1101
|
Ayoub N, Noma KI, Isaac S, Kahan T, Grewal SIS, Cohen A. A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 2003; 23:4356-70. [PMID: 12773576 PMCID: PMC156127 DOI: 10.1128/mcb.23.12.4356-4370.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterochromatin domain at the mat locus of Schizosaccharomyces pombe is bounded by the IR-L and IR-R barriers. A genetic screen for mutations that promote silencing beyond IR-L revealed a novel gene named epe1, encoding a conserved nuclear protein with a jmjC domain. Disruption of epe1 promotes continuous spreading of heterochromatin-associated histone modifications and Swi6 binding to chromatin across heterochromatic barriers. It also enhances position effect variegation at heterochromatic domains, suppresses mutations in silencing genes, and stabilizes the repressed epigenetic state at the mat locus. However, it does not enhance silencing establishment. Our analysis suggests that the jmjC domain is essential for Epe1 activity and that Epe1 counteracts transcriptional silencing by negatively affecting heterochromatin stability. Consistent with this proposition, the meiotic stability of established heterochromatin beyond IR-L is diminished by Epe1 activity, and overexpression of Epe1 disrupts heterochromatin through acetylation of H3-K9 and H3-K14 and methylation of H3-K4. Furthermore, overexpression of Epe1 elevates the rate of chromosome loss. We propose that Epe1 helps control chromatin organization by down-regulating the stability of epigenetic marks that govern heterochromatization.
Collapse
Affiliation(s)
- Nabieh Ayoub
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel 91010
| | | | | | | | | | | |
Collapse
|
1102
|
Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, Edser P, Bhattacharyya S, Dunham A, Adcock IM, Pulleyn L, Barnes PJ, Harper JI, Abecasis G, Cardon L, White M, Burton J, Matthews L, Mott R, Ross M, Cox R, Moffatt MF, Cookson WOCM. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 2003; 34:181-6. [PMID: 12754510 DOI: 10.1038/ng1166] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Accepted: 04/18/2003] [Indexed: 01/27/2023]
Abstract
Atopic or immunoglobulin E (IgE)-mediated diseases include the common disorders of asthma, atopic dermatitis and allergic rhinitis. Chromosome 13q14 shows consistent linkage to atopy and the total serum IgE concentration. We previously identified association between total serum IgE levels and a novel 13q14 microsatellite (USAT24G1; ref. 7) and have now localized the underlying quantitative-trait locus (QTL) in a comprehensive single-nucleotide polymorphism (SNP) map. We found replicated association to IgE levels that was attributed to several alleles in a single gene, PHF11. We also found association with these variants to severe clinical asthma. The gene product (PHF11) contains two PHD zinc fingers and probably regulates transcription. Distinctive splice variants were expressed in immune tissues and cells.
Collapse
Affiliation(s)
- Youming Zhang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1103
|
Abstract
Chromatin remodeling in plants has usually been discussed in relation to aspects of genome defense such as transgene silencing and the resetting of transposon activity. The role of remodeling in controlling development has been less emphasized, although well established in animal systems. This is because cell fate in plants is often held to be entirely specified on the basis of position, apparently excluding any significant role for cell ancestry and chromatin remodeling. We argue that chromatin remodeling is used to confer mitotically heritable cell fates at late stages in pattern formation. Several examples in which chromatin remodeling factors are used to confer a memory of transient events in plant development are discussed. Because the precise biochemical functions of most remodeling factors are obscure, and little is known of plant chromatin structure, the underlying mechanisms remain poorly understood.
Collapse
Affiliation(s)
- Justin Goodrich
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, United Kingdom.
| | | |
Collapse
|
1104
|
Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol 2003; 161:707-14. [PMID: 12756231 PMCID: PMC2199350 DOI: 10.1083/jcb.200303012] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 04/07/2003] [Accepted: 04/07/2003] [Indexed: 11/30/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein, which is involved in heterochromatin formation and gene silencing in many organisms. In addition, it has been shown that HP1 is also involved in telomere capping in Drosophila. Here, we show a novel striking feature of this protein demonstrating its involvement in the activation of several euchromatic genes in Drosophila. By immunostaining experiments using an HP1 antibody, we found that HP1 is associated with developmental and heat shock-induced puffs on polytene chromosomes. Because the puffs are the cytological phenotype of intense gene activity, we did a detailed analysis of the heat shock-induced expression of the HSP70 encoding gene in larvae with different doses of HP1 and found that HP1 is positively involved in Hsp70 gene activity. These data significantly broaden the current views of the roles of HP1 in vivo by demonstrating that this protein has multifunctional roles.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
1105
|
Im H, Park C, Feng Q, Johnson KD, Kiekhaefer CM, Choi K, Zhang Y, Bresnick EH. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J Biol Chem 2003; 278:18346-52. [PMID: 12604594 DOI: 10.1074/jbc.m300890200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of individual lysine residues of core histones can exert unique functional consequences. For example, methylation of histone H3 at lysine 79 (H3-meK79) has been implicated recently in gene silencing in Saccharomyces cerevisiae. However, the distribution and function of H3-meK79 in mammalian chromatin are not known. We found that H3-meK79 has a variable distribution within the murine beta-globin locus in adult erythroid cells, being preferentially enriched at the active betamajor gene. By contrast, acetylated H3 and H4 and H3 methylated at lysine 4 were enriched both at betamajor and at the upstream locus control region. H3-meK79 was also enriched at the active cad gene, whereas the transcriptionally inactive loci necdin and MyoD1 contained very little H3-meK79. As the pattern of H3-meK79 at the beta-globin locus differed between adult and embryonic erythroid cells, establishment and/or maintenance of H3-meK79 was developmentally dynamic. Genetic complementation analysis in null cells lacking the erythroid and megakaryocyte-specific transcription factor p45/NF-E2 showed that p45/NF-E2 preferentially establishes H3-meK79 at the betamajor promoter. These results support a model in which H3-meK79 is strongly enriched in mammalian chromatin at active genes but not uniformly throughout active chromatin domains. As H3-meK79 is highly regulated at the beta-globin locus, we propose that the murine ortholog of Disruptor of Telomeric Silencing-1-like (mDOT1L) methyltransferase, which synthesizes H3-meK79, regulates beta-globin transcription.
