1101
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
1102
|
Correia EEM, Figueirinha A, Rodrigues L, Pinela J, Calhelha RC, Barros L, Fernandes C, Salgueiro L, Gonçalves T. The Chemical Profile, and Antidermatophytic, Anti-Inflammatory, Antioxidant and Antitumor Activities of Withania chevalieri A.E. Gonç. Ethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:2502. [PMID: 37447064 DOI: 10.3390/plants12132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, β-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.
Collapse
Affiliation(s)
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lisa Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Chantal Fernandes
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
1103
|
Sollfrank L, Linn SC, Hauptmann M, Jóźwiak K. A scoping review of statistical methods in studies of biomarker-related treatment heterogeneity for breast cancer. BMC Med Res Methodol 2023; 23:154. [PMID: 37386356 PMCID: PMC10308726 DOI: 10.1186/s12874-023-01982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Many scientific papers are published each year and substantial resources are spent to develop biomarker-based tests for precision oncology. However, only a handful of tests is currently used in daily clinical practice, since development is challenging. In this situation, the application of adequate statistical methods is essential, but little is known about the scope of methods used. METHODS A PubMed search identified clinical studies among women with breast cancer comparing at least two different treatment groups, one of which chemotherapy or endocrine treatment, by levels of at least one biomarker. Studies presenting original data published in 2019 in one of 15 selected journals were eligible for this review. Clinical and statistical characteristics were extracted by three reviewers and a selection of characteristics for each study was reported. RESULTS Of 164 studies identified by the query, 31 were eligible. Over 70 different biomarkers were evaluated. Twenty-two studies (71%) evaluated multiplicative interaction between treatment and biomarker. Twenty-eight studies (90%) evaluated either the treatment effect in biomarker subgroups or the biomarker effect in treatment subgroups. Eight studies (26%) reported results for one predictive biomarker analysis, while the majority performed multiple evaluations, either for several biomarkers, outcomes and/or subpopulations. Twenty-one studies (68%) claimed to have found significant differences in treatment effects by biomarker level. Fourteen studies (45%) mentioned that the study was not designed to evaluate treatment effect heterogeneity. CONCLUSIONS Most studies evaluated treatment heterogeneity via separate analyses of biomarker-specific treatment effects and/or multiplicative interaction analysis. There is a need for the application of more efficient statistical methods to evaluate treatment heterogeneity in clinical studies.
Collapse
Affiliation(s)
- L Sollfrank
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany
| | - S C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany
| | - K Jóźwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany.
| |
Collapse
|
1104
|
Bontempo P, De Masi L, Rigano D. Functional Properties of Natural Products and Human Health. Nutrients 2023; 15:2961. [PMID: 37447290 DOI: 10.3390/nu15132961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Natural products (NPs), broadly defined as chemicals produced by living organisms including microbes, marine organisms, animals, fungi and plants, are widely used as therapeutic agents for treating diseases and maintaining health and "wellness" [...].
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
1105
|
Venetis K, Sajjadi E, Ivanova M, Peccatori FA, Fusco N, Guerini-Rocco E. Characterization of the immune environment in pregnancy-associated breast cancer. Future Oncol 2023. [PMID: 37376974 DOI: 10.2217/fon-2022-1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pregnancy-associated breast cancer (PrBC) is a rare and clinically challenging condition. Specific immune mechanisms and pathways are involved in maternal-fetal tolerance and tumor-host immunoediting. The comprehension of the molecular processes underpinning this immune synergy in PrBC is needed to improve patients' clinical management. Only a few studies focused on the immune biology of PrBC and attempted to identify bona fide biomarkers. Therefore, clinically actionable information remains extremely puzzling for these patients. In this review article, we discuss the current knowledge on the immune environment of PrBC, in comparison with pregnancy-unrelated breast cancer and in the context of maternal immune changes during pregnancy. A particular emphasis is given to the actual role of potential immune-related biomarkers for PrBC clinical management.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Fedro Alessandro Peccatori
- Fertility & Procreation Unit, Division of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Milan, 20122, Italy
| |
Collapse
|
1106
|
Kahn AM, Golestani R, Harigopal M, Pusztai L. Intratumor spatial heterogeneity in programmed death-ligand 1 (PD-L1) protein expression in early-stage breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06977-1. [PMID: 37378695 DOI: 10.1007/s10549-023-06977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Programmed death-ligand 1 (PD-L1) expression is required for benefit from immune checkpoint inhibitors in metastatic triple negative breast cancer (TNBC). In contrast, in the neoadjuvant setting patients benefited regardless of PD-L1 expression. We hypothesized that, in stages II-III breast cancers, low levels of PD-L1 expression may be sufficient to confer sensitivity to therapy and focal expression could be missed by a biopsy. METHODS In this study, we examined intratumor spatial heterogeneity of PD-L1 protein expression in multiple biopsies from different regions of breast cancers in 57 primary breast tumors (n = 33 TNBC, n = 19 estrogen receptor-positive [ER-positive], n = 5 human epidermal receptor 2-positive [HER2 +]). E1L3N antibody was used to assess PD-L1 status and staining was scored using the combined positivity score (CPS) with PD-L1 positive defined as CPS ≥ 10. RESULTS Overall, 19% (11/57) of tumors were PD-L1 positive based on positivity in at least 1 biopsy. Among TNBC, PD-L1 positivity was 27% (9/33). The discordance rate, defined as the same tumor yielding PD-L1 positive and negative samples in different regions, was 16% (n = 9) in the whole study population and 23% (n = 7) in TNBC. Cohen's kappa coefficient of agreement was 0.214 for the whole study and 0.239 for TNBC, both of which falling into a non-statistically significant fair agreement range. Among all PD-L1 positive cases, 82% (n = 9/11) had positivity in only one of the tissue assessments. CONCLUSION These results indicate that the overall 84% concordance is driven by concordant negative results. In PD-L1 positive cancers, within-tumor heterogeneity in PD-L1 expression exists.
