1051
|
Lindblom L, Ekman S. Molecular evidence supports the distinction between Xanthoria parietina and X. aureola (Teloschistaceae, lichenized Ascomycota). ACTA ACUST UNITED AC 2005; 109:187-99. [PMID: 15839102 DOI: 10.1017/s0953756204001790] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aims to clarify taxonomic relationships within the current concept of Xanthoria parietina in northern Europe. For comparison, X. calcicola was also included in the study. Morphological as well as molecular data were utilized. Morphology indicated the presence of three species, Xanthoria parietina, X. calcicola, and X. aureola, the latter of which is resurrected here from synonymy. The most important separating characters involve colour and thickness of the thallus, lobe width, morphology of laminar structures, and the texture of the upper surface. X. aureola, as recognized here, mostly occurs on seashore rocks. Part of the IGS region as well as the complete ITS were sequenced in 70 individual thalli representing ten geographical regions in Europe. In total, 19 different IGS haplotypes and 20 different ITS haplotypes were present in the data set. Owing to indications of possible recombination between the IGS and the ITS, the two data sets were analyzed separately. Haplotype networks were estimated, both of which indicate that X. parietina is distinct from X. aureola and X. calcicola. In our sample, the two latter do not share haplotypes, but are only separated by a few mutational steps.
Collapse
Affiliation(s)
- Louise Lindblom
- Department of Biology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.
| | | |
Collapse
|
1052
|
Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E. Widespread Recombination in Published Animal mtDNA Sequences1. Mol Biol Evol 2005; 22:925-33. [PMID: 15647518 DOI: 10.1093/molbev/msi084] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.
Collapse
Affiliation(s)
- A D Tsaousis
- Department of Biology, University of Crete, Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
1053
|
Niebert M, Tönjes RR. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J Virol 2005; 79:649-54. [PMID: 15596862 PMCID: PMC538718 DOI: 10.1128/jvi.79.1.649-654.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 08/23/2004] [Indexed: 11/20/2022] Open
Abstract
Different Suiformes with increasing phylogenetic distance to the common pig (Sus scrofa) were assayed for the presence of porcine endogenous retroviruses (PERV) in general (pol gene), while the distribution of long terminal repeat (LTR) types (with or without repeats in U3) and env genes (classes A, B, and C) were determined in detail. PERV was not detectable in the most distantly related species, while classes PERV-A and PERV-B are present in Suiformes originating in the Pliocene epoch, and class PERV-C was detectable only in S. scrofa and in closely related species originating in the Holocene epoch. This distribution pattern of PERV classes is in line with our previous study on the age of PERV (45) and suggests an African origin of about 7.5 million years ago (MYA) and a gradual spread of PERV through the Suiformes. It seems likely that PERV-C originated more recently (1.5 to 3.5 MYA) by recombination with a homologue of unknown descent, while the origin of the repeatless LTR was a separate event approximately 3.5 MYA.
Collapse
|
1054
|
Martin DP, Posada D, Crandall KA, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 2005; 21:98-102. [PMID: 15665649 DOI: 10.1089/aid.2005.21.98] [Citation(s) in RCA: 625] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed a modified BOOTSCAN algorithm that may be used to screen nucleotide sequence alignments for evidence of recombination without prior identification of nonrecombinant reference sequences. The algorithm is fast and includes a Bonferroni corrected statistical test of recombination to circumvent the multiple testing problems encountered when using the BOOTSCAN method to explore alignments for evidence of recombination. Using both simulated and real datasets we demonstrate that the modified algorithm is more powerful than other phylogenetic recombination detection methods and performs almost as well as one of the best substitution distribution recombination detection methods.
Collapse
Affiliation(s)
- D P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.
| | | | | | | |
Collapse
|
1055
|
Bos DH, Posada D. Using models of nucleotide evolution to build phylogenetic trees. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:211-227. [PMID: 15572070 DOI: 10.1016/j.dci.2004.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 06/17/2004] [Accepted: 07/31/2004] [Indexed: 05/24/2023]
Abstract
Molecular phylogenetics and its applications are popular and useful tools for making comparative investigations in genetics; however, estimating phylogenetic trees is not always straightforward. Some phylogenetic estimators use an explicit model of nucleotide evolution to estimate evolutionary parameters such as branch lengths and tree topology. There are many models to choose from, and use of the optimal model for a particular data set is important to avoid a loss of power and accuracy in phylogenetic estimations. Here, we review some molecular evolutionary forces and the parameters included in some common models of evolution used to interpret resulting patterns of molecular variation. We present some statistical methods of selecting a particular model of nucleotide evolution, and provide an empirical example of model selection. Statistical model selection strikes a balance between the bias introduced by some models and the increased variance of parameter estimates that results from using other models.
Collapse
Affiliation(s)
- David H Bos
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | |
Collapse
|
1056
|
Morris RT, Drouin G. Ectopic gene conversions in four Escherichia coli genomes: increased recombination in pathogenic strains. J Mol Evol 2004; 58:596-605. [PMID: 15170262 DOI: 10.1007/s00239-004-2581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
We characterized the ectopic gene conversions in the genomes of the K-12 MG1655, O157:H7 Sakai, O157:H7 EDL933, and CFT073 strains of E coli. Compared to the three pathogenic strains, the K-12 strain has a much smaller number of gene families, its gene families contain fewer genes, and gene conversions are less frequent. Whereas the three pathogenic strains have gene conversions covering hundreds of nucleotides when their flanking regions have as little as 50% similarity, flanking region similarity of at least 94% on both sides of the converted region is required to observe conversions of more than 87 nucleotides in the K-12 strain. Recombination is therefore more frequent and requires less sequence similarity in the three pathogenic strains than in K-12. This higher recombination level might be due to mutations in some of their mismatch-repair genes. In contrast with the gene conversions present in the yeast genome, the gene conversions found in the E. coli genomes do not occur more frequently between duplicated genes that are close to one another than between duplicated genes that are far apart and are randomly distributed along the length of the genes. In E. coli, gene conversions are not more frequent near the origin of replication. However, they do occur more frequently near the terminus of replication of the Sakai genome, where multigene family members are more abundant. This suggests that, in E. coli, gene conversions occur randomly between genes located in different chromosomal locations or located on different copies of the multiple chromosomes found in E. coli cells.