Collapse
Affiliation(s)
- Hogune Im
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
1106
|
Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y. Distinct cohesin complexes organize meiotic chromosome domains. Science 2003; 300:1152-5. [PMID: 12750522 DOI: 10.1126/science.1083634] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Meiotic cohesin complexes at centromeres behave differently from those along chromosome arms, but the basis for these differences has remained elusive. The fission yeast cohesin molecule Rec8 largely replaces its mitotic counterpart, Rad21/Scc1, along the entire chromosome during meiosis. Here we show that Rec8 complexes along chromosome arms contain Rec11, whereas those in the vicinity of centromeres have a different partner subunit, Psc3. The arm associated Rec8-Rec11 complexes are critical for meiotic recombination. The Rec8-Psc3 complexes comprise two different types of assemblies. First, pericentromeric Rec8-Psc3 complexes depend on histone methylation-directed heterochromatin for their localization and are required for cohesion during meiosis II. Second, central core Rec8-Psc3 complexes form independently of heterochromatin and are presumably required for establishing monopolar attachment at meiosis I. These findings define distinct modes of assembly and functions for cohesin complexes at different regions along chromosomes.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
1107
|
Craig JM, Wong LH, Lo AWI, Earle E, Choo KHA. Centromeric chromatin pliability and memory at a human neocentromere. EMBO J 2003; 22:2495-504. [PMID: 12743043 PMCID: PMC155990 DOI: 10.1093/emboj/cdg232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We show that Trichostatin A (TSA)-induced partial histone hyperacetylation causes a unidirectional shift in the position of a previously defined binding domain for the centromere-specific histone H3 homologue CENP-A at a human neocentromere. The shift of approximately 320 kb is fully reversible when TSA is removed, but is accompanied by an apparent reduction in the density of CENP-A per unit length of genomic DNA at the neocentromere. TSA treatment also instigates a reversible abolition of a previously defined major domain of differentially delayed replication timing that was originally established at the neocentromeric site. None of these changes has any measurable deleterious effects on mitosis or neocentromere function. The data suggest pliability of centromeric chromatin in response to epigenetic triggers, and the non-essential nature of the regions of delayed replication for centromere function. Reversibility of the CENP-A-binding position and the predominant region of delayed replication timing following removal of TSA suggest strong memory at the original site of neocentromeric chromatin formation.
Collapse
Affiliation(s)
- Jeffrey M Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Melbourne, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
1108
|
Schaft D, Roguev A, Kotovic KM, Shevchenko A, Sarov M, Shevchenko A, Neugebauer KM, Stewart AF. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 2003; 31:2475-82. [PMID: 12736296 PMCID: PMC156053 DOI: 10.1093/nar/gkg372] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 03/28/2003] [Indexed: 11/14/2022] Open
Abstract
Existing evidence indicates that SET2, the histone 3 lysine 36 methyltransferase of Saccharomyces cerevisiae, is a transcriptional repressor. Here we show by five main lines of evidence that SET2 is involved in transcriptional elongation. First, most, if not all, subunits of the RNAP II holoenzyme co-purify with SET2. Second, all of the co-purifying RNAP II subunit, RPO21, was phosphorylated at serines 5 and 2 of the C-terminal domain (CTD) tail, indicating that the SET2 association is specific to either the elongating or SSN3 repressed forms (or both) of RNAP II. Third, the association of SET2 with CTD phosphorylated RPO21 remained in the absence of ssn3. Fourth, in the absence of ssn3, mRNA production from gal1 required SET2. Fifth, SET2 was detected on gal1 by in vivo crosslinking after, but not before, the induction of transcription. Similarly, SET2 physically associated with the transcribed region of pdr5 but was not detected on gal1 or pdr5 promoter regions. Since SET2 is also a histone methyltransferase, these results suggest a role for histone 3 lysine 36 methylation in transcriptional elongation.
Collapse
Affiliation(s)
- Daniel Schaft
- BIOTEC, Technische Universitaet Dresden, MPI-CBG, Pfotenhauerstrasse 108, D-01307, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1109
|
Fleischer TC, Yun UJ, Ayer DE. Identification and characterization of three new components of the mSin3A corepressor complex. Mol Cell Biol 2003; 23:3456-67. [PMID: 12724404 PMCID: PMC164750 DOI: 10.1128/mcb.23.10.3456-3467.2003] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mSin3A corepressor complex contains 7 to 10 tightly associated polypeptides and is utilized by many transcriptional repressors. Much of the corepressor function of mSin3A derives from associations with the histone deacetylases HDAC1 and HDAC2; however, the contributions of the other mSin3A-associated polypeptides remain largely unknown. We have purified an mSin3A complex from K562 erythroleukemia cells and identified three new mSin3A-associated proteins (SAP): SAP180, SAP130, and SAP45. SAP180 is 40% identical to a previously identified mSin3A-associated protein, RBP1. SAP45 is identical to mSDS3, the human ortholog of the SDS3p component of the Saccharomyces cerevisiae Sin3p-Rpd3p corepressor complex. SAP130 does not have detectable homology to other proteins. Coimmunoprecipitation and gel filtration data suggest that the new SAPs are, at the very least, components of the same mSin3A complex. Each new SAP repressed transcription when tethered to DNA. Furthermore, repression correlated with mSin3A binding, suggesting that the new SAPs are components of functional mSin3A corepressor complexes. SAP180 has two repression domains: a C-terminal domain, which interacts with the mSin3A-HDAC complex, and an N-terminal domain, which functions independently of mSin3A-HDAC. SAP130 has a repression domain at its C terminus that interacts with the mSin3A-HDAC complex and an N-terminal domain that probably mediates an interaction with a transcriptional activator. Together, our data suggest that these novel SAPs function in the assembly and/or enzymatic activity of the mSin3A complex or in mediating interactions between the mSin3A complex and other regulatory complexes. Finally, all three SAPs bind to the HDAC-interaction domain (HID) of mSin3A, suggesting that the HID functions as the assembly interface for the mSin3A corepressor complex.
Collapse
Affiliation(s)
- Tracey C Fleischer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5555, USA
| | | | | |
Collapse
|
1110
|
Cocklin RR, Wang M. Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:327-34. [PMID: 13678296 DOI: 10.1023/a:1025334006014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Covalent modifications to histone proteins are well documented in the literature. Specific modification sites are correlated with chromatin structure and transcriptional activity. The histone code is very complex, and includes several types of covalent modifications such as acetylation, methylation, phosphorylation, and ubiquitination of at least 20 possible sites within the histone proteins. The final chromatin structure "read-out" is a result of the cooperation between these many sites of covalent modifications. Methylation and acetylation sites of histone H3 from many different species have been previously identified. However, a full post-translational modification status on histone H3 from mouse has not yet been reported. Here we demonstrate the use of high-accuracy matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry to identify the methylation and acetylation sites of the mouse histone H3. In addition to the sites previously identified from other species, one unique methylation site, Lys-122, from mouse histone H3 was identified. The reported mass spectrometric method provides an efficient and sensitive way for analyzing post-translational modifications of histone proteins.
Collapse
Affiliation(s)
- Ross R Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Biotechnology Research and Training Center, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
1111
|
Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama JI, Grewal SI, Allis CD, Cheng X, Selker EU. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 2003; 34:75-9. [PMID: 12679815 DOI: 10.1038/ng1143] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Accepted: 03/24/2003] [Indexed: 01/09/2023]
Abstract
Besides serving to package nuclear DNA, histones carry information in the form of a diverse array of post-translational modifications. Methylation of histones H3 and H4 has been implicated in long-term epigenetic 'memory'. Dimethylation or trimethylation of Lys4 of histone H3 (H3 Lys4) has been found in expressible euchromatin of yeasts and mammals. In contrast, methylation of Lys9 of histone H3 (H3 Lys9) has been implicated in establishing and maintaining the largely quiescent heterochromatin of mammals, yeasts, Drosophila melanogaster and plants. We have previously shown that a DNA methylation mutant of Neurospora crassa, dim-5 (defective in methylation), has a nonsense mutation in the SET domain of an H3-specific histone methyltransferase and that substitutions of H3 Lys9 cause gross hypomethylation of DNA. Similarly, the KRYPTONITE histone methyltransferase is required for full DNA methylation in Arabidopsis thaliana. We used biochemical, genetic and immunological methods to investigate the specific mark for DNA methylation in N. crassa. Here we show that trimethylated H3 Lys9, but not dimethylated H3 Lys9, marks chromatin regions for cytosine methylation and that DIM-5 specifically creates this mark.