Collapse
Affiliation(s)
- Adriana Matutino Kahn
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Reza Golestani
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Malini Harigopal
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Lajos Pusztai
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, 300 George St, Suite 120, Rm 133, New Haven, CT, 06520, USA.
| |
Collapse
|
1107
|
Zhou W, Xi S, Chen H, Jiang D, Yang J, Liu S, He L, Qiu H, Lan Y, Zhang M. A bridged backbone strategy enables collective synthesis of strychnan alkaloids. Nat Chem 2023:10.1038/s41557-023-01264-4. [PMID: 37365338 DOI: 10.1038/s41557-023-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Bridged frameworks are of high chemical and biological significance, being ubiquitous in pharmaceutical molecules and natural products. Specific structures are usually preformed to build these rigid segments at the middle or late stage in the synthesis of polycyclic molecules, resulting in decreased synthetic efficiency and target-specific syntheses. As a logically distinct synthetic strategy, we constructed an allene/ketone-equipped morphan core at the outset through an enantioselective α-allenylation of ketones. Experimental and theoretical results revealed that the high reactivity and enantioselectivity of this reaction are attributed to the cooperative effects of the organocatalyst and metal catalyst. The bridged backbone generated was employed as a structural platform to guide and facilitate the assembly of up to five fusing rings, and the allene and ketone groups thereon were used to precisely install various functionalities at C16 and C20 at the late stage, leading to a concise, collective total synthesis of nine strychnan alkaloids.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, China.
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
1108
|
Brunetti L. Pharmacological Studies on Neuromodulatory Effects of Plant Extracts. Int J Mol Sci 2023; 24:10653. [PMID: 37445829 DOI: 10.3390/ijms241310653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) disorders represent a public health priority and demand significant scientific efforts for the development and study of new drugs and their possible beneficial effects [...].
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| |
Collapse
|
1109
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
1110
|
Gackowski M, Madriwala B, Studzińska R, Koba M. Novel Isosteviol-Based FXa Inhibitors: Molecular Modeling, In Silico Design and Docking Simulation. Molecules 2023; 28:4977. [PMID: 37446638 DOI: 10.3390/molecules28134977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Direct oral anticoagulants are an important and relatively new class of synthetic anticoagulant drugs commonly used for the pharmacotherapy of thromboembolic disorders. However, they still have some limitations and serious side effects, which continuously encourage medicinal chemists to search for new active compounds acting as human-activated coagulation factor X (FXa) inhibitors. Isosteviol is a nontoxic hydrolysis product of naturally occurring stevioside and possesses a wide range of therapeutic properties, including anticoagulant activity. The present contribution describes the in silico design of novel oxime ether isosteviol derivatives as well as a molecular modeling approach based on QSAR analysis and a docking simulation for searching for novel isosteviol-based compounds as potential FXa inhibitors. The elaborated ANN model, encompassing topological and geometrical information, exhibited a significant correlation with FXa-inhibitory activity. Moreover, the docking simulation indicated six of the most promising isosteviol-like compounds for further investigation. Analysis showed that the most promising derivatives contain heterocyclic, aromatic, five-membered moieties, with substituents containing chlorine or fluorine atoms. It is anticipated that the findings reported in the present work may provide useful information for designing effective FXa inhibitors as anticoagulant agents.
Collapse
Affiliation(s)
- Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
| | - Burhanuddin Madriwala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nitte College of Pharmaceutical Sciences, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
| |
Collapse
|
1111
|
Zhao ZY, Tong YP, Jiang W, Zang Y, Xiong J, Li J, Hu JF. Structurally Diverse Triterpene-26-oic Acids as Potential Dual ACL and ACC1 Inhibitors from the Vulnerable Conifer Keteleeria fortunei. JOURNAL OF NATURAL PRODUCTS 2023; 86:1487-1499. [PMID: 37291059 DOI: 10.1021/acs.jnatprod.3c00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A preliminary phytochemical investigation on the 90% MeOH extract from the twigs and needles of the vulnerable conifer Keteleeria fortunei led to the isolation and characterization of 17 structurally diverse triterpen-26-oic acids, including nine previously undescribed ones (fortunefuroic acids A-I, 1-9) featuring a rare furoic acid moiety in the lateral chain. Among them, 1-5 are uncommon 9βH-lanostane-type triterpenoic acids. Friedo-rearranged triterpenoids 6 and 7 feature a unique 17,14-friedo-lanostane skeleton, whereas 9 possesses a rare 17,13-friedo-cycloartane-type framework. Their structures and absolute configurations were elucidated by extensive spectroscopic (e.g., detailed 2D NMR) and computational (NMR/ECD) calculations and the modified Mosher's method. In addition, the absolute structure of compound 1 was ascertained by single-crystal X-ray diffraction analyses. Fortunefuroic acids B (2), G (7), and I (9), along with isomangiferolic acid (12) and 3α,27-dihydroxycycloart-24E-en-26-oic acid (14), exhibited dual inhibitory effects against the adenosine triphosphate (ATP)-citrate lyase (ACL, IC50s: 5.7-11.4 μM) and acetyl-CoA carboxylase 1 (ACC1, IC50s: 7.5-10.5 μM), both of which are key enzymes for glycolipid metabolism. The interactions of the bioactive triterpenoids with both enzymes were examined by molecular docking studies. The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics for ACL-/ACC1-associated diseases.
Collapse
Affiliation(s)
- Ze-Yu Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Ying-Peng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Wei Jiang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei 430023, People's Republic of China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Jin-Feng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|
1112
|
Thomson TM. On the importance for drug discovery of a transnational Latin American database of natural compound structures. Front Pharmacol 2023; 14:1207559. [PMID: 37426821 PMCID: PMC10324963 DOI: 10.3389/fphar.2023.1207559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Timothy M. Thomson
- Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
1113
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
1114
|
Page DB, Pucilowska J, Chun B, Kim I, Sanchez K, Moxon N, Mellinger S, Wu Y, Koguchi Y, Conrad V, Redmond WL, Martel M, Sun Z, Campbell MB, Conlin A, Acheson A, Basho R, McAndrew P, El-Masry M, Park D, Bennetts L, Seitz RS, Nielsen TJ, McGregor K, Rajamanickam V, Bernard B, Urba WJ, McArthur HL. A phase Ib trial of pembrolizumab plus paclitaxel or flat-dose capecitabine in 1st/2nd line metastatic triple-negative breast cancer. NPJ Breast Cancer 2023; 9:53. [PMID: 37344474 DOI: 10.1038/s41523-023-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoimmunotherapy with anti-programmed cell death 1/ligand 1 and cytotoxic chemotherapy is a promising therapeutic modality for women with triple-negative breast cancer, but questions remain regarding optimal chemotherapy backbone and biomarkers for patient selection. We report final outcomes from a phase Ib trial evaluating pembrolizumab (200 mg IV every 3 weeks) with either weekly paclitaxel (80 mg/m2 weekly) or flat-dose capecitabine (2000 mg orally twice daily for 7 days of every 14-day cycle) in the 1st/2nd line setting. The primary endpoint is safety (receipt of 2 cycles without grade III/IV toxicities requiring discontinuation or ≥21-day delays). The secondary endpoint is efficacy (week 12 objective response). Exploratory aims are to characterize immunologic effects of treatment over time, and to evaluate novel biomarkers. The trial demonstrates that both regimens meet the pre-specified safety endpoint (paclitaxel: 87%; capecitabine: 100%). Objective response rate is 29% for pembrolizumab/paclitaxel (n = 4/13, 95% CI: 10-61%) and 43% for pembrolizumab/capecitabine (n = 6/14, 95% CI: 18-71%). Partial responses are observed in two subjects with chemo-refractory metaplastic carcinoma (both in capecitabine arm). Both regimens are associated with significant peripheral leukocyte contraction over time. Response is associated with clinical PD-L1 score, non-receipt of prior chemotherapy, and the H&E stromal tumor-infiltrating lymphocyte score, but also by a novel 27 gene IO score and spatial biomarkers (lymphocyte spatial skewness). In conclusion, pembrolizumab with paclitaxel or capecitabine is safe and clinically active. Both regimens are lymphodepleting, highlighting the competing immunostimulatory versus lymphotoxic effects of cytotoxic chemotherapy. Further exploration of the IO score and spatial TIL biomarkers is warranted. The clinical trial registration is NCT02734290.