Collapse
Affiliation(s)
- Robert T Morris
- Département de biologie, Université d'Ottawa, 150 Louis Pasteur, K1N 6N5, Ottawa, Ontario, Canada
| | | |
Collapse
|
1057
|
Tanabe Y, Kaya K, Watanabe MM. Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 2004; 58:633-41. [PMID: 15461420 DOI: 10.1007/s00239-004-2583-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recombination has been suggested to be an important factor for the genetic variation of bacterial genes, but few studies have dealt with intragenic recombination between the same or closely related species of cyanobacteria. Here we provide strong evidence for recombination in the microcystin synthetase (mcy) gene cluster of the toxic cyanobacteria Microcystis spp. This gene cluster contains 10 genes (mcyA to J) that encode a mixed polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) complex. mcy gene sequences were determined for four selected regions (within mcyA, D, G, and J) within the mcy gene cluster from 1 Canadian and 10 Asian toxic Microcystis and compared with previously published mcy sequences. Split decomposition analysis indicated a reticulate phylogeny of mcyA, and several potential recombination tracts of mcyA were identified by the RDP analysis and a runs test implemented in GENECONV. In contrast, no recombination was detected in the mcyD, G, and J sequences. However, discrepancies among the four mcy gene genealogies were evident from the results of independent split decomposition analyses, which were further supported by incongruence length difference (ILD) tests. Taken together, these findings suggest that both intragenic and intergenic recombination within the mcy gene cluster contributes to the genetic diversity of the mcy genes of Microcystis spp.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Environmental Biology Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | |
Collapse
|
1058
|
Berlin S, Smith NGC, Ellegren H. Do avian mitochondria recombine? J Mol Evol 2004; 58:163-7. [PMID: 15042336 DOI: 10.1007/s00239-003-2537-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 08/04/2003] [Indexed: 11/29/2022]
Abstract
The dogma of strict maternal inheritance of mitochondria is now being tested with population genetics methods on sequence data from many species. In this study we investigated whether recombination occurs in the mitochondria of the blue tit ( Parus caeruleus) by studying polymorphisms in the mitochondrial control region and in a recently identified (A)(n) microsatellite on the W chromosome. The female heterogamety of avian sex chromosomes allows a test of whether mitochondrial recombination affects genealogical inference by comparison of mitochondrial and W-linked sequence variation. There is no discrepancy between mitochondrial and W-linked genealogies in blue tits, consistent with no recombination. We also analyzed mitochondrial sequence variation in both blue tits and peregrine falcons ( Falco peregrinus) using a coalescent-based approach which accounts for recurrent mutation; in neither bird species did we find evidence of recombination. We conclude that it is unlikely that mitochondrial recombination has large effects on mitochondrial genetic variability in birds.
Collapse
Affiliation(s)
- Sofia Berlin
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
1059
|
Piganeau G, Eyre-Walker A. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity (Edinb) 2004; 92:282-8. [PMID: 14747833 DOI: 10.1038/sj.hdy.6800413] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.
Collapse
Affiliation(s)
- G Piganeau
- Center for the Study of Evolution, School of Biological Sciences, Biols, Sussex University, BN1 9QG Brighton, UK.
| | | |
Collapse
|
1060
|
Linder CR, Rieseberg LH. Reconstructing patterns of reticulate evolution in plants. AMERICAN JOURNAL OF BOTANY 2004; 91:1700-8. [PMID: 21652318 DOI: 10.3732/ajb.91.10.1700] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Until recently, rigorously reconstructing the many hybrid speciation events in plants has not been practical because of the limited number of molecular markers available for plant phylogenetic reconstruction and the lack of good, biologically based methods for inferring reticulation (network) events. This situation should change rapidly with the development of multiple nuclear markers for phylogenetic reconstruction and new methods for reconstructing reticulate evolution. These developments will necessitate a much greater incorporation of population genetics into phylogenetic reconstruction than has been common. Population genetic events such as gene duplication coupled with lineage sorting and meiotic and sexual recombination have always had the potential to affect phylogenetic inference. For tree reconstruction, these problems are usually minimized by using uniparental markers and nuclear markers that undergo rapid concerted evolution. Because reconstruction of reticulate speciation events will require nuclear markers that lack these characteristics, effects of population genetics on phylogenetic inference will need to be addressed directly. Current models and methods that allow hybrid speciation to be detected and reconstructed are discussed, with a focus on how lineage sorting and meiotic and sexual recombination affect network reconstruction. Approaches that would allow inference of phylogenetic networks in their presence are suggested.
Collapse
Affiliation(s)
- C Randal Linder
- Section of Integrative Biology and the Center for Computational Biology and Bioinformatics, University of Texas-Austin, 1 University Station-A6700, Austin, Texas 78712 USA
| | | |
Collapse
|
1061
|
Linder CR, Rieseberg LH. Reconstructing patterns of reticulate evolution in plants. AMERICAN JOURNAL OF BOTANY 2004; 91:1700-1708. [PMID: 18677414 PMCID: PMC2493047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Until recently, rigorously reconstructing the many hybrid speciation events in plants has not been practical because of the limited number of molecular markers available for plant phylogenetic reconstruction and the lack of good, biologically based methods for inferring reticulation (network) events. This situation should change rapidly with the development of multiple nuclear markers for phylogenetic reconstruction and new methods for reconstructing reticulate evolution. These developments will necessitate a much greater incorporation of population genetics into phylogenetic reconstruction than has been common. Population genetic events such as gene duplication coupled with lineage sorting and meiotic and sexual recombination have always had the potential to affect phylogenetic inference. For tree reconstruction, these problems are usually minimized by using uniparental markers and nuclear markers that undergo rapid concerted evolution. Because reconstruction of reticulate speciation events will require nuclear markers that lack these characteristics, effects of population genetics on phylogenetic inference will need to be addressed directly. Current models and methods that allow hybrid speciation to be detected and reconstructed are discussed, with a focus on how lineage sorting and meiotic and sexual recombination affect network reconstruction. Approaches that would allow inference of phylogenetic networks in their presence are suggested.