Collapse
Affiliation(s)
- Hisashi Tamaru
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1112
|
Pidoux AL, Richardson W, Allshire RC. Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 2003; 161:295-307. [PMID: 12719471 PMCID: PMC2172903 DOI: 10.1083/jcb.200212110] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the formation of a functional kinetochore complex and flanking centromeric heterochromatin. Here, transcriptional silencing was exploited to identify components involved in central core silencing and kinetochore assembly or structure. The resulting sim (silencing in the middle of the centromere) mutants display severe chromosome segregation defects. sim2+ encodes a known kinetochore protein, the centromere-specific histone H3 variant Cnp1CENP-A. sim4+ encodes a novel essential coiled-coil protein, which is specifically associated with the central core region and is required for the unusual chromatin structure of this region. Sim4 coimmunoprecipitates with the central core component Mis6 and, like Mis6, affects Cnp1CENP-A association with the central domain. Functional Mis6 is required for Sim4 localization at the kinetochore. Our analyses illustrate the fundamental link between silencing, chromatin structure, and kinetochore function, and establish defective silencing as a powerful approach for identifying proteins required to build a functional kinetochore.
Collapse
Affiliation(s)
- Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, 6.34 Swann Building, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
1113
|
Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 2003; 13:627-37. [PMID: 12699618 DOI: 10.1016/s0960-9822(03)00243-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The genes of the trithorax (trxG) and Polycomb groups (PcG) are best known for their regulatory functions in Drosophila, where they control homeotic gene expression. Plants and animals are thought to have evolved multicellularity independently. Although homeotic genes control organ identity in both animals and plants, they are unrelated. Despite this fact, several plant homeotic genes are negatively regulated by plant genes similar to the repressors from the animal PcG. However, plant-activating regulators of the trxG have not been characterized. RESULTS We provide genetic, molecular, functional, and biochemical evidence that an Arabidopsis gene, ATX1, which is similar to the Drosophila trx, regulates floral organ development. The effects are specific: structurally and functionally related flower homeotic genes are under different control. We show that ATX1 is an epigenetic regulator with histone H3K4 methyltransferase activity. This is the first example of this kind of enzyme activity reported in plants, and, in contrast to the Drosophila and the yeast trithorax homologs, ATX1 can methylate in the absence of additional proteins. In its ability to methylate H3K4 as a recombinant protein, ATX1 is similar to the human homolog. CONCLUSIONS ATX1 functions as an activator of homeotic genes, like Trithorax in animal systems. The histone methylating activity of the ATX1-SET domain argues that the molecular basis of these effects is the ability of ATX1 to modify chromatin structure. Our results suggest a conservation of trxG function between the animal and plant kingdoms despite the different structural nature of their targets.
Collapse
Affiliation(s)
- Raul Alvarez-Venegas
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | | | | | | | | | | |
Collapse
|
1114
|
Abstract
Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | |
Collapse
|
1115
|
Abstract
Since its discovery almost two decades ago, heterochromatin protein 1 (HP1) has emerged as a major player in the transcriptional regulation of both heterochromatic and euchromatic genes as well as the mechanics of chromosome segregation and the functional and structural organization of the interphase nucleus. Recent years have brought the identification of a myriad of HP1-interacting proteins. Each of these is discussed in relationship to its role in heterochromatin assembly and HP1 function. The breadth of functions represented by HP1-interacting proteins testifies to its pivotal role in the daily operations of the nucleus.
Collapse
Affiliation(s)
- R Kellum
- School of Biological Sciences, 101 T. H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
1116
|
Weissmann F, Muyrers-Chen I, Musch T, Stach D, Wiessler M, Paro R, Lyko F. DNA hypermethylation in Drosophila melanogaster causes irregular chromosome condensation and dysregulation of epigenetic histone modifications. Mol Cell Biol 2003; 23:2577-86. [PMID: 12640138 PMCID: PMC150732 DOI: 10.1128/mcb.23.7.2577-2586.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of genomic DNA methylation plays an important role in development and disease. In order to establish an experimental system for the functional analysis of genome-wide hypermethylation, we overexpressed the mouse de novo methyltransferase Dnmt3a in Drosophila melanogaster. These flies showed severe developmental defects that could be linked to reduced rates of cell cycle progression and irregular chromosome condensation. In addition, hypermethylated chromosomes revealed elevated rates of histone H3-K9 methylation and a more restricted pattern of H3-S10 phosphorylation. The developmental and chromosomal defects induced by DNA hypermethylation could be rescued by mutant alleles of the histone H3-K9 methyltransferase gene Su(var)3-9. This mutation also resulted in a significantly decreased level of genomic DNA methylation. Our results thus uncover the molecular consequences of genomic hypermethylation and demonstrate a mutual interaction between DNA methylation and histone methylation.
Collapse
Affiliation(s)
- Frank Weissmann
- Research Group Epigenetics, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
1117
|
Rangasamy D, Berven L, Ridgway P, Tremethick DJ. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 2003; 22:1599-607. [PMID: 12660166 PMCID: PMC152904 DOI: 10.1093/emboj/cdg160] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining how chromatin is remodelled during early development, when totipotent cells begin to differentiate into specific cell types, is essential to understand how epigenetic states are established. An important mechanism by which chromatin can be remodelled is the replacement of major histones with specific histone variants. During early mammalian development H2A.Z plays an essential, but unknown, function(s). We show here that undifferentiated mouse cells of the inner cell mass lack H2A.Z, but upon differentiation H2A.Z expression is switched on. Strikingly, H2A.Z is first targeted to pericentric hetero chromatin and then to other regions of the nucleus, but is excluded from the inactive X chromosome and the nucleolus. This targeted incorporation of H2A.Z could provide a critical signal to distinguish constitutive from facultative heterochromatin. In support of this model, we demonstrate that H2A.Z can directly interact with the pericentric heterochromatin binding protein INCENP. We propose that H2A.Z functions to establish a specialized pericentric domain by assembling an architecturally distinct chromatin structure and by recruiting specific nuclear proteins.
Collapse
Affiliation(s)
- Danny Rangasamy
- The John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
1118
|
Abstract
Most 5-methylcytosine in Neurospora crassa occurs in A:T-rich sequences high in TpA dinucleotides, hallmarks of repeat-induced point mutation. To investigate how such sequences induce methylation, we developed a sensitive in vivo system. Tests of various 25- to 100-bp synthetic DNA sequences revealed that both T and A residues were required on a given strand to induce appreciable methylation. Segments composed of (TAAA)(n) or (TTAA)(n) were the most potent signals; 25-mers induced robust methylation at the special test site, and a 75-mer induced methylation elsewhere. G:C base pairs inhibited methylation, and cytosines 5' of ApT dinucleotides were particularly inhibitory. Weak signals could be strengthened by extending their lengths. A:T tracts as short as two were found to cooperate to induce methylation. Distamycin, which, like the AT-hook DNA binding motif found in proteins such as mammalian HMG-I, binds to the minor groove of A:T-rich sequences, suppressed DNA methylation and gene silencing. We also found a correlation between the strength of methylation signals and their binding to an AT-hook protein (HMG-I) and to activities in a Neurospora extract. We propose that de novo DNA methylation in Neurospora cells is triggered by cooperative recognition of the minor groove of multiple short A:T tracts. Similarities between sequences subjected to repeat-induced point mutation in Neurospora crassa and A:T-rich repeated sequences in heterochromatin in other organisms suggest that related mechanisms control silent chromatin in fungi, plants, and animals.