Collapse
Affiliation(s)
- David B Page
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| | - Joanna Pucilowska
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Brie Chun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Isaac Kim
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Katherine Sanchez
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Nicole Moxon
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Staci Mellinger
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Yaping Wu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Yoshinobu Koguchi
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Valerie Conrad
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Maritza Martel
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Mary B Campbell
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Alison Conlin
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Anupama Acheson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Reva Basho
- Cedars Sinai Medical Center, Los Angeles, CA, USA
- Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | | | | | - Dorothy Park
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Laura Bennetts
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | | | | | | | - Brady Bernard
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Walter J Urba
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Heather L McArthur
- Cedars Sinai Medical Center, Los Angeles, CA, USA
- UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
1115
|
Sangande F, Agustini K, Budipramana K. Antihyperlipidemic mechanisms of a formula containing Curcuma xanthorrhiza, Sechium edule, and Syzigium polyanthum: In silico and in vitro studies. Comput Biol Chem 2023; 105:107907. [PMID: 37392529 DOI: 10.1016/j.compbiolchem.2023.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Herbal medicines are multi-component and can exhibit synergistic effects in the treatment of diseases. Sechium edule, Syzigium polyanthum, and Curcuma xanthorrhiza have been used in traditional medicine to reduce serum lipid levels. However, the molecular mechanism was not described clearly, especially as a mixture. Thus, we performed a network pharmacology study combined with molecular docking to find a rational explanation regarding the molecular mechanisms of this antihyperlipidemic formula. According to the network pharmacology study, we predicted that this extract mixture would act as an antihyperlipidemic agent by modulating several pathways including insulin resistance, endocrine resistance, and AMP-activated protein kinase (AMPK) signaling pathway. Based on the topology parameters, we identified 6 significant targets that play an important role in reducing lipid serum levels: HMG-CoA reductase (HMGCR), peroxisome proliferator-activated receptor alpha (PPARA), RAC-alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), matrix metalloproteinase-9 (MMP9), and tumor necrosis factor-alpha (TNF). Meanwhile, 8 compounds: β-sitosterol, bisdesmethoxycurcumin, cucurbitacin D, cucurbitacin E, myricetin, phloretin, quercitrin, and rutin were the compounds with a high degree, indicating that these compounds have a multitarget effect. Our consensus docking study revealed that HMGCR was the only protein targeted by all potential compounds, and rutin was the compound with the best consensus docking score for almost all targets. The in vitro study revealed that the extract combination could inhibit HMGCR with an IC50 value of 74.26 µg/mL, indicating that HMGCR inhibition is one of its antihyperlipidemic mechanisms.
Collapse
Affiliation(s)
- Frangky Sangande
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia.
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia
| | - Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
1116
|
Bae S, Hyun CG. The Effects of 2 '-Hydroxy-3,6 '-Dimethoxychalcone on Melanogenesis and Inflammation. Int J Mol Sci 2023; 24:10393. [PMID: 37373541 DOI: 10.3390/ijms241210393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we demonstrated that 2'-hydroxy-3,6'-dimethoxychalcone (3,6'-DMC) alleviated α-MSH-induced melanogenesis and lipopolysaccharides (LPS)-induced inflammation in mouse B16F10 and RAW 264.7 cells. In vitro analysis results showed that the melanin content and intracellular tyrosinase activity were significantly decreased by 3,6'-DMC, without cytotoxicity, via decreases in tyrosinase and the tyrosinase-related protein 1 (TRP-1) and TRP-2 melanogenic proteins, as well as the downregulation of microphthalmia-associated transcription factor (MITF) expression through the upregulation of the phosphorylation of extracellular-signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3β (GSK-3β)/catenin, and downregulation of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and protein kinase A (PKA). Furthermore, we investigated the effect of 3,6'-DMC on macrophage RAW264.7 cells with LPS stimulation. 3,6'-DMC significantly inhibited LPS-stimulated nitric oxide production. 3,6'-DMC also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 on the protein level. In addition, 3,6'-DMC decreased the production of the tumor necrosis factor-α and interleukin-6. Successively, our mechanistic studies revealed that 3,6'-DMC also suppressed the LPS-induced phosphorylation of the inhibitor of IκBα, p38MAPK, ERK, and JNK. The Western blot assay results showed that 3,6'-DMC suppresses LPS-induced p65 translocation from cytosol to the nucleus. Finally, the topical applicability of 3,6'-DMC was tested through primary skin irritation, and it was found that 3,6'-DMC, at 5 and 10 μM concentrations, did not cause any adverse effects. Therefore, 3,6'-DMC may provide a potential candidate for preventing and treating melanogenic and inflammatory skin diseases.
Collapse
Affiliation(s)
- Sungmin Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
1117
|
Lanzarin GAB, Félix LM, Monteiro SM, Ferreira JM, Oliveira PA, Venâncio C. Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects of Thymol and 24-Epibrassinolide in Zebrafish Larvae. Antioxidants (Basel) 2023; 12:1297. [PMID: 37372027 DOI: 10.3390/antiox12061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jorge M Ferreira
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
1118
|
Stierle SA, Harken L, Li SM. Production of Diketopiperazine Derivatives by Pathway Engineering with Different Cyclodipeptide Synthases from Various Streptomyces Strains. ACS Synth Biol 2023; 12:1804-1812. [PMID: 37183364 DOI: 10.1021/acssynbio.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyclodipeptides from fungi and bacteria are often modified by different tailoring enzymes. They display various biological and pharmacological activities, and some derivatives are used as drugs. In a previous study, we elucidated the function of the silent guatrypmethine gene cluster from Streptomyces cinnamoneus containing a cyclodipeptide synthase (CDPS) core gene gtmA and four genes gtmB-gtmE for tailoring enzymes. The latter are used in this study for the design of modified cyclodipeptides by genetic engineering. Addition of six different cyclodipeptides to the Streptomyces albus transformant harboring gtmB-gtmE led to the detection of different pathway products. Coexpression of five CDPS genes from four Streptomyces strains with gtmB-gtmE resulted in the formation of diketopiperazine derivatives, differing in their modification stages. Our results demonstrate the potential of rational gene combination to increase structural diversity.