Collapse
Affiliation(s)
- C. Randal Linder
- Section of Integrative Biology and the Center for Computational Biology and Bioinformatics, University of Texas–Austin, 1 University Station—A6700, Austin, Texas 78712 USA
| | - Loren H. Rieseberg
- Department of Biology, Jordan Hall, Indiana University, Bloomington, Indiana 47405 USA
| |
Collapse
|
1062
|
Graham J, McNeney B, Seillier-Moiseiwitsch F. Stepwise detection of recombination breakpoints in sequence alignments. Bioinformatics 2004; 21:589-95. [PMID: 15388518 DOI: 10.1093/bioinformatics/bti040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION We propose a stepwise approach to identify recombination breakpoints in a sequence alignment. The approach can be applied to any recombination detection method that uses a permutation test and provides estimates of breakpoints. RESULTS We illustrate the approach by analyses of a simulated dataset and alignments of real data from HIV-1 and human chromosome 7. The presented simulation results compare the statistical properties of one-step and two-step procedures. More breakpoints are found with a two-step procedure than with a single application of a given method, particularly for higher recombination rates. At higher recombination rates, the additional breakpoints were located at the cost of only a slight increase in the number of falsely declared breakpoints. However, a large proportion of breakpoints still go undetected. AVAILABILITY A makefile and C source code for phylogenetic profiling and the maximum chi2 method, tested with the gcc compiler on Linux and WindowsXP, are available at http://stat-db.stat.sfu.ca/stepwise/ CONTACT jgraham@stat.sfu.ca.
Collapse
Affiliation(s)
- Jinko Graham
- Department of Statistics and Actuarial Science, Simon Fraser University Burnaby, Canada V5A 1S6.
| | | | | |
Collapse
|
1063
|
Martin DP, Williamson C, Posada D. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 2004; 21:260-2. [PMID: 15377507 DOI: 10.1093/bioinformatics/bth490] [Citation(s) in RCA: 765] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED RDP2 is a Windows 95/XP program that examines nucleotide sequence alignments and attempts to identify recombinant sequences and recombination breakpoints using 10 published recombination detection methods, including GENECONV, BOOTSCAN, MAXIMUM chi(2), CHIMAERA and SISTER SCANNING. The program enables fast automated analysis of large alignments (up to 300 sequences containing 13 000 sites), and interactive exploration, management and verification of results with different recombination detection and tree drawing methods. AVAILABILITY RDP2 is available free from the RDP2 website (http://darwin.uvigo.es/rdp/rdp.html) CONTACT darren@science.uct.ac.za SUPPLEMENTARY INFORMATION Detailed descriptions of RDP2 and the methods it implements are included in the program manual, which can be downloaded from the RDP2 website.
Collapse
Affiliation(s)
- D P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town 7000, South Africa.
| | | | | |
Collapse
|
1064
|
Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A 2004; 101:14150-5. [PMID: 15375210 PMCID: PMC521097 DOI: 10.1073/pnas.0402745101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomics of closely related bacterial isolates is a powerful method for uncovering virulence and other important genome elements. We determined draft sequences (8-fold coverage) of the genomes of strains JD1 and N40 of Borrelia burgdorferi sensu stricto, the causative agent of Lyme disease, and we compared the predicted genes from the two genomes with those from the previously sequenced B31 genome. The three genomes are closely related and are evolutionarily approximately equidistant ( approximately 0.5% pairwise nucleotide differences on the main chromosome). We used a Poisson model of nucleotide substitution to screen for genes with elevated levels of nucleotide polymorphisms. The three-way genome comparison allowed distinction between polymorphisms introduced by mutations and those introduced by recombination using the method of phylogenetic partitioning. Tests for recombination suggested that patches of high-density nucleotide polymorphisms on the chromosome and plasmids arise by DNA exchange. The role of recombination as the main mechanism driving B. burgdorferi diversification was confirmed by multilocus sequence typing of 18 clinical isolates at 18 polymorphic loci. A strong linkage between the multilocus sequence genotypes and the major alleles of outer-surface protein C (ospC) suggested that balancing selection at ospC is a dominant force maintaining B. burgdorferi diversity in local populations. We conclude that B. burgdorferi undergoes genome-wide genetic exchange, including plasmid transfers, and previous reports of its clonality are artifacts from the use of geographically and ecological isolated samples. Frequent recombination implies a potential for rapid adaptive evolution and a possible polygenic basis of B. burgdorferi pathogenicity.
Collapse
Affiliation(s)
- Wei-Gang Qiu
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1065
|
Piganeau G, Gardner M, Eyre-Walker A. A broad survey of recombination in animal mitochondria. Mol Biol Evol 2004; 21:2319-25. [PMID: 15342796 DOI: 10.1093/molbev/msh244] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination in mitochondrial DNA (mtDNA) remains a controversial topic. Here we present a survey of 279 animal mtDNA data sets, of which 12 were from asexual species. Using four separate tests, we show that there is widespread evidence of recombination; for one test as many as 14.2% of the data sets reject a model of clonal inheritance and in several data sets, including primates, the recombinants can be identified visually. We show that none of the tests give significant results for obligate clonal species (apomictic pathogens) and that the sexual species show significantly greater evidence of recombination than asexual species. For some data sets, such as Macaca nemestrina, additional data sets suggest that the recombinants are not artifacts. For others, it cannot be determined whether the recombinants are real or produced by laboratory error. Either way, the results have important implications for how mtDNA is sequenced and used.