Collapse
Affiliation(s)
- Hisashi Tamaru
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
1119
|
Abstract
Chromatin is the physiologically relevant substrate for all genetic processes inside the nuclei of eukaryotic cells. Dynamic changes in the local and global organization of chromatin are emerging as key regulators of genomic function. Indeed, a multitude of signals from outside and inside the cell converges on this gigantic signaling platform. Numerous post-translational modifications of histones, the main protein components of chromatin, have been documented and analyzed in detail. These 'marks' appear to crucially mediate the functional activity of the genome in response to upstream signaling pathways. Different layers of cross-talk between several components of this complex regulatory system are emerging, and these epigenetic circuits are the focus of this review.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Department of Biochemistry and Molecular Genetics, University of Virginia, Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0733, USA
| | | | | |
Collapse
|
1120
|
Akimoto Y, Comer FI, Cole RN, Kudo A, Kawakami H, Hirano H, Hart GW. Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res 2003; 966:194-205. [PMID: 12618343 DOI: 10.1016/s0006-8993(02)04158-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous nucleocytoplasmic protein modification that has a complex interplay with phosphorylation on cytoskeletal proteins, signaling proteins and transcription factors. O-GlcNAc is essential for life at the single cell level, and much indirect evidence suggests it plays an important role in nerve cell biology and neurodegenerative disease. Here we show the localization of O-GlcNAc Transferase (OGTase) mRNA, OGTase protein, and O-GlcNAc-modified proteins in the rat cerebellar cortex. The sites of OGTase mRNA expression were determined by in situ hybridization histochemistry. Intense hybridization signals were present in neurons, especially in the Purkinje cells. Fluorescent-tagged antibody against OGTase stained almost all of the neurons with especially intense reactivity in Purkinje cells, within which the nucleus, perikaryon, and dendrites were most intensely stained. Using immuno-electron microscopic labeling, OGTase was seen to be enriched in euchromatin, in the cytoplasmic matrix, at the nerve terminal, and around microtubules in dendrites. In nerve terminals, immuno-gold labeling was observed around synaptic vesicles, with the enzyme more densely localized in the presynaptic terminals than in the postsynaptic ones. Using an antibody to O-GlcNAc, we found the sugar localizations reflected results seen for OGTase. Collectively, these data support hypothesized roles for O-GlcNAc in key processes of brain cells, including the regulation of transcription, synaptic vesicle secretion, transport, and signal transduction. Thus, by modulating the phosphorylation or protein associations of key regulatory and cytoskeletal proteins, O-GlcNAc is likely important to many functions of the cerebellum.
Collapse
Affiliation(s)
- Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
1121
|
Decottignies A, Sanchez-Perez I, Nurse P. Schizosaccharomyces pombe essential genes: a pilot study. Genome Res 2003; 13:399-406. [PMID: 12618370 PMCID: PMC430286 DOI: 10.1101/gr.636103] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Accepted: 12/10/2002] [Indexed: 11/24/2022]
Abstract
After completion of the Schizosaccharomyces pombe genome sequence, we have carried out a pilot gene deletion project to assess the feasibility of a genome-wide deletion project and to estimate the percentage of essential genes. Using a PCR-based gene deletion procedure, we investigated 100 genes within a 253-kb region of chromosome II. Eight of nine genes located within a region of 18 kb could not be deleted, suggesting that systematic deletion of all fission yeast genes may be difficult to achieve using this PCR approach. The percentage of essential genes was found to be 17.5%. Further deletion of selected S. pombe genes revealed that whether a gene is essential or not is correlated with the timing of its appearance on the tree of life and its conservation within all branches of the tree. None of the investigated ancient genes in fission yeast that have been lost in the Saccharomyces cerevisiae lineage are essential. In agreement with S. cerevisiae and Caenorhabditis elegans genome analyses, our data suggest that natural selection has preferentially kept the genes required for vital functions. We propose that many of the essential eukaryotic genes appeared with the first eukaryotic cell and have remained conserved in all species.
Collapse
|
1122
|
Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:967-73. [PMID: 12631322 DOI: 10.1046/j.1365-313x.2003.01681.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Strong methylation of lysine 4 (K4) and low methylation of lysine 9 (K9) have been proposed as modifications of histone H3, typical for transcriptionally active euchromatin and the opposite for inactive heterochromatin. We have analysed the correlation between the global distribution of histone H3, methylated at either lysine 4 or lysine 9, and of microscopically detectable euchromatic or heterochromatic regions in relation to genome size for 24 plant species. Two different distribution patterns of methylated (K9)H3 (Met(K9)H3) were found that depend on genome size. For most species with small genomes (1C <500 Mbp), including Arabidopsis thaliana, strong methylation of (K9)H3 was restricted to constitutive heterochromatin. Species with larger genomes showed a uniform distribution of Met(K9)H3. Contrary to this and regardless of the genome size, methylated (K4)H3 (Met(K4)H3) was found to be enriched within the euchromatin of all species. Transcriptionally less active B chromosomes showed the same patterns as basic A chromosomes. We thus propose that large genomes with high amounts of dispersed repetitive sequences (mainly retroelements) have to silence these sequences and therefore display epigenetic modifications such as methylation of DNA and (K9)H3 also within euchromatic regions.
Collapse
Affiliation(s)
- Andreas Houben
- Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
1123
|
Nicolas E, Roumillac C, Trouche D. Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol 2003; 23:1614-22. [PMID: 12588981 PMCID: PMC151719 DOI: 10.1128/mcb.23.5.1614-1622.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epigenetic marks that specify silent heterochromatic domains in eucaryotic genomes include methylation of histone H3 lysine 9. Strikingly, active loci in the vicinity of silent domains are sometimes characterized by acetylation of histone H3 lysine 9, suggesting that the balance between these two competitive modifications is important for the establishment of specific chromatin structures. Some euchromatic genes, targeted by the retinoblastoma protein Rb, are also believed to be regulated by histone H3 lysine 9 methylation. Here, we study the dihydrofolate reductase promoter, which is repressed in G0 and at the beginning of G1 by p107 or p130, two Rb-related proteins. We found that these two pocket proteins share with Rb the ability to associate with the histone methyl transferase SUV39H1. SUV39H1 can be recruited to the E2F transcription factor and functions as a transcriptional corepressor. With ChIP assays followed by real-time PCR, we showed that K9 of histone H3 evolves from a hypermethylated state in G0 to a hyperacetylated state at the G1/S transition. Taken together, these results indicate that the temporal regulation of euchromatic promoters may involve controlling the balance between methylation and acetylation of histone H3 lysine 9, a feature previously described for the spatial regulation of chromatin function.