Collapse
Affiliation(s)
- Sina A Stierle
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
1119
|
Hasaroeih NE, Ghanavati F, Moradi F, Kohpalkani JA, Rahimizadeh M. Multivariate analysis of seed chemical diversity among wild fenugreek (Trigonella monantha C. A. Mey.) ecotypes. BMC PLANT BIOLOGY 2023; 23:324. [PMID: 37328807 DOI: 10.1186/s12870-023-04327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wild fenugreek (Trigonella monantha), a multi-purpose annual plant, has traditionally been used as a food, forage, and medicinal plant. However, the knowledge of the diversity of its chemical characteristics is limited. In this study, 40 wild fenugreek ecotypes collected from their natural habitats in Iran and grown together in field conditions, were analyzed for their seed chemical properties. RESULTS The ecotypes were cultivated in a randomized complete block design (RCBD) with three replications. The results of ANOVA revealed a significant difference among the ecotypes for all measured characters (P < 0.01). The results showed a high level of diversity among the ecotypes based on the measured characters, including antioxidant activity (48.19 to 86.85%), phenol (0.82 to 1.51 mg gallic acid per g dry weight), flavonoid (1.07 to 3.11 mg quercetin per g dry weight), trigonelline (0.02 to 0.08 mmol/l), 4-hydroxyisoleucine (0.197 to 0.906 mg/g), sucrose (0.13 to 3.77 mM), glucose (1.07 to 12.1 mM), and fructose (13.3 to 45.5 mM). The cluster analysis divided the ecotypes into four groups and the PCA analysis showed that the three first components explained 73% of the total variance among the ecotypes. Also, heat map correlation revealed that many positive and negative correlations were observed among the measured characters. The results did not show a relationship between the amounts of compounds and the place of sample collection. CONCLUSIONS The present study suggests considerable diversity in the seed chemical compositions of the wild fenugreek ecotypes. Therefore, many ecotypes could be useful for medicinal purposes, as well as for human nutrition.
Collapse
Affiliation(s)
| | - Farangis Ghanavati
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
| | - Foad Moradi
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Jahangir Abbasi Kohpalkani
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Majid Rahimizadeh
- Department of Crop Sciences, Faculty of Agriculture, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| |
Collapse
|
1120
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
1121
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
1122
|
Hulverson MA, Michaels SA, Lee JW, Wendt KL, Tran LT, Choi R, Van Voorhis WC, Cichewicz RH, Ojo KK. Identification of Fungus-Derived Natural Products as New Antigiardial Scaffolds. Microbiol Spectr 2023; 11:e0064723. [PMID: 37039683 PMCID: PMC10269678 DOI: 10.1128/spectrum.00647-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
There is an unmet need for effective therapies for treating diseases associated with the intestinal parasite Giardia lamblia. In this study, a library of chemically validated purified natural products and fungal extracts was screened for chemical scaffolds that can inhibit the growth of G. lamblia. The phenotypic screen led to the identification of several previously unreported classes of natural product inhibitors that block the growth of G. lamblia. Hits from phenotypic screens of these naturally derived compounds are likely to possess a variety of mechanisms of action not associated with clinically used nitroimidazole and thiazolide compounds. They may therefore be effective against current drug-resistant parasite strains. IMPORTANCE There is a direct link between widespread prevalence of clinical giardiasis and poverty. This may be one of the reasons why giardiasis is a significant contributor to diarrheal morbidity, stunting, and death of children in resource-limited communities around the world. FDA-approved treatments for giardiasis include metronidazole, related nitroimidazole drugs, and albendazole. However, a substantial number of clinical infections are resistant to these treatments. The depth of the challenge is partly exacerbated by a lack of investment in the discovery and development of novel agents for treatment of giardiasis. Applicable interventions must include new drug development strategies that will result in the identification of effective therapeutics, particularly those that are inexpensive and can be quickly advanced to clinical uses, such as products from nature. This study identified novel chemical scaffolds from fungi that can form the basis of future medicinal chemistry optimization of novel antigiardial agents.
Collapse
Affiliation(s)
- Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| | - Samantha A. Michaels
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Karen L. Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Linh T. Tran
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, USA
| |
Collapse
|
1123
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
1124
|
Farhan M. Insights on the Role of Polyphenols in Combating Cancer Drug Resistance. Biomedicines 2023; 11:1709. [PMID: 37371804 PMCID: PMC10296548 DOI: 10.3390/biomedicines11061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment, and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters, have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic dysfunction in cancer cells highlights the importance of further investigating the effects of dietary polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a result of a variety of different mechanisms.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
1125
|
Dandawate M, Choudhury R, Krishna GR, Reddy DS. Total Synthesis and Absolute Configuration Determination of the α-Glycosidase Inhibitor (3 S,4 R)-6-Acetyl-3-hydroxy-2,2-dimethylchroman-4-yl ( Z)-2-Methylbut-2-enoate from Ageratina grandifolia. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37316456 DOI: 10.1021/acs.jnatprod.3c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report the first total synthesis of α-glycosidase inhibitor (3R, 4S)-6-acetyl-3-hydroxy-2,2-dimethylchroman-4-yl (Z)-2-methylbut-2-enoate as well as its enantiomer. Our synthesis confirms the chromane structure separately proposed by Navarro-Vazquez and Mata, on the basis of DFT computations. Furthermore, our synthesis allowed us to determine the absolute configuration of the natural compound as (3S, 4R) and not (3R, 4S).