Collapse
Affiliation(s)
- Gwenaël Piganeau
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
1066
|
Heath L, Martin DP, Warburton L, Perrin M, Horsfield W, Kingsley C, Rybicki EP, Williamson AL. Evidence of unique genotypes of beak and feather disease virus in southern Africa. J Virol 2004; 78:9277-84. [PMID: 15308722 PMCID: PMC506959 DOI: 10.1128/jvi.78.17.9277-9284.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 04/01/2004] [Indexed: 11/20/2022] Open
Abstract
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.
Collapse
Affiliation(s)
- Livio Heath
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
1067
|
Stanhope MJ, Brown JR, Amrine-Madsen H. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. INFECTION GENETICS AND EVOLUTION 2004; 4:15-9. [PMID: 15019585 PMCID: PMC7128439 DOI: 10.1016/j.meegid.2003.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 11/20/2022]
Abstract
The origins and evolutionary history of the Severe Acute Respiratory Syndrome (SARS) coronavirus (SARS-CoV) remain an issue of uncertainty and debate. Based on evolutionary analyses of coronavirus DNA sequences, encompassing an approximately 13 kb stretch of the SARS-TOR2 genome, we provide evidence that SARS-CoV has a recombinant history with lineages of types I and III coronavirus. We identified a minimum of five recombinant regions ranging from 83 to 863 bp in length and including the polymerase, nsp9, nsp10, and nsp14. Our results are consistent with a hypothesis of viral host jumping events, concomitant with the reassortment of bird and mammalian coronaviruses, a scenario analogous to earlier outbreaks of influenzae.
Collapse
Affiliation(s)
- Michael J Stanhope
- Bioinformatics Division, Genetics Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | | | | |
Collapse
|
1068
|
McFadden CS, Hutchinson MB. Molecular evidence for the hybrid origin of species in the soft coral genus Alcyonium (Cnidaria: Anthozoa: Octocorallia). Mol Ecol 2004; 13:1495-505. [PMID: 15140093 DOI: 10.1111/j.1365-294x.2004.02167.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several recent studies have suggested that hybridization may play a previously unrecognized and important role in the evolution of corals. Our observations of polymorphic and recombinant sequences in the multicopy ribosomal internal transcribed spacer (ITS) region suggested the possible hybrid origin of two European soft coral species, Alcyonium hibernicum and Bellonella bocagei. To examine this possibility further we cloned and sequenced ITS-1 from multiple individuals and populations of these two species as well as two sympatric congeners, A. coralloides and A. sp. M2. Phylogenetic analyses separated the observed sequence variants into two distinct clades. All A. coralloides sequences belonged to clade A, while A. sp. M2 had only clade B sequences. A majority of A. hibernicum individuals, however, contained both clade A and B sequences that were identical to the predominant sequence variants found in A. coralloides and A. sp. M2, respectively. This pattern of additivity suggests that A. hibernicum originated from a hybrid cross between A. coralloides and A. sp. M2, a hypothesis that is supported by its unusual mode of reproduction (meiotic parthenogenesis). The predominant sequence variant found in B. bocagei was a unique, derived clade B sequence; in addition, however, most individuals of this species also had copies of a sequence identified as a recombinant between clade A and clade B sequence types. The presence of this recombinant sequence in the B. bocagei genome suggests that this species may also be the product of past hybridization events within the clade. Reticulate evolution may explain the failure of several previous studies to resolve the phylogeny of these four species.
Collapse
|
1069
|
Haydon DT, Bastos ADS, Awadalla P. Low linkage disequilibrium indicative of recombination in foot-and-mouth disease virus gene sequence alignments. J Gen Virol 2004; 85:1095-1100. [PMID: 15105526 DOI: 10.1099/vir.0.19588-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have applied tests for detecting recombination to genes of foot-and-mouth disease virus (FMDV). Our approach estimated summary statistics of linkage disequilibrium (LD), which are sensitive to recombination. Using the genealogical relationships, rate heterogeneity and mutation parameters estimated from individual sets of aligned gene sequences, we simulated matching RNA sequence datasets without recombination. These simulated datasets allowed for recurrent mutations at any site to mimic homoplasy in virus sequence data and allow construction of null distributions for LD parameters expected in the absence of recombination. We tested for recombination in two ways: by comparing LD in observed data with corresponding null distributions obtained from simulated data; and by testing for a negative relationship between observed LD between pairs of polymorphic nucleotide sites and inter-site distance. We applied these tests to six FMDV datasets from four serotypes and found some evidence for recombination in all of them.
Collapse
Affiliation(s)
- Daniel T Haydon
- Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Armanda D S Bastos
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Philip Awadalla
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| |
Collapse
|
1070
|
Moreno IM, Malpica JM, Díaz-Pendón JA, Moriones E, Fraile A, García-Arenal F. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 2004; 318:451-60. [PMID: 14972570 DOI: 10.1016/j.virol.2003.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 10/03/2003] [Accepted: 10/03/2003] [Indexed: 11/17/2022]
Abstract
The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection.
Collapse
Affiliation(s)
- I M Moreno
- Departamento de Biotecnología, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
1071
|
Vieth S, Torda AE, Asper M, Schmitz H, Günther S. Sequence analysis of L RNA of Lassa virus. Virology 2004; 318:153-68. [PMID: 14972544 DOI: 10.1016/j.virol.2003.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 07/23/2003] [Accepted: 09/12/2003] [Indexed: 11/23/2022]
Abstract
The L RNA of three Lassa virus strains originating from Nigeria, Ghana/Ivory Coast, and Sierra Leone was sequenced and the data subjected to structure predictions and phylogenetic analyses. The L gene products had 2218-2221 residues, diverged by 18% at the amino acid level, and contained several conserved regions. Only one region of 504 residues (positions 1043-1546) could be assigned a function, namely that of an RNA polymerase. Secondary structure predictions suggest that this domain is very similar to RNA-dependent RNA polymerases of known structure encoded by plus-strand RNA viruses, permitting a model to be built. Outside the polymerase region, there is little structural data, except for regions of strong alpha-helical content and probably a coiled-coil domain at the N terminus. No evidence for reassortment or recombination during Lassa virus evolution was found. The secondary structure-assisted alignment of the RNA polymerase region permitted a reliable reconstruction of the phylogeny of all negative-strand RNA viruses, indicating that Arenaviridae are most closely related to Nairoviruses. In conclusion, the data provide a basis for structural and functional characterization of the Lassa virus L protein and reveal new insights into the phylogeny of negative-strand RNA viruses.