Collapse
Affiliation(s)
- Estelle Nicolas
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS, IFR 109, Toulouse, France
| | | | | |
Collapse
|
1124
|
Manzur KL, Farooq A, Zeng L, Plotnikova O, Koch AW, Zhou MM. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat Struct Mol Biol 2003; 10:187-96. [PMID: 12567185 DOI: 10.1038/nsb898] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/30/2002] [Indexed: 11/08/2022]
Abstract
Site-specific lysine methylation of histones by SET domains is a hallmark for epigenetic control of gene transcription in eukaryotic organisms. Here we report that a SET domain protein from Paramecium bursaria chlorella virus can specifically di-methylate Lys27 in histone H3, a modification implicated in gene silencing. The solution structure of the viral SET domain reveals a butterfly-shaped head-to-head symmetric dimer different from other known protein methyltransferases. Each subunit consists of a Greek-key antiparallel beta-barrel and a three-stranded open-faced sandwich that mediates the dimer interface. Cofactor S-adenosyl-L-methionine (SAM) binds at the opening of the beta-barrel, and amino acids C-terminal to Lys27 in H3 and in the flexible C-terminal tail of the enzyme confer the specificity of this viral histone methyltransferase.
Collapse
Affiliation(s)
- Karishma L Manzur
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
1125
|
Martens JHA, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol 2003; 23:1808-16. [PMID: 12588998 PMCID: PMC151710 DOI: 10.1128/mcb.23.5.1808-1816.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation in eukaryotes requires chromatin remodeling, in part via histone modifications. To study the events at the promoter of a mitogen-inducible gene, we examined the induction of expression of the collagenase gene. It has been established that the collagenase gene can be activated by c-Jun and c-Fos and that the transcriptional coactivator p300 is involved in the activation. As expected, we found histone acetyltransferase activity at the collagenase promoter during activation. Interestingly, we also found histone methyltransferase and kinase activity. Strikingly, the first modification observed is methylation of histone H3 lysine 4, which correlates with the binding of the SET9 methyltransferase and the assembly of a complex consisting of c-Jun, c-Fos, TATA binding protein, and RNA polymerase II. The assembly of the preinitiation complex also shows an ordered binding of the acetyltransferase p300, the RSK2 kinase, and the SWI/SNF component Brg-1. Our results suggest that collagenase gene activation involves a dynamic recruitment of different factors and that in addition to acetylation, histone H3 lysine 4 di- and trimethylation and histone H3 serine 10 phosphorylation are important steps in the activation of this gene.
Collapse
Affiliation(s)
- Joost H A Martens
- Molecular Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
1126
|
Kanoh J, Francesconi S, Collura A, Schramke V, Ishikawa F, Baldacci G, Géli V. The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. J Mol Biol 2003; 326:1081-94. [PMID: 12589755 DOI: 10.1016/s0022-2836(03)00030-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have characterized spSet1p, the Schizosaccharomyces pombe ortholog of the budding yeast histone H3 methyltransferase Set1p. SpSet1p catalyzes methylation of H3 at K4, in vivo and in vitro. Deleting spset1 partially affects telomeric and centromeric silencing. Strikingly, lack of spSet1p causes elongation of telomeres in wild-type cells and in most DNA damage checkpoint rad mutant cells, but not in cells lacking the ATM kinase Rad3 or its associated protein Rad26. Interestingly, spset1 deletion specifically causes a reduction in sensitivity to ultraviolet radiation of the PCNA-like checkpoint mutants hus1 and rad1, but not of cells devoid of Rad3. This partial suppression was not due to restoration of checkpoint function or to transcriptional induction of DNA repair genes. Moreover, spset1 allows recovery specifically of the crb2 checkpoint mutant upon treatment with the replication inhibitor hydroxyurea but not upon UV irradiation. Nevertheless, the pathway induced in spset1 cells cannot substitute for the Mus81/Rqh1 DNA damage tolerance pathway. Our results suggest that SpSet1p and the ATM kinase Rad3 function in a common genetic pathway linking chromatin to telomere length regulation and DNA repair.
Collapse
Affiliation(s)
- Junko Kanoh
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
1127
|
Yamamoto K, Sonoda M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem Biophys Res Commun 2003; 301:287-92. [PMID: 12565857 DOI: 10.1016/s0006-291x(02)03021-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterochromatin protein 1 (HP1) binds to the nucleosome via a methylated lysine residue 9 of histone H3 which is catalyzed by a histone methyltransferase such as SUV39H1. Although co-localization of HP1 and SUV39H1 has been evident in immunostaining and immunoprecipitation experiments, direct protein-protein interactions have remained to be characterized. We examined interactions between mouse HP1 alpha (mHP1 alpha) and SUV39H1 in yeast and in vitro. A yeast two-hybrid and a glutathione S-transferase pull-down study indicated that the chromo shadow domain of mHP1 alpha directly interacts with the N-terminal 39 amino acid stretch of SUV39H1. The IY165/168EE mutation in the chromo shadow domain of mHP1 alpha abrogated a self-interaction and this mutant did not interact with SUV39H1. The 13-mer peptide containing a consensus sequence for binding to the dimer surface formed by the chromo shadow domains inhibited interaction between mHP1 alpha and SUV39H1. It seems that self-interaction through the chromo shadow domain of HP1 is crucial for recruitment of SUV39H1 onto nucleosomes.
Collapse
Affiliation(s)
- Ken Yamamoto
- Division of Molecular Population Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka-ken 812-8582, Japan.
| | | |
Collapse
|
1128
|
Schotta G, Ebert A, Dorn R, Reuter G. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin Cell Dev Biol 2003; 14:67-75. [PMID: 12524009 DOI: 10.1016/s1084-9521(02)00138-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In position-effect variegation (PEV) genes become silenced by heterochromatisation. Genetic dissection of this process has been performed by means of dominant suppressor [Su(var)] and enhancer [E(var)] mutations. Selective genetic screens allowed mass isolation of more than 380 PEV modifier mutations identifying about 150 genes. Genetic fine structure studies revealed unique dosage dependent effects. Most of the haplo-dependent Su(var) and E(var) genes do not display triplo-dependent effects. Several Su(var) loci with triplo-dependent opposite enhancer effects have been identified and shown to encode heterochromatin-associated proteins. From these the evolutionary conserved histone H3 lysine 9 methyltransferase SU(VAR)3-9 plays a central role in heterochromatic gene silencing. Molecular function of most PEV modifier genes is still unknown also including genes identified with mutations displaying lethal interaction to heterochromatin. Their analysis should contribute to further understanding of processes connected with regulation of higher order chromatin structure and epigenetic programming.