Collapse
Affiliation(s)
- Monica Dandawate
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Rahul Choudhury
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| |
Collapse
|
1126
|
Koteva K, Xu M, Wang W, Fiebig-Comyn AA, Cook MA, Coombes BK, Wright GD. Synthetic Biology Facilitates Semisynthetic Development of Type V Glycopeptide Antibiotics Targeting Vancomycin-Resistant Enterococcus. J Med Chem 2023. [PMID: 37315221 DOI: 10.1021/acs.jmedchem.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The continued efficacy of glycopeptide antibiotics (GPAs) against Gram-positive bacteria is challenged by the emergence and spread of GPA-resistant pathogens, particularly vancomycin-resistant enterococci (VRE). The growing frequency of GPA resistance propels the need for innovative development of more effective antibiotics. Unlike canonical GPAs like vancomycin, Type V GPAs adopt a distinct mode of action by binding peptidoglycan and blocking the activity of autolysins essential for cell division, rendering them a promising class of antibiotics for further development. In this study, the Type V GPA, rimomycin A, was modified to generate 32 new analogues. Compound 17, derived from rimomycin A through N-terminal acylation and C-terminal amidation, exhibited improved anti-VRE activity and solubility. In a VRE-A neutropenic thigh infection mouse model, compound 17 significantly lowered the bacterial load by 3-4 orders of magnitude. This study sets the stage to develop next-generation GPAs in response to growing VRE infections.
Collapse
Affiliation(s)
- Kalinka Koteva
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Min Xu
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China
- Haihe Laboratory of Synthetic Biology, West 15th Avenue No. 21, 300308 Tianjin, China
| | - Wenliang Wang
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Aline A Fiebig-Comyn
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Michael A Cook
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Brian K Coombes
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
1127
|
Ouahabi S, Loukili EH, Elbouzidi A, Taibi M, Bouslamti M, Nafidi HA, Salamatullah AM, Saidi N, Bellaouchi R, Addi M, Ramdani M, Bourhia M, Hammouti B. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life (Basel) 2023; 13:1393. [PMID: 37374175 DOI: 10.3390/life13061393] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - El Hassania Loukili
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nezha Saidi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
1128
|
Džunková M, La Clair JJ, Tyml T, Doud D, Schulz F, Piquer-Esteban S, Porcel Sanchis D, Osborn A, Robinson D, Louie KB, Bowen BP, Bowers RM, Lee J, Arnau V, Díaz-Villanueva W, Stepanauskas R, Gosliner T, Date SV, Northen TR, Cheng JF, Burkart MD, Woyke T. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. MICROBIOME 2023; 11:130. [PMID: 37312139 DOI: 10.1186/s40168-023-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. RESULTS We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. CONCLUSIONS Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo. Video Abstract.
Collapse
Affiliation(s)
- Mária Džunková
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Devin Doud
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Piquer-Esteban
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Andrew Osborn
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Robinson
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ben P Bowen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert M Bowers
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Janey Lee
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | | | | | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA, USA
| | - Trent R Northen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA.
| |
Collapse
|
1129
|
de la Peña I, Afable T, Dahilig-Talan VR, Cruz P. Review of Plant Extracts and Active Components: Mechanisms of Action for the Treatment of Obesity-Induced Cognitive Impairment. Brain Sci 2023; 13:929. [PMID: 37371407 DOI: 10.3390/brainsci13060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity has been shown to negatively impact cognitive functions, but effective treatments for obesity-induced cognitive impairment are lacking. Natural dietary and plant products, functional foods, and plant-derived compounds have gained attention as potential remedies in part due to the nootropic properties of plants and certain plant-derived agents. This review discusses plant extracts and plant-derived substances that have been shown to ameliorate obesity-induced cognitive impairment in animal models. Mechanistic evaluations of their therapeutic effects are also summarized. A literature search was conducted using PubMed and Google Scholar databases, resulting in the review of 27 English language articles meeting the inclusion criteria. The nine plants (e.g., Ashwagandha, Adzuki bean, and olive) and 18 plant-derived substances (e.g., curcumin, Huperzine A, and Roxburgh's jewel orchid polysaccharides) included in this review improved obesity-induced cognitive impairment through several mechanisms, including attenuation of neuroinflammation, improvement in both central and peripheral insulin resistance, enhancement of neuroprotection and neurogenesis, and modulation of the synthesis and release of cognition-associated neurotransmitters. Based on these findings, plants and plant-derived substances may hold promise for the prevention and treatment of obesity-induced cognitive impairment. Further research is warranted to explore the clinical potential of these plant-derived treatments and to elucidate their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ike de la Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA
| | - Timothy Afable
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA
| | | | - Philip Cruz
- Herbanext Laboratories, Inc., Negros South Road, Bago City 6101, Philippines
| |
Collapse
|
1130
|
Vladić J, Jakovljević Kovač M, Pavić V, Jokić S, Simić S, Paiva A, Jerković I, Duarte AR. Towards a Greener Approach for Biomass Valorization: Integration of Supercritical Fluid and Deep Eutectic Solvents. Antibiotics (Basel) 2023; 12:1031. [PMID: 37370350 PMCID: PMC10295627 DOI: 10.3390/antibiotics12061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A green and sustainable procedure for obtaining Lavandula stoechas extracts with antioxidant and antimicrobial properties was investigated. Green solvents, supercritical CO2, and natural deep eutectic solvents (NADES) together with ultrasound-assisted extraction were used for the sequential extraction of terpene and polyphenols fractions. After the CO2 extraction of the terpene fraction, the residue material was used in an extraction with different NADES (betaine-ethylene glycol (Bet:EG), betaine-glycerol (Bet:Gly), and glycerol-glucose (Gly:Glu)), intensified with an ultrasound-assisted method (at 30 and 60 °C). In the CO2 extract, the major group of components belonged to oxygenated monoterpenes, while the highest polyphenol content with the dominant rutin (438.93 ± 4.60 µg/mL) was determined in Bet:EG extracts (60 °C). Bet:EG extracts also exhibited the most potent antioxidant activity according to DPPH, ABTS, and FRAP assays. Moreover, Bet:EG extracts showed significant inhibitory activity against Gram-positive and Gram-negative bacteria, with minimum inhibitory activity of 0.781-3.125 and 1.563-6.250 mg·mL-1, respectively. By comparing the polyphenolic content and antioxidant and antimicrobial activities of Bet:EG extracts with extracts obtained with conventional solvents (water and ethanol), the superiority of NADES was determined. The established environmentally friendly procedure unifies the requirements of green and sustainable development and modern pharmacognosy because it combines the use of safe alternative solvents, the absence of solvent waste generation, more rational use of resources, and the attainment of safe and quality extracts.