Collapse
Affiliation(s)
- Simon Vieth
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
1072
|
Abstract
Biological evolution has parallels with the development of natural languages, man-made artifacts, and manuscript texts. As a result, phylogenetic methods developed for evolutionary biology are increasingly being used in linguistics, anthropology, archaeology, and textual criticism. Despite this popularity, there have been few critical tests of their suitability. Here, we apply phylogenetic methods to artificial manuscripts with a known true phylogeny, produced by modern 'scribes'. Although the survival of ancestral forms and multiple descendants from a single ancestor are probably much more common in manuscript evolution than biological evolution, we were able to reconstruct most of the true phylogeny. This is important because phylogenetic methods are influencing the production of critical editions of major written works. We also show that the variation in rates of change at different locations in the text follows a gamma distribution, as is often the case in DNA sequences.
Collapse
Affiliation(s)
- Matthew Spencer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | |
Collapse
|
1073
|
Abdo Z, Crandall KA, Joyce P. Evaluating the performance of likelihood methods for detecting population structure and migration. Mol Ecol 2004; 13:837-51. [PMID: 15012759 DOI: 10.1111/j.1365-294x.2004.02132.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A plethora of statistical models have recently been developed to estimate components of population genetic history. Very few of these methods, however, have been adequately evaluated for their performance in accurately estimating population genetic parameters of interest. In this paper, we continue a research program of evaluation of population genetic methods through computer simulation. Specifically, we examine the software MIGRATEE-N 1.6.8 and test the accuracy of this software to estimate genetic diversity (Theta), migration rates, and confidence intervals. We simulated nucleotide sequence data under a neutral coalescent model with lengths of 500 bp and 1000 bp, and with three different per site Theta values of (0.00025, 0.0025, 0.025) crossed with four different migration rates (0.0000025, 0.025, 0.25, 2.5) to construct 1000 evolutionary trees per-combination per-sequence-length. We found that while MIGRATEE-N 1.6.8 performs reasonably well in estimating genetic diversity (Theta), it does poorly at estimating migration rates and the confidence intervals associated with them. We recommend researchers use this software with caution under conditions similar to those used in this evaluation.
Collapse
Affiliation(s)
- Zaid Abdo
- Department of Mathematics, PO Box 441103, University of Idaho, Moscow, ID 83844-1104, USA
| | | | | |
Collapse
|
1074
|
Nieto Feliner G, Gutiérrez Larena B, Fuertes Aguilar J. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). ANNALS OF BOTANY 2004; 93:189-200. [PMID: 14707002 PMCID: PMC4241081 DOI: 10.1093/aob/mch027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Isolation and drift are the main causes for geographic structure of molecular variation. In contrast, the one found in a previous survey in Armeria (Plumbaginaceae) for nuclear ribosomal ITS multicopy regions was species-independent and has been hypothesized to be due to extensive gene-flow and biased concerted evolution. Since this was inferred from a genus-level phylogenetic analysis, the aim of this study was to check for the occurrence of such structure and the validity of the proposed model at a local scale, in a southern Spanish massif (Sierra Nevada), as well as to examine the evolutionary implications at the organism level. METHODS In addition to 117 sequences of direct PCR products from genomic DNA, 50 sequences of PCR products from cloned DNA were obtained to analyse cases of intragenomic polymorphisms for the ITS regions. KEY RESULTS Sequence data confirm the occurrence of a species-independent structure at a local scale and reveal insights through the analysis of contact areas between different ITS copies (ribotypes). A comparison between cloned and direct sequences (a) confirms that, within these contact areas, ITS copies co-occur both in different individuals and within single genomes; and (b) reveals recombination between different copies. CONCLUSIONS This study supports the utility of direct sequences for detecting intra-individual polymorphism and for partially inferring the ITS copies involved, given previous knowledge of the variability. The main evolutionary implication at the organism level is that gene-flow and concerted evolution shape the geographic structure of ITS variation.
Collapse
|
1075
|
Costa-Mattioli M, Napoli AD, Ferré V, Billaudel S, Perez-Bercoff R, Cristina J. Genetic variability of hepatitis A virus. J Gen Virol 2004; 84:3191-3201. [PMID: 14645901 DOI: 10.1099/vir.0.19532-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the molecular biology of hepatitis A virus (HAV) has increased exponentially since its identification. HAV exploits all known mechanisms of genetic variation to ensure survival, including mutation and genetic recombination. HAV has been characterized by the emergence of different genotypes, three human antigenic variants and only one major serotype. This paper reviews the genetic variability and molecular epidemiology of HAV. Its evolutionary mechanisms are described with particular emphasis on genetic recombination and HAV mutation rate. Genotypic classification methods are also discussed.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, Quebec, Canada H3G 1Y6
| | - Anna Di Napoli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Virginie Ferré
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Sylviane Billaudel
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Raul Perez-Bercoff
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Juan Cristina
- Departamento de Técnicas Nucleares Aplicadas, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
1076
|
|
1077
|
Buendia P, Narasimhan G. MinPD: distance-based phylogenetic analysis and recombination detection of serially-sampled HIV quasispecies. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2004:110-9. [PMID: 16448005 PMCID: PMC3195421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A new computational method to study within-host viral evolution is explored to better understand the evolution and pathogenesis of viruses. Traditional phylogenetic tree methods are better suited to study relationships between contemporaneous species, which appear as leaves of a phylogenetic tree. However, viral sequences are often sampled serially from a single host. Consequently, data may be available at the leaves as well as the internal nodes of a phylogenetic tree. Recombination may further complicate the analysis. Such relationships are not easily expressed by traditional phylogenetic methods. We propose a new algorithm, called MinPD, based on minimum pairwise distances. Our algorithm uses multiple distance matrices and correlation rules to output a MinPD tree or network. We test our algorithm using extensive simmulations and apply it to a set of HIV sequence data isolated from one patient over a period of ten years. The proposed visualization of the phylogenetic tree\network further enhances the benefits of our methods.