Collapse
Affiliation(s)
- Gunnar Schotta
- Institute of Genetics, Martin Luther University of Halle, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
1129
|
Jasencakova Z, Soppe WJJ, Meister A, Gernand D, Turner BM, Schubert I. Histone modifications in Arabidopsis- high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:471-80. [PMID: 12581305 DOI: 10.1046/j.1365-313x.2003.01638.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
N-terminal modifications of nucleosomal core histones are involved in gene regulation, DNA repair and recombination as well as in chromatin modeling. The degree of individual histone modifications may vary between specific chromatin domains and throughout the cell cycle. We have studied the nuclear patterns of histone H3 and H4 acetylation and of H3 methylation in Arabidopsis. A replication-linked increase of acetylation only occurred at H4 lysine 16 (not for lysines 5 and 12) and at H3 lysine 18. The last was not observed in other plants. Strong methylation at H3 lysine 4 was restricted to euchromatin, while strong methylation at H3 lysine 9 occurred preferentially in heterochromatic chromocenters of Arabidopsis nuclei. Chromocenter appearance, DNA methylation and histone modification patterns were similar in nuclei of wild-type and kryptonite mutant (which lacks H3 lysine 9-specific histone methyltransferase), except that methylation at H3 lysine 9 in heterochromatic chromocenters was reduced to the same low level as in euchromatin. Thus, a high level of H3methylK9 is apparently not necessary to maintain chromocenter structure and does not prevent methylation of H3 lysine 4 within Arabidopsis chromocenters.
Collapse
Affiliation(s)
- Zuzana Jasencakova
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
1130
|
Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 2003; 299:721-5. [PMID: 12560555 DOI: 10.1126/science.1078572] [Citation(s) in RCA: 485] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
One function of heterochromatin is the epigenetic silencing by sequestration of genes into transcriptionally repressed nuclear neighborhoods. Heterochromatin protein 1 (HP1) is a major component of heterochromatin and thus is a candidate for establishing and maintaining the transcriptionally repressive heterochromatin structure. Here we demonstrate that maintenance of stable heterochromatin domains in living cells involves the transient binding and dynamic exchange of HP1 from chromatin. HP1 exchange kinetics correlate with the condensation level of chromatin and are dependent on the histone methyltransferase Suv39h. The chromodomain and the chromoshadow domain of HP1 are both required for binding to native chromatin in vivo, but they contribute differentially to binding in euchromatin and heterochromatin. These data argue against HP1 repression of transcription by formation of static, higher order oligomeric networks but support a dynamic competition model, and they demonstrate that heterochromatin is accessible to regulatory factors.
Collapse
Affiliation(s)
- Thierry Cheutin
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
1131
|
Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J 2003; 22:292-303. [PMID: 12514135 PMCID: PMC140100 DOI: 10.1093/emboj/cdg025] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.
Collapse
Affiliation(s)
- Taewoo Kwon
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Jeong Ho Chang
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Eunyee Kwak
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Chang Wook Lee
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Andrzej Joachimiak
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Young Chang Kim
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Jaewoon Lee
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| | - Yunje Cho
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea and Biosciences Division, Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA Corresponding author e-mail:
| |
Collapse
|
1132
|
Silverstein RA, Richardson W, Levin H, Allshire R, Ekwall K. A new role for the transcriptional corepressor SIN3; regulation of centromeres. Curr Biol 2003; 13:68-72. [PMID: 12526748 DOI: 10.1016/s0960-9822(02)01401-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Centromeres play a vital role in maintaining the genomic stability of eukaryotes by coordinating the equal distribution of chromosomes to daughter cells during mitosis and meiosis. Fission yeast (S. pombe) centromeres consist of a 4-9 kb central core region and 30-100 kb of flanking inner (imr/B) and outer (otr/K) repeats. These sequences direct a laminar kinetochore structure similar to that of human centromeres. Centromeric heterochromatin is generally underacetylated. We have previously shown that inhibition of histone deacetylases (HDACs) caused hyperacetylation of centromeres and defective chromosome segregation. SIN3 is a HDAC corepressor that has the ability to mediate HDAC targeting in the repression of promoters. In this study, we have characterized S. pombe sin three corepressors (Pst1p and Pst2p) to investigate whether SIN3-HDAC is required in the regulation of centromeres. We show that only pst1-1 and not pst2Delta cells displayed anaphase defects and thiabendazole sensitivity. pst1-1 cells showed reduced centromeric silencing, increased histone acetylation in centromeric chromatin, and defective centromeric sister chromatid cohesion. The HDAC Clr6p and Pst1p coimmunoprecipitated, and Pst1p colocalized with centromeres, particularly in binucleate cells. These data are consistent with a model in which Pst1p-Clr6p temporally associate with centromeres to carry out the initial deacetylation necessary for subsequent steps in heterochromatin formation.
Collapse
Affiliation(s)
- Rebecca A Silverstein
- Karolinska Institutet, Department of Biosciences Novum, University College Sodertorn, Department of Natural Sciences, S-141 89, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
1133
|
Nielsen PR, Callaghan J, Murzin AG, Murzina NV, Laue ED. Expression, Purification, and Biophysical Studies of Chromodomain Proteins. Methods Enzymol 2003; 376:148-70. [PMID: 14975304 DOI: 10.1016/s0076-6879(03)76010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Peter R Nielsen
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
1134
|
Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003; 3:89-95. [PMID: 12559178 DOI: 10.1016/s1535-6108(02)00234-9] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We attempted to answer two central questions about epigenetic silencing of the tumor suppressor gene p16(INK4a) in this study: (1) whether the maintenance of associated histone modifications is dependent on DNA methylation and (2) whether such histone modifications can occur prior to DNA methylation. By coupling chromatin immunoprecipitation with gene targeting and the analysis of specific alleles, we found that elimination of DNA methylation from a p16(INK4a) allele resulted in profound changes in surrounding histones. After continued passage of such cells, methylation of histone H3 lysine-9 occurred in conjunction with re-silencing in the absence of DNA methylation. These results have important implications for understanding the biochemical events underlying the silencing of tumor suppressor genes and the resultant growth suppression.
Collapse
Affiliation(s)
- Kurtis E Bachman
- The Howard Hughes Medical Institute, The Sidney Kimmel Comprehensive Cancer Center, and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
1135
|
Stephens GE, Craig CA, Li Y, Wallrath LL, Elgin SCR. Immunofluorescent staining of polytene chromosomes: exploiting genetic tools. Methods Enzymol 2003; 376:372-93. [PMID: 14975319 DOI: 10.1016/s0076-6879(03)76025-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gena E Stephens
- Biology Department, Washington University in St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
1136
|
Abstract
Structural maintenance of chromosomes (SMC) family proteins have attracted much attention for their unique protein structure and critical roles in mitotic chromosome organization. Elegant genetic and biochemical studies in yeast and Xenopus identified two different SMC heterodimers in two conserved multiprotein complexes termed 'condensin' and 'cohesin'. These complexes are required for mitotic chromosome condensation and sister chromatid cohesion, respectively, both of which are prerequisite to accurate segregation of chromosomes. Although structurally similar, the SMC proteins in condensin and cohesin appear to have distinct functions, whose specificity and cell cycle regulation are critically determined by their interactions with unique sets of associated proteins. Recent studies of subcellular localization of SMC proteins and SMC-containing complexes, identification of their interactions with other cellular factors, and discovery of new SMC family members have uncovered unexpected roles for SMC proteins and SMC-containing complexes in different aspects of genome functions and chromosome organization beyond mitosis, all of which are critical for the maintenance of chromosome integrity.