Collapse
Affiliation(s)
- Jelena Vladić
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Martina Jakovljević Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University Osijek, 31000 Osijek, Croatia;
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Alexandre Paiva
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Ana Rita Duarte
- LAQV/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
1131
|
Zhou X, Zeng Y, Zheng R, Wang Y, Li T, Song S, Zhang S, Huang J, Ren Y. Natural products modulate cell apoptosis: a promising way for treating endometrial cancer. Front Pharmacol 2023; 14:1209412. [PMID: 37361222 PMCID: PMC10285317 DOI: 10.3389/fphar.2023.1209412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Endometrial cancer (EC) is a prevalent epithelial malignancy in the uterine corpus's endometrium and myometrium. Regulating apoptosis of endometrial cancer cells has been a promising approach for treating EC. Recent in-vitro and in-vivo studies show that numerous extracts and monomers from natural products have pro-apoptotic properties in EC. Therefore, we have reviewed the current studies regarding natural products in modulating the apoptosis of EC cells and summarized their potential mechanisms. The potential signaling pathways include the mitochondria-dependent apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, the mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, NF-κB-mediated apoptotic pathway, PI3K/AKT/mTOR mediated apoptotic pathway, the p21-mediated apoptotic pathway, and other reported pathways. This review focuses on the importance of natural products in treating EC and provides a foundation for developing natural products-based anti-EC agents.
Collapse
Affiliation(s)
- Xin Zhou
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuemei Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Song
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
1132
|
Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G. Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. Front Pharmacol 2023; 14:1206334. [PMID: 37346293 PMCID: PMC10280003 DOI: 10.3389/fphar.2023.1206334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational School, Fırat University, Elazıg, Türkiye
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, University of Greenwich, London, Kent, United Kingdom
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
1133
|
Hazarika S, Borah P, Deb PK, Venugopala KN, Hemalatha S. Icacinaceae Plant Family: A Recapitulation of the Ethnobotanical, Phytochemical, Pharmacological, and Biotechnological Aspects. Curr Pharm Des 2023; 29:1193-1217. [PMID: 37132105 DOI: 10.2174/1381612829666230502164605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Icacinaceae, an Angiospermic family comprising 35 genera and 212 accepted species, including trees, shrubs, and lianas with pantropical distribution, is one of the most outshining yet least explored plant families, which despite its vital role as a source of pharmaceuticals and nutraceuticals has received a meagre amount of attraction from the scientific community. Interestingly, Icacinaceae is considered a potential alternative resource for camptothecin and its derivatives, which are used in treating ovarian and metastatic colorectal cancer. However, the concept of this family has been revised many times, but further recognition is still needed. The prime objective of this review is to compile the available information on this family in order to popularize it in the scientific community and the general population and promote extensive exploration of these taxa. The phytochemical preparations or isolated compounds from the Icacinaceae family have been centrally amalgamated to draw diverse future prospects from this inclusive plant species. The ethnopharmacological activities and the associated endophytes and cell culture techniques are also depicted. Nevertheless, the methodical evaluation of the Icacinaceae family is the only means to preserve and corroborate the folkloristic remedial effects and provide scientific recognition of its potencies before they are lost under the blanket of modernization.
Collapse
Affiliation(s)
- Sangeeta Hazarika
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman, 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4001, South Africa
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
1134
|
Carvalho DS, Felipe LL, Albuquerque PC, Zicker F, Fonseca BDP. Leadership and international collaboration on COVID-19 research: reducing the North-South divide? Scientometrics 2023; 128:1-17. [PMID: 37360229 PMCID: PMC10239718 DOI: 10.1007/s11192-023-04754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The COVID-19 pandemic triggered unprecedented scientific efforts worldwide and launched several initiatives to promote international cooperation. Because international scientific collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs) are not always balanced, analyzing research leadership helps to understand the global dynamics of knowledge production during COVID-19. In this study, we focused on HIC-LMIC collaborations on COVID-19 research in 469,937 scientific publications during the first 2 years of the pandemic (2020-2021). Co-authorship and authors' affiliation were used to identify international collaborations, according to country income level. The leadership analysis considered the countries of the first and last authors of publications. The results show that (i) most publications with international collaborations (49.3%) involved researchers from HICs and LMICs; (ii) collaborative research between HICs and LMICs addressed relevant public health needs; (iii) HIC-LMIC collaborations were primarily led by researchers from the United States, China, the United Kingdom, and India; (iv) most HIC-LMIC publications (44%) had shared leadership, with research interests linked to national expertise and global interests. This study contributes to the analysis of research collaborations on COVID-19 and sheds light on North-South relations in the production and dissemination of scientific knowledge.
Collapse
Affiliation(s)
- Danilo Silva Carvalho
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil 4036, Rio de Janeiro, RJ 21040-361 Brazil
| | - Lucas Lopes Felipe
- Post Graduation Program in Informatics (PPGI), Department of Computer Science, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Av. Athos da Silveira Ramos 274, Rio de Janeiro, RJ 21941-916 Brazil
| | - Priscila Costa Albuquerque
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil 4036, Rio de Janeiro, RJ 21040-361 Brazil
| | - Fabio Zicker
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil 4036, Rio de Janeiro, RJ 21040-361 Brazil
| | - Bruna de Paula Fonseca
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil 4036, Rio de Janeiro, RJ 21040-361 Brazil
| |
Collapse
|
1135
|
Kaweesa EN, Bazioli JM, Pierre HC, Lantvit DD, Kulp SK, Hill KL, Phelps MA, Coss CC, Fuchs JR, Pearce CJ, Oberlies NH, Burdette JE. Exploration of Verticillins in High-Grade Serous Ovarian Cancer and Evaluation of Multiple Formulations in Preclinical In Vitro and In Vivo Models. Mol Pharm 2023; 20:3049-3059. [PMID: 37155928 PMCID: PMC10405366 DOI: 10.1021/acs.molpharmaceut.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.