Collapse
|
1078
|
Abstract
Obtaining an accurate measure of how recombination rates vary across the genome has implications for understanding the molecular basis of recombination, its evolutionary significance and the distribution of linkage disequilibrium in natural populations. Although measuring the recombination rate is experimentally challenging, good estimates can be obtained by applying population-genetic methods to DNA sequences taken from natural populations. Statistical methods are now providing insights into the nature and scale of variation in the recombination rate, particularly in humans. Such knowledge will become increasingly important owing to the growing use of population-genetic methods in biomedical research.
Collapse
Affiliation(s)
- Michael P H Stumpf
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK.
| | | |
Collapse
|
1079
|
Baumgarten A, Cannon S, Spangler R, May G. Genome-Level Evolution of Resistance Genes in Arabidopsis thaliana. Genetics 2003; 165:309-19. [PMID: 14504238 PMCID: PMC1462749 DOI: 10.1093/genetics/165.1.309] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multi-gene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.
Collapse
Affiliation(s)
- Andrew Baumgarten
- Graduate Program in Plant Biological Sciences, University of Minnesota, Saint Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
1080
|
Bousalem M, Dallot S, Fuji S, Natsuaki KT. Origin, world-wide dispersion, bio-geographical diversification, radiation and recombination: an evolutionary history of Yam mild mosaic virus (YMMV). INFECTION GENETICS AND EVOLUTION 2003; 3:189-206. [PMID: 14522183 DOI: 10.1016/s1567-1348(03)00085-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed an evolutionary epidemiological approach to understand the regional and world-wide dispersion of Yam mild mosaic virus (YMMV) by retracing its evolutionary history. Analyses of the distribution and the prevalence of YMMV in the Caribbean islands of Guadeloupe and Martinique, and in French Guyana revealed that YMMV has a wide repartition and different prevalence on Dioscorea alata L. (Asian and Oceanic origin), on D. cayenensis Lam.-D. rotundata Poir. (African origin) and on D. trifida L. (Amazon and the Caribbean origin) in this region. Considering the data on the current dispersion of the virus and the evolution and the history of the yams, the phylogenetic analysis of the 3' terminal part of the YMMV genome gave a consistent support of the Asian-Pacific origin of YMMV from D. alata species. The YMMV phylogenetic tree is star-like, suggesting an early split of the genetic lineages. An important part of the clades is constituted by a single lineage arisen by recombination. The largest emerging monophyletic group illustrates well YMMV geographical dispersion. This evolutionary pattern contrasts with the one revealed by the African distinct lineages and by the second significant monophyletic group, for which a host adaptation to D. trifida is suggested. The analysis of the pattern of nucleotide substitutions in the CP gene revealed that purifying selection dominates the evolution of the CP of potyviruses and strongly operates on the YMMV. Switching events, radiation, host and geographical adaptation and recombination events are proposed as major traits of YMMV evolutionary history.
Collapse
|
1081
|
|
1082
|
Abstract
Recombination can be a dominant force in shaping genomes and associated phenotypes. To better understand the impact of recombination on genomic evolution, we need to be able to identify recombination in aligned sequences. We review bioinformatic approaches for detecting recombination and measuring recombination rates. We also examine the impact of recombination on the reconstruction of evolutionary histories and the estimation of population genetic parameters. Finally, we review the role of recombination in the evolutionary history of bacteria, viruses, and human mitochondria. We conclude by highlighting a number of areas for future development of tools to help quantify the role of recombination in genomic evolution.
Collapse
Affiliation(s)
- David Posada
- Variagenics Inc. Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
1083
|
Rodriguez-Lanetty M. Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 2003; 28:152-68. [PMID: 12801477 DOI: 10.1016/s1055-7903(03)00033-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Symbiodinium-like dinoflagellates have been shown to be a diverse group of endosymbionts that associate mutualistically with many kinds of coral reef dwellers, including cnidarians, molluscs, and protists. A high number of genetically ITS types of symbionts have been reported to date. However, whether these recently identified Symbiodinium ITS types indeed represent independent evolutionary lineages is still unsettled. Here I tested the null hypothesis that certain group of symbionts sampled from different geographical locations are derived from a single evolutionary lineage using a nested clade analysis (NCA). I analyzed a total of 174 ITS1 sequences from GenBank and pooled them into 74 ITS1 distinct haplotypes. Using these haplotypes, the statistical parsimony criterion produced 23 independent network trees, each one corresponding to a genetically independent evolving lineage. Some of these lineages revealed certain degree of specificity with some host groups at least at the phylum level. Within the previously described 28S-rDNA phylotype A, five ITS1 lineages were resolved. Phylotypes B and C resolved each in two ITS1 lineages. The highest ITS1 symbiont diversity was observed within the phylotype F, in which 11 lineages were resolved. Moreover, most of these lineages were associated uniquely with protist hosts from the group of foraminiferans. Here it is suggested that this high genetic diversity of endosymbionts associated with foraminiferans is linked with the evolution of soritacean foraminifera, which seems to have been driven by endosymbiosis. Lastly, the absence of genetic recombination presented in this study, suggest a lack of hybridisation at least among the major 28S-rDNA phylotypes within Symbiodinium-like dinoflagellates. This supports highly the idea that these phylotypes are indeed independent evolutionary units, which should be considered at least as different species. Whether they belong to the same genus or to different higher taxa still needs to be revised.
