1051
|
Ongnok B, Khuanjing T, Chunchai T, Pantiya P, Kerdphoo S, Arunsak B, Nawara W, Jaiwongkam T, Apaijai N, Chattipakorn N, Chattipakorn SC. Donepezil Protects Against Doxorubicin-Induced Chemobrain in Rats via Attenuation of Inflammation and Oxidative Stress Without Interfering With Doxorubicin Efficacy. Neurotherapeutics 2021; 18:2107-2125. [PMID: 34312765 PMCID: PMC8608968 DOI: 10.1007/s13311-021-01092-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Although doxorubicin (Dox) is an effective chemotherapy medication used extensively in the treatment of breast cancer, it frequently causes debilitating neurological deficits known as chemobrain. Donepezil (DPZ), an acetylcholinesterase inhibitor, provides therapeutic benefits in various neuropathological conditions. However, comprehensive mechanistic insights regarding the neuroprotection of DPZ on cognition and brain pathologies in a Dox-induced chemobrain model remain obscure. Here, we demonstrated that Dox-treated rats manifested conspicuous cognitive deficits and developed chemobrain pathologies as indicated by brain inflammatory and oxidative insults, glial activation, defective mitochondrial homeostasis, increased potential lesions associated with Alzheimer's disease, disrupted neurogenesis, loss of dendritic spines, and ultimately neuronal death through both apoptosis and necroptosis. Intervention with DPZ co-treatment completely restored cognitive function by attenuating these pathological conditions induced by DOX. We also confirmed that DPZ treatment does not affect the anti-cancer efficacy of Dox in breast cancer cells. Together, our findings suggest that DPZ treatment confers potential neuroprotection against Dox-induced chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thawatchai Khuanjing
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neuroelectrophysiology Unit, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, 50200, Chiang Mai, Thailand.
| |
Collapse
|
1052
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
1053
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
1054
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
1055
|
Leites EP, Morais VA. The PINK1-Mediated Crosstalk between Neural Cells and the Underlying Link to Parkinson's Disease. Cells 2021; 10:1395. [PMID: 34198743 PMCID: PMC8228719 DOI: 10.3390/cells10061395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction has a fundamental role in the development of idiopathic and familiar forms of Parkinson's disease (PD). The nuclear-encoded mitochondrial kinase PINK1, linked to familial PD, is responsible for diverse mechanisms of mitochondrial quality control, ATP production, mitochondrial-mediated apoptosis and neuroinflammation. The main pathological hallmark of PD is the loss of dopaminergic neurons. However, novel discoveries have brought forward the concept that a disruption in overall brain homeostasis may be the underlying cause of this neurodegeneration disease. To sustain this, astrocytes and microglia cells lacking PINK1 have revealed increased neuroinflammation and deficits in physiological roles, such as decreased wound healing capacity and ATP production, which clearly indicate involvement of these cells in the physiopathology of PD. PINK1 executes vital functions within mitochondrial regulation that have a detrimental impact on the development and progression of PD. Hence, in this review, we aim to broaden the horizon of PINK1-mediated phenotypes occurring in neurons, astrocytes and microglia and, ultimately, highlight the importance of the crosstalk between these neural cells that is crucial for brain homeostasis.
Collapse
Affiliation(s)
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
1056
|
Genetic profiles of familial late-onset Alzheimer's disease in China: The Shanghai FLOAD study. Genes Dis 2021; 9:1639-1649. [PMID: 36157508 PMCID: PMC9485165 DOI: 10.1016/j.gendis.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Compared with early-onset familial AD (FAD), the heritability of most familial late-onset Alzheimer's disease (FLOAD) cases still remains unclear. However, there are few reported genetic profiles of FLOAD to date. In the present study, targeted sequencing of selected candidate genes was conducted for each of 90 probands with FLOAD and 101 unrelated matched normal controls among Chinese Han population. Results show a significantly lower rate of mutation in APP and PSENs, and APOE ε4 genetic risk is higher for FLOAD. Among the Chinese FLOAD population, the most frequent variant was CR1 rs116806486 [5.6%, 95% CI (1.8%, 12.5%)], followed by coding variants of TREM2 (4.4%, 95%CI (1.2%, 10.9%)) and novel mutations of ACE [3.3%, 95%CI (0.7%, 9.4%)]. Next, we found that novel pathogenic mutations in ACE including frame-shift and nonsense mutations were in association with FLOAD regardless of APOE ε4 status. Evidence from the Alzheimer's disease Neuroimaging Initiative (ADNI) database also supported this finding in different ethnicities. Results of in vitro analysis suggest that frame-shift and nonsense mutations in ACE may be involved in LOAD through decreased ACE protein levels without affecting direct processing of APP.