Collapse
Affiliation(s)
- K Yokomori
- Department of Biological Chemistry, 240D Med. Sci. I, College of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
1137
|
Clements A, Marmorstein R. Insights into Structure and Function of GCN5⧸PCAF and yEsa 1 Histone Acetyltransferase Domains:. Methods Enzymol 2003; 371:545-64. [PMID: 14712728 DOI: 10.1016/s0076-6879(03)71041-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
1138
|
Eissenberg JC, Wallrath LL. Heterochromatin, Position Effects, and the Genetic Dissection of Chromatin. ACTA ACUST UNITED AC 2003; 74:275-99. [PMID: 14510079 DOI: 10.1016/s0079-6603(03)01016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Joel C Eissenberg
- Department of Biochemistry and Molecular Biology, St. Louis School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
1139
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
1140
|
Snowden AW, Gregory PD, Case CC, Pabo CO. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002; 12:2159-66. [PMID: 12498693 DOI: 10.1016/s0960-9822(02)01391-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covalent modifications of chromatin have emerged as key determinants of the genome's transcriptional competence. Histone H3 lysine 9 (H3K9) methylation is an epigenetic signal that is recognized by HP1 and correlates with gene silencing in a variety of organisms. Discovery of the enzymes that catalyze H3K9 methylation has identified a second gene-specific function for this modification in transcriptional repression. Whether H3K9 methylation is causative in the initiation and establishment of gene repression or is a byproduct of the process leading to the repressed state remains unknown. To investigate the role of HMTs and specifically H3K9 methylation in gene repression, we have employed engineered zinc-finger transcription factors (ZFPs) to target HMT activity to a specific endogenous gene. By utilizing ZFPs that recognize the promoter of the endogenous VEGF-A gene, and thus employing this chromosomal locus as an in vivo reporter, we show that ZFPs linked to a minimal catalytic HMT domain affect local methylation of histone H3K9 and the consequent repression of target gene expression. Furthermore, amino acid substitutions within the HMT that ablate its catalytic activity effectively eliminate the ability of the ZFP fusions to repress transcription. Thus, H3K9 methylation is a primary signal that is sufficient for initiating a gene repression pathway in vivo.
Collapse
Affiliation(s)
- Andrew W Snowden
- Sangamo BioSciences, Point Richmond Tech Center, 501 Canal Boulevard, Suite A100, Richmond, California 94804, USA
| | | | | | | |
Collapse
|
1141
|
Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 2002; 21:6842-52. [PMID: 12486005 PMCID: PMC139107 DOI: 10.1093/emboj/cdf687] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/21/2002] [Accepted: 10/30/2002] [Indexed: 11/14/2022] Open
Abstract
Cytosine methylation is critical for correct development and genome stability in mammals and plants. In order to elucidate the factors that control genomic DNA methylation patterning, a genetic screen for mutations that disrupt methylation-correlated silencing of the endogenous gene PAI2 was conducted in Arabidopsis: This screen yielded seven loss-of-function alleles in a SET domain protein with histone H3 Lys9 methyltransferase activity, SUVH4. The mutations conferred reduced cytosine methylation on PAI2, especially in non-CG sequence contexts, but did not affect methylation on another PAI locus carrying two genes arranged as an inverted repeat. Moreover, an unmethylated PAI2 gene could be methylated de novo in the suvh4 mutant background. These results suggest that SUVH4 is involved in maintenance but not establishment of methylation at particular genomic regions. In contrast, a heterochromatin protein 1 homolog, LHP1, had no effect on PAI methylation.
Collapse
Affiliation(s)
- Fabienne Malagnac
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
1142
|
Selker EU, Freitag M, Kothe GO, Margolin BS, Rountree MR, Allis CD, Tamaru H. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16485-90. [PMID: 12189210 PMCID: PMC139912 DOI: 10.1073/pnas.182427299] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One can imagine a variety of mechanisms that should result in self-perpetuating biological states. It is generally assumed that cytosine methylation is propagated in eukaryotes by enzymes that specifically methylate hemimethylated symmetrical sites (e.g., (5')CpGGpC(5') or (5')CpNpGGpNpC(5')). Although there is wide support for this model, we and others have found examples of methylation that must be propagated by a different mechanism. Most methylated regions of the Neurospora genome that have been examined are products of repeat-induced point mutation, a premeiotic genome defense system that litters duplicated sequences with C.G to T.A mutations and typically leaves them methylated at remaining cytosines. In general, such relics of repeat-induced point mutation are capable of triggering methylation de novo. Nevertheless, some reflect a mechanism that can propagate heterogeneous methylation at nonsymmetrical sites. We propose that de novo and maintenance methylation are manifestations of a single mechanism in Neurospora, catalyzed by the DIM-2 DNA methyltransferase. The action of DIM-2 is controlled by the DIM-5 histone H3 Lys-9 methyltransferase, which in turn is influenced by other modifications of histone H3. DNA methylation indirectly recruits histone deacetylases, providing the framework of a self-reinforcing system that could result in propagation of DNA methylation and the associated silenced chromatin state.
Collapse
Affiliation(s)
- Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | | | | | | | | | | | |
Collapse
|
1143
|
Li Y, Kirschmann DA, Wallrath LL. Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16462-9. [PMID: 12151603 PMCID: PMC139909 DOI: 10.1073/pnas.162371699] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is a conserved chromosomal protein that participates in chromatin packaging and gene silencing. A loss of HP1 leads to lethality in Drosophila and correlates with metastasis in human breast cancer cells. On Drosophila polytene chromosomes HP1 is localized to centric regions, telomeric regions, in a banded pattern along the fourth chromosome, and at many sites scattered throughout the euchromatic arms. Recently, one mechanism of HP1 chromosome association was revealed; the amino-terminal chromo domain of HP1 interacts with methylated lysine nine of histone H3, consistent with the histone code hypothesis. Compelling data support this mechanism of HP1 association at centric regions. Is this the only mechanism by which HP1 associates with chromosomes? Interest is now shifting toward the role of HP1 within euchromatic domains. Accumulating evidence in Drosophila and mammals suggests that HP1 associates with chromosomes through interactions with nonhistone chromosomal proteins at locations other than centric heterochromatin. Does HP1 play a similar role in chromatin packaging and gene regulation at these sites as it does in centric heterochromatin? Does HP1 associate with the same proteins at these sites as it does in centric heterochromatin? A first step toward answering these questions is the identification of sequences associated with HP1 within euchromatic domains. Such sequences are likely to include HP1 "target genes" whose discovery will aid in our understanding of HP1 lethality in Drosophila and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Yuhong Li
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
1144
|
Noma KI, Grewal SIS. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16438-45. [PMID: 12193658 PMCID: PMC139906 DOI: 10.1073/pnas.182436399] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylation of histone H3 at lysine 4 (H3 Lys-4) or lysine 9 (H3 Lys-9) is known to define active and silent chromosomal domains respectively from fission yeast to humans. However, in budding yeast, H3 Lys-4 methylation is also necessary for silent chromatin assembly at telomeres and ribosomal DNA. Here we demonstrate that deletion of set1, which encodes a protein containing an RNA recognition motif at its amino terminus and a SET domain at the carboxy terminus, abolishes H3 Lys-4 methylation in fission yeast. Unlike in budding yeast, Set1-mediated H3 Lys-4 methylation is not required for heterochromatin assembly at the silent mating-type region and centromeres in fission yeast. Our analysis suggests that H3 Lys-4 methylation is a stable histone modification present throughout the cell cycle, including mitosis. The loss of H3 Lys-4 methylation in set1Delta cells is correlated with a decrease in histone H3 acetylation levels, suggesting a mechanistic link between H3 Lys-4 methylation and acetylation of the H3 tail. We suggest that methylation of H3 Lys-4 primarily acts in the maintenance of transcriptionally poised euchromatic domains, and that this modification is dispensable for heterochromatin formation in fission yeast, which instead utilizes H3 Lys-9 methylation.