Collapse
|
1084
|
Salemi M, De Oliveira T, Courgnaud V, Moulton V, Holland B, Cassol S, Switzer WM, Vandamme AM. Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J Virol 2003; 77:7202-13. [PMID: 12805419 PMCID: PMC164811 DOI: 10.1128/jvi.77.13.7202-7213.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 04/03/2003] [Indexed: 11/20/2022] Open
Abstract
To clarify the origin and evolution of the primate lentiviruses (PLVs), which include human immunodeficiency virus types 1 and 2 as well as their simian relatives, simian immunodeficiency viruses (SIVs), isolated from several host species, we investigated the phylogenetic relationships among the six supposedly nonrecombinant PLV lineages for which the full genome sequences are available. Employing bootscanning as an exploratory tool, we located several regions in the PLV genome that seem to have uncertain or conflicting phylogenetic histories. Phylogeny reconstruction based on distance and maximum-likelihood algorithms followed by a number of statistical tests confirms the existence of at least five putative recombinant fragments in the PLV genome with different clustering patterns. Split decomposition analysis also shows that phylogenetic relationships among PLVs may be better represented by network-based graphs, such as the ones produced by SplitsTree. Our findings not only imply that the six so-called pure PLV lineages have in fact mosaic genomes but also make more unlikely the hypothesis of cospeciation of SIVs and their simian hosts.
Collapse
Affiliation(s)
- Marco Salemi
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
1085
|
Costa-Mattioli M, Ferré V, Casane D, Perez-Bercoff R, Coste-Burel M, Imbert-Marcille BM, Andre ECM, Bressollette-Bodin C, Billaudel S, Cristina J. Evidence of recombination in natural populations of hepatitis A virus. Virology 2003; 311:51-9. [PMID: 12832202 DOI: 10.1016/s0042-6822(03)00109-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. At least seven HAV genotypes have been identified all over the world, including four human genotypes (I, II, III, and VII) and three simian strains (IV, V, and VI). Phylogenetic analysis using full-length VP1 sequences revealed that human strain 9F94 has a close genetic relation with strain SLF-88 (sub-genotype VII). Nevertheless, the same analysis using full-length VP2 or VP3 sequences revealed that strain 9F94 has a close genetic relation with strain MBB (sub-genotype IB). To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossing over had taken place in the VP1 capsid protein. These findings indicate that capsid-recombination can play a significant role in shaping the genetic diversity of HAV and, as such, can have important implications for its evolution, biology, and control.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu, 9, 44093, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1086
|
Printzen C, Ekman S, Tønsberg T. Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Mol Ecol 2003; 12:1473-86. [PMID: 12755876 DOI: 10.1046/j.1365-294x.2003.01812.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Population structure and history is poorly known in most lichenized ascomycetes. Many species display large-scale infraspecific disjunctions, which have been explained alternately by range fragmentation in species of high age and widespread long-distance dispersal. Using the lichen Cavernularia hultenii, which is widely disjunct across North America and Europe, Pleistocene and Holocene population history was inferred. The internal transcribed spacer (ITS) and part of the the intergenic spacer (IGS) region of the nuclear ribosomal DNA were sequenced in 300 individuals representing 62 populations across the range of the species. While four ancestral haplotypes are found in all areas, none of the observed tip haplotypes is present in more than one of the three part ranges. Although this is evidence for a past fragmentation event, nested clade analysis (NCA) remains equivocal in the choice between allopatric fragmentation and long-distance dispersal. Mismatch distributions indicate exponential population growth, probably during postglacial invasion of C. hultenii into formerly glaciated areas of western North America. The presence of one southern and at least one northern glacial refugium in South Central Alaska is inferred. Evidence for another refugium in the Queen Charlotte Islands or Alexander Archipelago is inconclusive because of sparse sampling. However, a range expansion was not confirmed unambiguously by NCA. The limited power of NCA to infer past range fragmentations and expansions is due apparently to the shallow haplotype network and widespread ancestral haplotypes. This can be explained by slow genetic drift causing incomplete removal of ancestral haplotypes from the postfragmentation and postexpansion areas.
Collapse
Affiliation(s)
- C Printzen
- Department of Botany, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.
| | | | | |
Collapse
|
1087
|
Strimmer K, Forslund K, Holland B, Moulton V. A novel exploratory method for visual recombination detection. Genome Biol 2003; 4:R33. [PMID: 12734013 PMCID: PMC156589 DOI: 10.1186/gb-2003-4-5-r33] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 03/10/2003] [Accepted: 03/31/2003] [Indexed: 11/17/2022] Open
Abstract
A versatile visual approach for detecting recombination and identifying recombination breakpoints within a sequence alignment is presented. The method is based on two novel diagrams - the highway plot and the occupancy plot - that graphically portray phylogenetic inhomogeneity along an alignment, and can be viewed as a synthesis of two widely used but unrelated methods: bootscanning and quartet-mapping. To illustrate the method, simulated data and HIV-1 and influenza A datasets are investigated.
Collapse
|
1088
|
Abstract
A pressing problem in studying the evolution of microbial pathogens is to determine the extent to which these genomes recombine. This information is essential for locating pathogenicity loci by using association studies or population genetic approaches. Recombination also complicates the use of phylogenetic approaches to estimate evolutionary parameters such as selection pressures. Reliable methods that detect and estimate the rate of recombination are, therefore, vital. This article reviews the approaches that are available for detecting and estimating recombination in microbial pathogens and how they can be used to understand pathogen evolution and to identify medically relevant loci.