Collapse
Affiliation(s)
- Elizabeth N Kaweesa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jaqueline M Bazioli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kasey L Hill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mitch A Phelps
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher C Coss
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
1136
|
Dwivedi PS, Rasal VP, Chavan RS, Khanal P, Gaonkar VP. Feronia elephantum reverses insulin resistance in fructose-induced hyper-insulinemic rats; an in-silico, in-vitro, and in-vivo approach. JOURNAL OF ETHNOPHARMACOLOGY 2023:116686. [PMID: 37279812 DOI: 10.1016/j.jep.2023.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Feronia elephantum corr. (synonym: Feronia limonia, Murraya odorata, Schinus Limonia, or Limonia acidissima; common names: Bela, Kath, Billin, and Kavitha), belonging to the family Rutaceae has been known for clinical conditions such as pruritus, diarrhea, impotence, dysentery, heart diseases, and is also used as a liver tonic. However, the effect of the fruit pulp of F. elephantum on insulin resistance has yet not been reported. AIM OF THE STUDY The present study aimed to assess the effect of hydroalcoholic extract/fraction of F. elephantum fruit pulp on fasting blood glucose, oral glucose tolerance test, and glucose uptake in fructose-induced insulin-resistant rats and predict the gene-set enrichment of lead hits of F. elephantum with targets related to insulin resistance. MATERIAL AND METHODS System biology tools were used to predict the best category of fraction and propose a possible mechanism. Docking was carried out with adiponectin and its receptor (hub gene). Further, fructose supplementation was used for the induction of insulin resistance. Later, three doses of extract (400, 200, and 100 mg/kg) and a flavonoid-rich fraction (63 mg/kg) were used for treatment along with metformin as standard. The physical parameters like body weight, food intake, and water intake were measured along with oral glucose tolerance test, insulin tolerance test, glycogen content in skeletal muscles and liver, glucose uptake by rat hemidiaphragm, lipid profiles, anti-oxidant biomarkers, and histology of the liver and adipose tissue. RESULTS Network pharmacology reflected the potency of F. elephantum to regulate adiponectin (ADIPOQ) which may promote the reversal of insulin resistance and inhibit α-amylase and α-glucosidase. Vitexin was predicted to modulate the most genes associated with diabetes mellitus. Further, F. elephantum ameliorated the exogenous glucose clearance, promoted insulin sensitivity, reduced oxidative stress, and improved glucose and lipid metabolism. HPLC profiling revealed the presence of apigenin and quercetin in the extract for the first time. CONCLUSION The fruit pulp of F. elephantum reverses insulin resistance by an increase in glucose uptake and a decrease in gluconeogenesis which may be due to the regulation of multiple proteins via multiple bio-actives.
Collapse
Affiliation(s)
- Prarambh Sr Dwivedi
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
| | - V P Rasal
- Department of Pharmacology, Rani Chennamma College of Pharmacy, Belagavi, 590010, India
| | - Rajashekar S Chavan
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
| | - Vishakha Parab Gaonkar
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| |
Collapse
|
1137
|
Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants (Basel) 2023; 12:1212. [PMID: 37371941 DOI: 10.3390/antiox12061212] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Therefore, controlling ROS production is an attractive therapeutic strategy in relation to their treatment. In recent years, increasing evidence has supported the therapeutic effects of polyphenols on liver injury via the regulation of ROS levels. In the current review, we summarize the effects of polyphenols, such as quercetin, resveratrol, and curcumin, on oxidative damage during conditions that induce liver injury, such as LIRI, NAFLD, and HCC.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Raul G Miranda
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo 14040, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040, Brazil
| | - Anabela P Rolo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
1138
|
Tousif MI, Nazir M, Riaz N, Saleem M, Mahmood MHUR, Ahsan M, Tauseef S, Shafiq N, Moveed A, Zengin G, Korpayev S, Abbas Z, Muhammad S, Alarfaji SS. Unrivalled insight into potential biopharmaceutical application of Allardia tridactylites (Kar. & Kir.) Sch. Bip.: Chemodiversity, in vitro bioactivities and computational analysis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
1139
|
Ribeiro GDJG, Rei Yan SL, Palmisano G, Wrenger C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023; 15:1638. [PMID: 37376086 DOI: 10.3390/pharmaceutics15061638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria kills more than 500,000 people yearly, mainly affecting Africa and Southeast Asia. The disease is caused by the protozoan parasite from the genus Plasmodium, with Plasmodium vivax and Plasmodium falciparum being the main species that cause the disease in humans. Although substantial progress has been observed in malaria research in the last years, the threat of the spread of Plasmodium parasites persists. Artemisinin-resistant strains of this parasite have been reported mainly in Southeast Asia, highlighting the urgent need to develop more effective and safe antimalarial drugs. In this context, natural sources, mainly from flora, remain underexplored antimalarial spaces. The present mini-review explores this space focusing on plant extracts and some of their isolated natural products with at least in vitro antiplasmodial effects reported in the literature comprising the last five years (2018-2022).
Collapse
Affiliation(s)
- Giovane de Jesus Gomes Ribeiro
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
1140
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
1141
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
1142
|
Xu HW, Li WF, Hong SS, Shao JJ, Chen JH, Chattipakorn N, Wu D, Luo W, Liang G. Tabersonine, a natural NLRP3 inhibitor, suppresses inflammasome activation in macrophages and attenuate NLRP3-driven diseases in mice. Acta Pharmacol Sin 2023; 44:1252-1261. [PMID: 36627344 PMCID: PMC10203108 DOI: 10.1038/s41401-022-01040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Aberrant activation of NLRP3 inflammasome causes the progression of various inflammation-related diseases, but the small-molecule inhibitors of NLRP3 are not currently available for clinical use. Tabersonine (Tab) is a natural product derived from a traditional Chinese herb Catharanthus roseus that is usually used as an anti-tumor agent. In this study we investigated the anti-inflammatory effects and molecular targets of Tab. We first screened 151 in-house natural compounds for their inhibitory activity against IL-1β production in BMDMs. We found that Tab potently inhibited NLRP3-mediated IL-1β production with an IC50 value of 0.71 μM. Furthermore, we demonstrated that Tab suppressed the assembly of NLRP3 inflammasome, especially the interaction between NLRP3 and ASC. Interestingly, we found that Tab directly bound to NLRP3 NACHT domain, thereby reducing the self-oligomerization of NLRP3. In addition, we showed that administration of Tab significantly ameliorated NLRP3-driven diseases, such as peritonitis, acute lung injury, and sepsis in mouse models. The preventive effects of Tab were not observed in the models of NLRP3 knockout mouse. In conclusion, we have identified Tab as a natural NLRP3 inhibitor and a lead compound for the design and discovery of novel NLRP3 inhibitors.
Collapse
Affiliation(s)
- Hao-Wen Xu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Feng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shan-Shan Hong
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing-Jing Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Jia-Hao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wu Luo
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
1143
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
1144
|
Jaouani L, Zaimi A, Al Jarroudi O, Haloui A, Rezzoug F, Brahmi SA, Afqir S. Unusual Synchronous Colonic Metastasis of Ovarian Cancer. Cureus 2023; 15:e39952. [PMID: 37416036 PMCID: PMC10319598 DOI: 10.7759/cureus.39952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Colorectal metastasis is rare and can be confused with primary colorectal cancer. We report the case of a 63-year-old patient who presented with synchronous metastasis of the rectosigmoid junction and ovarian cancer. Initially thought to be a Krukenberg tumor, the diagnosis of metastasis from ovarian origin was confirmed through an immunohistochemical study of the colonic biopsy.