Collapse
|
1057
|
Epigenetic Modulation of Microglia Function and Phenotypes in Neurodegenerative Diseases. Neural Plast 2021; 2021:9912686. [PMID: 34194489 PMCID: PMC8181095 DOI: 10.1155/2021/9912686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia-mediated neuroinflammation is one of the most remarkable hallmarks of neurodegenerative diseases (NDDs), including AD, PD, and ALS. Accumulating evidence indicates that microglia play both neuroprotective and detrimental roles in the onset and progression of NDDs. Yet, the specific mechanisms of action surrounding microglia are not clear. Modulation of microglia function and phenotypes appears to be a potential strategy to reverse NDDs. Until recently, research into the epigenetic mechanisms of diseases has been gradually developed, making it possible to elucidate the molecular mechanisms underlying the epigenetic regulation of microglia in NDDs. This review highlights the function and phenotypes of microglia, elucidates the relationship between microglia, epigenetic modifications, and NDDs, as well as the possible mechanisms underlying the epigenetic modulation of microglia in NDDs with a focus on potential intervention strategies.
Collapse
|
1058
|
Kim J, Park JH, Park SK, Hoe HS. Sorafenib Modulates the LPS- and Aβ-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 2021; 12:684344. [PMID: 34122447 PMCID: PMC8190398 DOI: 10.3389/fimmu.2021.684344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
1059
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
1060
|
Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci 2021; 22:ijms22105189. [PMID: 34068881 PMCID: PMC8156193 DOI: 10.3390/ijms22105189] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.
Collapse
Affiliation(s)
- Joon Ho Seo
- Department of Neurology and Nash Family, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA;
| | - Miloni S. Dalal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2770
| |
Collapse
|
1061
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
1062
|
Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. Biochem Soc Trans 2021; 49:1375-1384. [PMID: 33960369 DOI: 10.1042/bst20201092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.
Collapse
|
1063
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
1064
|
Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021; 22:4402. [PMID: 33922383 PMCID: PMC8122783 DOI: 10.3390/ijms22094402] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ageing represents the single biggest risk factor for development of neurodegenerative disease. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells. Consequently, the literature contains multiple descriptions and categorisations of microglia with neurotoxic phenotypes, including senescence, without any unifying markers. The role of microglia in brain homeostasis, particularly iron storage and metabolism, may provide a key to reliable identification.
Collapse
Affiliation(s)
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
1065
|
Benameur T, Soleti R, Porro C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients 2021; 13:1318. [PMID: 33923599 PMCID: PMC8073422 DOI: 10.3390/nu13041318] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic neuroinflammation is a pathological condition of numerous central nervous system (CNS) diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis and many others. Neuroinflammation is characterized by the microglia activation and concomitant production of pro-inflammatory cytokines leading to an increasing neuronal cell death. The decreased neuroinflammation could be obtained by using natural compounds, including flavonoids known to modulate the inflammatory responses. Among flavonoids, quercetin possess multiple pharmacological applications including anti-inflammatory, antitumoral, antiapoptotic and anti-thrombotic activities, widely demonstrated in both in vitro and in vivo studies. In this review, we describe the recent findings about the neuroprotective action of quercetin by acting with different mechanisms on the microglial cells of CNS. The ability of quercetin to influence microRNA expression represents an interesting skill in the regulation of inflammation, differentiation, proliferation, apoptosis and immune responses. Moreover, in order to enhance quercetin bioavailability and capacity to target the brain, we discuss an innovative drug delivery system. In summary, this review highlighted an important application of quercetin in the modulation of neuroinflammation and prevention of neurological disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- College of Medicine, Department of Biomedical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49800 Angers, France;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
1066
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
1067
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
1068
|
