMCs have great potential as a promising nucleolus- and tumor-specific agent for medical diagnoses and biomedical research.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Tiantian Cheng
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Xu Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Junying Wang
- Department of Physics, School of Science, Tianjin University , Tianjin 300354, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Jiang Yang
- Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University , No. 220, Handan Road, Shanghai 200433, China
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Xiaodong Zhang
- Department of Physics, School of Science, Tianjin University , Tianjin 300354, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| |
Collapse
|