Collapse
Affiliation(s)
- Ken-ichi Noma
- Cold Spring Harbor Laboratory, P.O. Box 100, NY 11724, USA
| | | |
Collapse
|
1145
|
Fournier C, Goto Y, Ballestar E, Delaval K, Hever AM, Esteller M, Feil R. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J 2002; 21:6560-70. [PMID: 12456662 PMCID: PMC136958 DOI: 10.1093/emboj/cdf655] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In different eukaryotic model systems, chromatin and gene expression are modulated by post-translational modification of histone tails. In this in vivo study, histone methylation and acetylation are investigated along the imprinted mouse genes Snrpn, Igf2r and U2af1-rs1. These imprinted genes all have a CpG-rich regulatory element at which methylation is present on the maternal allele, and originates from the female germ line. At these 'differentially methylated regions' (DMRs), histone H3 on the paternal allele has lysine-4 methylation and is acetylated. On the maternally inherited allele, in contrast, chromatin is marked by hypermethylation on lysine-9 of H3. Allele-specific patterns of lysine-4 and lysine-9 methylation are also detected at other regions of the imprinted loci. For the DMR at the U2af1-rs1 gene, we establish that the methyl-CpG-binding-domain (MBD) proteins MeCP2, MBD1 and MBD3 are associated with the maternal allele. These data support the hypothesis that MBD protein-associated histone deacetylase/chromatin-remodelling complexes are recruited to the parental allele that has methylated DNA and H3-K9 methylation, and are prevented from binding to the opposite allele by H3 lysine-4 methylation.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Institute of Molecular Genetics, CNRS, UMR-5535, 1919 route de Mende, 34293 Montpellier, France and
Cancer Epigenetics Laboratory, Spanish National Cancer Center (CNIO), C./Melchor Fernandez Almagro, 28029 Madrid, Spain Corresponding author e-mail:
| | | | | | - Manel Esteller
- Institute of Molecular Genetics, CNRS, UMR-5535, 1919 route de Mende, 34293 Montpellier, France and
Cancer Epigenetics Laboratory, Spanish National Cancer Center (CNIO), C./Melchor Fernandez Almagro, 28029 Madrid, Spain Corresponding author e-mail:
| | - Robert Feil
- Institute of Molecular Genetics, CNRS, UMR-5535, 1919 route de Mende, 34293 Montpellier, France and
Cancer Epigenetics Laboratory, Spanish National Cancer Center (CNIO), C./Melchor Fernandez Almagro, 28029 Madrid, Spain Corresponding author e-mail:
| |
Collapse
|
1146
|
|
1147
|
Choi ES, Kim HS, Jang YK, Hong SH, Park SD. Two ubiquitin-conjugating enzymes, Rhp6 and UbcX, regulate heterochromatin silencing in Schizosaccharomyces pombe. Mol Cell Biol 2002; 22:8366-74. [PMID: 12417737 PMCID: PMC134062 DOI: 10.1128/mcb.22.23.8366-8374.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken beta-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6(+) and ubcX(+) (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6(+) or ubcX(+) enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing.
Collapse
Affiliation(s)
- Eun Shik Choi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
1148
|
Ner SS, Harrington MJ, Grigliatti TA. A role for the Drosophila SU(VAR)3-9 protein in chromatin organization at the histone gene cluster and in suppression of position-effect variegation. Genetics 2002; 162:1763-74. [PMID: 12524347 PMCID: PMC1462387 DOI: 10.1093/genetics/162.4.1763] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the gene for Su(var)3-9 are dominant suppressors of position-effect variegation (PEV). We show that SU(VAR)3-9 is a chromatin-associated protein and identify the large multicopy histone gene cluster (HIS-C) as one of its target loci. The organization of nucleosomes over the entire HIS-C region is altered in Su(var)3-9 mutants and there is a concomitant increase in expression of the histone genes. SU(VAR)3-9 is a histone H3 methyltransferase and, using chromatin immunoprecipitation, we show that SU(VAR)3-9 is present at the HIS-C locus and that the histone H3 at the HIS-C locus is methylated. We propose that SU(VAR)3-9 is involved in packaging HIS-C into a distinct chromatin domain that has some of the characteristics of beta-heterochromatin. We suggest that methylation of histone H3 is important for the chromatin structure at HIS-C. The chromosomal deficiency for the HIS-C is also a suppressor of PEV. In contrast to what might be expected, we show that hemizygosity for the HIS-C locus leads to a substantial increase in the histone transcripts.
Collapse
Affiliation(s)
- Sarbjit S Ner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
1149
|
Ghoshal K, Datta J, Majumder S, Bai S, Dong X, Parthun M, Jacob ST. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol Cell Biol 2002; 22:8302-19. [PMID: 12417732 PMCID: PMC134057 DOI: 10.1128/mcb.22.23.8302-8319.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Revised: 08/05/2002] [Accepted: 08/20/2002] [Indexed: 12/29/2022] Open
Abstract
Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.
Collapse
Affiliation(s)
- Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
1150
|
Kametaka A, Takagi M, Hayakawa T, Haraguchi T, Hiraoka Y, Yoneda Y. Interaction of the chromatin compaction-inducing domain (LR domain) of Ki-67 antigen with HP1 proteins. Genes Cells 2002; 7:1231-42. [PMID: 12485163 DOI: 10.1046/j.1365-2443.2002.00596.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The LR domain of marsupial chmadrin is defined by its C-terminal amino acid sequence, which contains several pairs of leucine (L) and arginine (R) residues. The LR domain of chmadrin causes a significant compaction of chromatin over the entire length of chromosomes when it is overproduced. The possible human homologue of chmadrin, Ki-67 antigen (pKi-67), also has a stretch of LR pairs, but with no obvious overall similarity, at its C-terminus. RESULTS The LR domain of human pKi-67 also induced chromatin compaction, both in human and marsupial cells. A yeast two-hybrid assay and an in vitro binding assay demonstrated that the human LR domain binds to heterochromatin protein 1 (HP1), a well-characterized molecule as a mediator of heterochromatin formation. In fixed cells stained with specific antibodies, the pKi-67 was found to be co-localized partially with HP1 at foci on chromosomes in an early G1 phase. Time-lapse observation in living cells co-expressing the fluorescently tagged proteins showed that the LR domain formed foci on chromosomes over a limited period of the cell cycle from the telophase to early G1 phase and that HP1 subsequently accumulated at these foci of the LR domain. CONCLUSIONS Marsupial chmadrin and human pKi-67 induce chromatin compaction across species, possibly via the interaction of its LR domain with HP1.
Collapse
Affiliation(s)
- Ai Kametaka
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | |
Collapse
|