Yun HS, Oh J, Lim JS, Kim HJ, Kim JS. Anti-Inflammatory Effect of Wasp Venom in BV-2 Microglial Cells in Comparison with Bee Venom. INSECTS 2021; 12:insects12040297. [PMID: 33805372 PMCID: PMC8066097 DOI: 10.3390/insects12040297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary As the population of the yellow-legged hornet (Vespa velutina) spreads, this study investigated ways to utilize this resource of abundant invasive wasp species. Hymenoptera venoms, including bee venom and wasp venom, have therapeutic potential. Although the venoms are toxic to humans, the elucidation of their composition and working mechanisms has led to discoveries about their potential applications in treatment modalities for a variety of disorders. Therefore, we examined the anti-inflammatory effect of wasp venom from V. velutina in comparison with that of bee venom from honey bee on BV-2 murine microglial cells. Treatment with wasp venom reduced the secretion of nitric oxide and pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that wasp venom and bee venom decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, wasp venom decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Overall, the findings demonstrated that wasp venom inhibited LPS-induced inflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases. Abstract The aim of this study was to compare the anti-inflammatory effect of wasp venom (WV) from the yellow-legged hornet (Vespa velutina) with that of bee venom (BV) on BV-2 murine microglial cells. WV was collected from the venom sac, freeze-dried, and used for in vitro examinations. WV and BV were non-toxic to BV-2 cells at concentrations of 160 and 12 µg/mL or lower, respectively. Treatment with WV reduced the secretion of nitric oxide and proinflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that WV and BV decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, WV decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Cumulatively, the results demonstrated that WV inhibited LPS-induced neuroinflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Seok Yun
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
1069
|
Koh SH, Kwon HS, Choi SH, Jeong JH, Na HR, Lee CN, Yang Y, Lee AY, Lee JH, Park KW, Han HJ, Kim BC, Park JS, Lee JY, Kim S, Lee KY. Efficacy and safety of GV1001 in patients with moderate-to-severe Alzheimer's disease already receiving donepezil: a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. ALZHEIMERS RESEARCH & THERAPY 2021; 13:66. [PMID: 33771205 PMCID: PMC7995588 DOI: 10.1186/s13195-021-00803-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Background Our previous studies showed that GV1001 has various protective effects against β-amyloid and other stressors. Based on these findings, we hypothesized that GV1001 might have beneficial effects in patients with Alzheimer’s disease (AD). Methods A phase 2, double-blind, parallel-group, placebo-controlled, 6-month randomized clinical trial was performed to evaluate the safety and efficacy of subcutaneously administered GV1001. Between September 2017 and September 2019, 13 centers in South Korea recruited participants. A total of 106 patients were screened, and 96 patients with moderate-to-severe AD were randomized 1:1:1 to the placebo (group 1, n = 31), GV1001 0.56 mg (group 2, n = 33), and 1.12 mg (group 3, n = 32) groups. GV1001 was administered every week for 4 weeks (4 times), followed by every 2 weeks until week 24 (10 times). The primary endpoint was the change in the Severe Impairment Battery (SIB) score from baseline to week 24. The key secondary efficacy endpoints were the change in the Clinical Dementia Rating Sum of Box (CDR-SOB), Alzheimer’s Disease Cooperative Study-Activities of Daily Living (ADCS-ADL), Neuropsychiatric Inventory (NPI), Mini-Mental State Examination, and Global Deterioration Scale scores. The safety endpoints were also assessed based on adverse events, laboratory test results, vital signs, and other observations related to safety. Results Group 3 showed less decrease in the SIB score at 12 and 24 weeks compared with group 1 (P < 0.05). These were not significantly observed in group 2. Among the secondary endpoints, only the NPI score showed significantly better improvement in group 2 than in group 3 at week 12; however, there were no other significant differences between the groups. Although the ADCS-ADL and CDR-SOB scores showed a pattern similar to SIB scores, a statistically significant result was not found. Adverse events were similar across all three groups. Conclusions The results indicate that GV1001 1.12 mg met the primary endpoint of a statistically significant difference. GV1001 was well tolerated without safety concerns. This study warrants a larger clinical trial. Trial registration ClinicalTrials.gov NCT03184467. Registered on June 12, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00803-w.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea. .,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea.