Collapse
Affiliation(s)
- Philip Awadalla
- Section of Evolution and Ecology, University of California at Davis, California 95616, USA.
| |
Collapse
|
1089
|
Sota T, Vogler AP. Reconstructing species phylogeny of the carabid beetles Ohomopterus using multiple nuclear DNA sequences: heterogeneous information content and the performance of simultaneous analyses. Mol Phylogenet Evol 2003; 26:139-54. [PMID: 12470945 DOI: 10.1016/s1055-7903(02)00311-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We attempted a phylogenetic reconstruction for the carabid subgenus Ohomopterus (genus Carabus), a notable case of radiation with mitochondrial introgression across species. Sequence data from five nuclear single copy loci were used, including wingless (Wg), phosphoenolpyruvate carboxykinase (PepCK), cytochrome c (Cytc), elongation factor-1alpha (EF-1alpha), and an anonymous single copy locus (Carab1). Sequences of Cytc, EF-1alpha, and Carab1 included intron or intron-like parts with length variation. The analysis of individual loci resulted in low resolution of the phylogenetic relationships, and the monophyly of several morphologically recognized species for which multiple specimens were analyzed was not revealed. Several specimens were heterozygous, with non-monophyletic alleles observed in three of the five loci at which alleles in heterozygotes were separated. In a simultaneous analysis of the five loci with ambiguously aligned parts eliminated and heterozygotic sites treated as missing, the resulting tree was well resolved, but the branch support was generally weak because of conflicting phylogenetic signals from different loci. We also attempted to incorporate allelic sequence data plus the ambiguously aligned parts in the analysis, by using all possible combinations of alleles from different loci in heterozygotic individuals, but the resultant tree was not supported more strongly. Nonetheless, these simultaneous analyses provided support for the monophyly of several species and species groups, and revealed the basic evolutionary trend of OHOMOPTERUS: initial widespread groups with simpler genitalia and the origination of exaggerated genitalia in a derived clade. This study exemplifies problems inherent in the phylogenetic reconstruction of closely related organisms where low levels of variation limit the information content from each locus, while heterozygosity, different phylogenetic history of multiple loci, and alignment ambiguity further hamper phylogenetic reconstruction unless several loci converge on a uniform signal.
Collapse
Affiliation(s)
- Teiji Sota
- Department of Zoology, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | |
Collapse
|
1090
|
Städler T, Delph LF. Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci U S A 2002; 99:11730-5. [PMID: 12192087 PMCID: PMC129337 DOI: 10.1073/pnas.182267799] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Indexed: 11/18/2022] Open
Abstract
Because of their extremely low nucleotide mutation rates, plant mitochondrial genes are generally not expected to show variation within species. Remarkably, we found nine distinct cytochrome b sequence haplotypes in the gynodioecious alpine plant Silene acaulis, with two or more haplotypes coexisting locally in each of three sampled regions. Moreover, there is evidence for intragenic recombination in the history of the haplotype sample, implying at least transient heteroplasmy of mitochondrial DNA (mtDNA). Heteroplasmy might be achieved by one of two potential mechanisms, either continuous coexistence of subgenomic fragments in low stoichiometry, or occasional paternal leakage of mtDNA. On the basis of levels of synonymous nucleotide substitutions, the average divergence time between haplotypes is estimated to be at least 15 million years. Ancient coalescence of extant haplotypes is further indicated by the paucity of fixed differences in haplotypes obtained from related species, a pattern expected under trans-specific evolution. Our data are consistent with models of frequency-dependent selection on linked cytoplasmic male-sterility factors, the putative molecular basis of females in gynodioecious populations. However, associations between marker loci and the inferred male-sterility genes can be maintained only with very low rates of recombination. Heteroplasmy and recombination between divergent haplotypes imply unexplored consequences for the evolutionary dynamics of gynodioecy, a widespread plant breeding system.
Collapse
Affiliation(s)
- Thomas Städler
- Department of Biology, Jordan Hall, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
1091
|
Søgaard IZ, Boesen T, Mygind T, Melkova R, Birkelund S, Christiansen G, Schierup MH. Recombination in Mycoplasma hominis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2002; 1:277-85. [PMID: 12798006 DOI: 10.1016/s1567-1348(02)00036-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycoplasma hominis has been previously described as a heterogeneous species, and in the present study intraspecies diversity of 20 M. hominis isolates from different individuals was analyzed using parts of the unlinked gyrase B (gyrB), elongation factor Tu (tuf), SRalpha homolog (ftsY), hitB-hitL, excinuclease ABC subunit A (uvrA) and glyceraldehyde-3-phosphate dehydrogenase (gap) genes. The level of variability of these M. hominis genes was low compared with the housekeeping genes from Helicobacter pylori and Neisseria meningitidis, but only few M. hominis isolates had identical sequences in all genes indicating the presence of recombination. In order to test for intergenic recombination, phylogenetic trees were reconstructed for each of the genes but no well-supported bifurcating phylogenetic trees could be obtained. The genes were tested for intragenic recombination using the correlation between linkage disequilibrium and distance between the segregating sites, by the homoplasy ratio (H ratio), and by compatibility matrices. The gap gene showed well-supported evidence for high levels of recombination, whereas recombination was less frequent and not significant within the other genes. The analysis revealed intergenic and intragenic recombination in M. hominis and this may explain the high intraspecies variability. The results obtained in the present study may be of importance for future population studies of Mycoplasma species.
Collapse
Affiliation(s)
- I Z Søgaard
- Department of Genetics and Ecology, Bioinformatics Research Center (BIRC), University of Aarhus, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
1092
|
Abstract
The performance of 14 different recombination detection methods was evaluated by analyzing several empirical data sets where the presence of recombination has been suggested or where recombination is assumed to be absent. In general, recombination methods seem to be more powerful with increasing levels of divergence, but different methods showed distinct performance. Substitution methods using summary statistics gave more accurate inferences than most phylogenetic methods. However, definitive conclusions about the presence of recombination should not be derived on the basis of a single method. Performance patterns observed from the analysis of real data sets coincided very well with previous computer simulation results. Previous recombination inferences from some of the data sets analyzed here should be reconsidered. In particular, recombination in HIV-1 seems to be much more widespread than previously thought. This finding might have serious implications on vaccine development and on the reliability of previous inferences of HIV-1 evolutionary history and dynamics.
Collapse
Affiliation(s)
- David Posada
- Department of Zoology, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
1093
|
Schwartz R, Clark AG, Istrail S. Methods for Inferring Block-Wise Ancestral History from Haploid Sequences. LECTURE NOTES IN COMPUTER SCIENCE 2002. [DOI: 10.1007/3-540-45784-4_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|