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, 22332, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, 07985, South Korea
| | - Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam, 13552, South Korea
| | - Chan Nyoung Lee
- Department of Neurology, Korea University Anam Hospital, Seoul, 02856, South Korea
| | - YoungSoon Yang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul, 05505, South Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University Hospital, Busan, 49201, South Korea
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, South Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, 61469, South Korea
| | - Jin Se Park
- Department of Neurology, Inje University Haeundae Paik Hospital, Buasn, 48108, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University Boramae Medical Center, Seoul, 07061, South Korea
| | - Sangjae Kim
- Teloid Inc., 920 Westholme Ave, Los Angeles, CA, 90024, USA
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea
| |
Collapse
|
1070
|
Feng X, Hu J, Zhan F, Luo D, Hua F, Xu G. MicroRNA-138-5p Regulates Hippocampal Neuroinflammation and Cognitive Impairment by NLRP3/Caspase-1 Signaling Pathway in Rats. J Inflamm Res 2021; 14:1125-1143. [PMID: 33814920 PMCID: PMC8009546 DOI: 10.2147/jir.s304461] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose Neuroinflammation is an essential causative factor in the pathogenesis and progression of cognitive impairment. The present study aims to evaluate the critical role of microRNA-138-5p (miR-138-5p) in hippocampal neuroinflammation and cognitive impairment through the NLRP3/caspase-1 signaling pathway in rats. Material and Methods We established the cognitive impairment rat model and RM (Rat microglia) microglial cellular inflammation model by intracerebroventricular (icv) injection or stimulation of lipopolysaccharide (LPS). Morris water maze (MWM) and Y-maze tests were performed to assess the cognitive behaviors. Quantitative real-time polymerase chain reaction (qRT-PCR), Enzyme-linked immune-sorbent assay (ELISA) and Western blot analysis were utilized to evaluate mRNA or protein expression. Bioinformatic analysis and dual-luciferase reporter gene assay were performed to verify the targeting relationship between NLRP3 and miR-138-5p. Besides, Hematoxylin and eosin (H&E) staining and immunohistochemistry were applied to observe the neuronal morphology and detect the positive cells of the hippocampus, respectively. Results Compared to the control groups, LPS-treated rats exhibited significantly impaired learning and memory in MWM and Y-maze tests. The expression of NLRP3, caspase-1 and pro-inflammation cytokines (IL-1β and IL-18) were upregulated, while miR-138-5p was downregulated both in rat hippocampus and RM cells treated with LPS. MiR-138-5p is downregulated in microarray data of cognitive impairment animals and could directly target the 3ʹ-UTR of NLRP3. Furthermore, upregulation of miR-138-5p improved impaired cognitive functions, while inhibited hippocampal neuroinflammation demonstrated by decreased expression of NLRP3/caspase-1 axis, pro-inflammation cytokines and microglial activation. This study demonstrates for the first time that miR-138-5p suppresses the hippocampal NLRP3/caspase-1 signaling pathway activation in cognition impaired rats. Conclusion The low expression of miR-138-5p after LPS administration may contribute to the activation of the NLRP3/caspase-1 pathway, leading to hippocampal neuroinflammation and cognitive impairment in rat models. These findings indicate a promising therapeutic avenue for cognitive disorders.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Deqiang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi 330006, People's Republic of China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
1071
|
Kung WM, Lin MS. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int J Mol Sci 2021; 22:ijms22073289. [PMID: 33804820 PMCID: PMC8037269 DOI: 10.3390/ijms22073289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Consequently, CISD2-elevating plans of action provide pathways in the management of various disease categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti-inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to serve as a potential therapeutic target for CNS injuries and diseases.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
1072
|
Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:cells10030656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world’s aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
|
1073
|
Rigon L, De Filippis C, Napoli B, Tomanin R, Orso G. Exploiting the Potential of Drosophila Models in Lysosomal Storage Disorders: Pathological Mechanisms and Drug Discovery. Biomedicines 2021; 9:biomedicines9030268. [PMID: 33800050 PMCID: PMC8000850 DOI: 10.3390/biomedicines9030268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
Collapse
Affiliation(s)
- Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Correspondence:
| | - Concetta De Filippis
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Barbara Napoli
- Laboratory of Molecular Biology, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Rosella Tomanin
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
1074
|
Neuroinflammation in Prion Disease. Int J Mol Sci 2021; 22:ijms22042196. [PMID: 33672129 PMCID: PMC7926464 DOI: 10.3390/ijms22042196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation, typically manifest as microglial activation and astrogliosis accompanied by transcriptomic alterations, represents a common hallmark of various neurodegenerative conditions including prion diseases. Microglia play an overall neuroprotective role in prion disease, whereas reactive astrocytes with aberrant phenotypes propagate prions and contribute to prion-induced neurodegeneration. The existence of heterogeneous subpopulations and dual functions of microglia and astrocytes in prion disease make them potential targets for therapeutic intervention. A variety of neuroinflammation-related molecules are involved in prion pathogenesis. Therapeutics targeting neuroinflammation represents a novel approach to combat prion disease. Deciphering neuroinflammation in prion disease will deepen our understanding of pathogenesis of other neurodegenerative disorders.
Collapse
|
1075
|
Krokidis MG, Exarchos TP, Vlamos P. Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1813-1832. [PMID: 33757212 DOI: 10.3934/mbe.2021094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The complexity of biological systems suggests that current definitions of molecular dysfunctions are essential distinctions of a complex phenotype. This is well seen in neurodegenerative diseases (ND), such as Alzheimer's disease (AD) and Parkinson's disease (PD), multi-factorial pathologies characterized by high heterogeneity. These challenges make it necessary to understand the effectiveness of candidate biomarkers for early diagnosis, as well as to obtain a comprehensive mapping of how selective treatment alters the progression of the disorder. A large number of computational methods have been developed to explain network-based approaches by integrating individual components for modeling a complex system. In this review, high-throughput omics methodologies are presented for the identification of potent biomarkers associated with AD and PD pathogenesis as well as for monitoring the response of dysfunctional molecular pathways incorporating multilevel clinical information. In addition, principles for efficient data analysis pipelines are being discussed that can help address current limitations during the experimental process by increasing the reproducibility of benchmarking studies.
Collapse
Affiliation(s)
- Marios G Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| | - Themis P Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| |
Collapse
|
1076
|
Liang C, Zou T, Zhang M, Fan W, Zhang T, Jiang Y, Cai Y, Chen F, Chen X, Sun Y, Zhao B, Wang Y, Cui L. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer's disease. Theranostics 2021; 11:4103-4121. [PMID: 33754051 PMCID: PMC7977456 DOI: 10.7150/thno.53418] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and currently has no effective treatment. Mainstream research on the mechanisms and therapeutic targets of AD is focused on the two most important hallmarks, Aβ and Tau, but the results from clinical studies are not encouraging. Abnormal microglial polarization is a clear typical pathological feature in the progression of AD. Microglia can be neuroprotective by degrading and removing Aβ and Tau. However, under AD conditions, microglia transform into a pro-inflammatory phenotype that decreases the phagocytic activity of microglia, damages neurons and promotes the pathology of AD. We previously reported that a miR-146a polymorphism is associated with sporadic AD risk, and the nasal administration of miR-146a mimics reduced cognitive impairment and the main pathological features of AD. However, it is not clear by what mechanism miR-146a resists the pathological process of AD. In this study, we discovered that microglia-specific miR-146a overexpression reduced cognitive deficits in learning and memory, attenuated neuroinflammation, reduced Aβ levels, ameliorated plaque-associated neuritic pathology, and prevented neuronal loss in APP/PS1 transgenic mice. In addition, we found that miR-146a switched the microglial phenotype, reduced pro-inflammatory cytokines and enhanced phagocytic function to protect neurons in vitro and in vivo. Moreover, transcriptional analysis confirmed that miR-146a opposed the pathological process of AD mainly through neuroinflammation-related pathways. In summary, our results provide sufficient evidence for the mechanism by which miR-146a opposes AD and strengthen the conclusion that miR-146a is a promising target for AD and other microglia-related diseases.
Collapse
|
1077
|
Chen YH, Lin RR, Tao QQ. The role of P2X7R in neuroinflammation and implications in Alzheimer's disease. Life Sci 2021; 271:119187. [PMID: 33577858 DOI: 10.1016/j.lfs.2021.119187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is set to rise in prevalence as the global trends in population aging. The extracellular deposition of amyloid protein (Aβ) and the intracellular formation of neurofibrillary tangles in the brain have been recognized as the two core pathologies of AD. Over the past decades, the presence of neuroinflammation in the brain has been documented as the third core pathology of AD. In recent years, emerging evidence demonstrated that the purinergic receptor P2X7 (P2X7R) serves a critical role in microglia responses and neuroinflammation. Besides, targeting P2X7R by genetic or pharmacological strategies attenuates the symptoms and pathological changes of AD models, and P2X7R has been recognized as a promising therapeutic target for AD. In this review, we summarized the recent evidence concerning the roles of P2X7R in neuroinflammation and implications in AD pathogenesis.
Collapse
Affiliation(s)
- Yi-He Chen
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
1078
|
Pignataro P, Dicarlo M, Zerlotin R, Zecca C, Dell’Abate MT, Buccoliero C, Logroscino G, Colucci S, Grano M. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int J Mol Sci 2021; 22:ijms22041605. [PMID: 33562601 PMCID: PMC7915567 DOI: 10.3390/ijms22041605] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Irisin, the circulating peptide originating from fibronectin type III domain-containing protein 5 (FNDC5), is mainly expressed by muscle fibers under peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) control during exercise. In addition to several beneficial effects on health, physical activity positively affects nervous system functioning, particularly the hippocampus, resulting in amelioration of cognition impairments. Recently, FNDC5/irisin detection in hippocampal neurons and the presence of irisin in the cerebrospinal fluid opened a new intriguing chapter in irisin history. Interestingly, in the hippocampus of mice, exercise increases FNDC5 levels and upregulates brain-derived neurotrophic factor (BDNF) expression. BDNF, displaying neuroprotection and anti-inflammatory effects, is mainly produced by microglia and astrocytes. In this review, we discuss how these glial cells can morphologically and functionally switch during neuroinflammation by modulating the expression of a plethora of neuroprotective or neurotoxic factors. We also focus on studies investigating the irisin role in neurodegenerative diseases (ND). The emerging involvement of irisin as a mediator of the multiple positive effects of exercise on the brain needs further studies to better deepen this issue and the potential use in therapeutic approaches for neuroinflammation and ND.
Collapse
Affiliation(s)
- Patrizia Pignataro
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Roberta Zerlotin
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
- Correspondence: ; Tel.: +39-080-5478-361
| |
Collapse
|
1079
|
Zhang Z, Hao L, Shi M, Yu Z, Shao S, Yuan Y, Zhang Z, Hölscher C. Neuroprotective Effects of a GLP-2 Analogue in the MPTP Parkinson's Disease Mouse Model. JOURNAL OF PARKINSONS DISEASE 2021; 11:529-543. [PMID: 33523018 DOI: 10.3233/jpd-202318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer's disease related memory impairments. Parkinson's disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. OBJECTIVE The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. METHODS In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. RESULTS The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. CONCLUSION The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.
Collapse
Affiliation(s)
- Zijuan Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China.,Basic Medical Collenge, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Li Hao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China.,Basic Medical Collenge, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Ming Shi
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Ziyang Yu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Simai Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan province, China
| |
Collapse
|
1080
|
Urso D, Gnoni V, Filardi M, Logroscino G. Delusion and Delirium in Neurodegenerative Disorders: An Overlooked Relationship? Front Psychiatry 2021; 12:808724. [PMID: 35115974 PMCID: PMC8804700 DOI: 10.3389/fpsyt.2021.808724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 12/04/2022] Open
Abstract
Delusions are part of the neuropsychiatric symptoms that patients suffering from neurodegenerative conditions frequently develop at some point of the disease course and are associated with an increased risk of cognitive and functional decline. Delirium is a syndrome characterized by acute onset of deficits in attention, awareness, and cognition that fluctuate in severity over a short time period. Delusions and delirium are frequently observed in the context of neurodegeneration, and their presence can easily mislead clinicians toward a misdiagnosis of psychiatric disorder further delaying the proper treatment. Risk factors for developing delusion and delirium in neurodegenerative conditions have been investigated separately while the possible interplay between these two conditions has not been explored so far. With this study, we aim to achieve a more comprehensive picture of the relationship between delusions and delirium in neurodegeneration by analyzing prevalence and subtypes of delusions in different neurodegenerative disorders; providing an overview of clinical tools to assess delusions in neurodegenerative patients and how delusions are covered by delirium assessment tools and discussing the possible common pathophysiology mechanisms between delusion and delirium in neurodegenerative patients. A more extensive characterization of the relationship between delusions and delirium may help to understand whether delusions may constitute a risk factor for delirium and may ameliorate the management of both conditions in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Urso
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Valentina Gnoni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco Filardi
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|