Collapse
Affiliation(s)
- Laila Jaouani
- Department of Medical Oncology, Faculty of Medicine and Pharmacy, Centre Hospitalier Universitaire (CHU) Mohammed VI, Oujda, MAR
- Department of Medical Oncology, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Adil Zaimi
- Department of Medical Oncology, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | | | - Anass Haloui
- Department of Pathology, Mohammed VI University Hospital, Oujda, MAR
- Department of Pathology, Faculty of Medicine, Mohammed First University, Oujda, MAR
| | - Fatima Rezzoug
- Department of Medical Oncology, Faculty of Medicine and Pharmacy, Centre Hospitalier Universitaire (CHU) Mohammed VI, Oujda, MAR
| | - Sami Aziz Brahmi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, MAR
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, MAR
| |
Collapse
|
1145
|
Lin X, Chen D, Chu X, Luo L, Liu Z, Chen J. Oxypalmatine regulates proliferation and apoptosis of breast cancer cells by inhibiting PI3K/AKT signaling and its efficacy against breast cancer organoids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154752. [PMID: 36948141 DOI: 10.1016/j.phymed.2023.154752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common cancer in women. Discovering novel and effective drugs is a priority for the treatment of BC. Oxypalmatine (OPT) is a natural protoberberine-type alkaloid isolated from Phellodendron amurense Rupr. (Rutaceae) with potential anti-cancer activity. PURPOSE This investigation aimed to elucidate the biological role and potential mechanisms of OPT in BC cells, and intended to assess the therapeutic potential of OPT in BC patient-derived organoid models. METHODS CCK-8 and EdU assays, and flow cytometry were used to test the activity of OPT against BC cells. In addition, patient-derived organoid models were constructed to assess the therapeutic efficiency of OPT in BC. Besides, network pharmacological analysis and RNA sequencing analysis were performed to predict the underlying anti-BC mechanism of OPT. Moreover, Western blot analysis was applied to test the expression of genes modulated by OPT. RESULTS OPT attenuated the proliferation and DNA replication, and induced apoptosis in multiple BC cells. Interestingly, OPT also exerted a cytotoxic effect on BC organoids characterized as luminal A, HER2-overexpressing, and triple-negative subtypes, indicating that OPT was a potential broad-spectrum anticancer drug. Network pharmacological analysis suggested that OPT might affect signals contributing to BC progression, including PI3K/AKT, MAPK, and VEGFA-VEGFR2 signaling pathways. Moreover, bioinformatics analysis of data from our RNA sequencing suggested that PI3K/AKT was a downstream pathway of OPT in BC. Finally, OPT was shown to inactivate PI3K/AKT signaling pathway in BC cells by Western blot analysis. CONCLUSIONS Collectively, our study demonstrated that OPT suppressed proliferation and induced apoptosis through mitigating the PI3K/AKT signaling pathway in BC cells. Moreover, our work first adopted BC organoid models to confirm OPT as an effective and promising drug, laying a foundation for the potential use of OPT in BC treatment.
Collapse
Affiliation(s)
- Xian Lin
- Peking University Shenzhen Hospital; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, Guangdong, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Xinyu Chu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Zhihao Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jian Chen
- Peking University Shenzhen Hospital; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, Guangdong, China.
| |
Collapse
|
1146
|
El Baakili A, Fadil M, Es-Safi NE. Ultrasonic-assisted extraction for phenolic compounds and antioxidant activity of Moroccan Retama sphaerocarpa L. leaves: Simultaneous optimization by response surface methodology and characterization by HPLC/ESI-MS analysis. Heliyon 2023; 9:e17168. [PMID: 37342583 PMCID: PMC10277595 DOI: 10.1016/j.heliyon.2023.e17168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
This study was designed to optimize the ultrasound-assisted extraction of phenolic compounds and the antioxidant activity of Moroccan Retama sphaerocarpa extracts using response surface methodology (RSM). A central composite design has been conducted to investigate the effects of three factors: extraction period (X1), solvent concentration (X2), and solvent-to-material ratio (X3) on extraction yield, total phenolic content (TPC), flavonoids content (TFC), and antioxidant activity. The obtained results showed that the experimental values agreed with the predicted ones, confirming the capacity of the used model for optimizing the extraction conditions. The best extraction conditions for the simultaneous optimization were an extraction time of 38 min, a solvent concentration of 58%, and a solvent-to-material ratio of 30 mL/g. Under these conditions, the optimized values of yield, TPC, TFC, and DPPH-radical scavenging activity (DPPHIC50) were 18.91%, 154.09 mg GAE/g, 23.76 mg QE/g, and 122.47 μg/mL, respectively. The further HPLC/ESI-MS analysis of the obtained optimized extract revealed the presence of 14 phenolic compounds with piscidic acid, vitexin, and quinic acid as major compounds. These research findings indicate promising applications for efficiently extracting polyphenolic antioxidants, especially in the food industry.
Collapse
Affiliation(s)
- Aafaf El Baakili
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Mouhcine Fadil
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Road of Imouzzer, Fez, Morocco
| | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| |
Collapse
|
1147
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
1148
|
Luo W, Deng J, He J, Yin L, You R, Zhang L, Shen J, Han Z, Xie F, He J, Guan Y. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med 2023. [PMID: 37257051 DOI: 10.1111/jcmm.17787] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/15/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and β-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.
Collapse
Affiliation(s)
- Wenfeng Luo
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Deng
- Shunde Polytecnic, Foshan, China
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lingkun Zhang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jian Shen
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yanqing Guan
- School of Life Science, South China Normal University, Guangzhou, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
1149
|
Patil PP, Kumar P, Khanal P, Patil VS, Darasaguppe HR, Bhandare VV, Bhatkande A, Shukla S, Joshi RK, Patil BM, Roy S. Computational and experimental pharmacology to decode the efficacy of Theobroma cacao L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. Front Pharmacol 2023; 14:1174867. [PMID: 37324470 PMCID: PMC10264642 DOI: 10.3389/fphar.2023.1174867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objective: Doxorubicin is extensively utilized chemotherapeutic drug, and it causes damage to the heart, liver, and kidneys through oxidative stress. Theobroma cacao L (cocoa) is reported to possess protective effects against several chemical-induced organ damages and also acts as an anticancer agent. The study aimed to determine whether the administration of cocoa bean extract reduces doxorubicin-induced organ damage in mice with Ehrlich ascites carcinoma (EAC) without compromising doxorubicin efficacy. Methodology: Multiple in vitro methods such as cell proliferation, colony formation, chemo-sensitivity, and scratch assay were carried out on cancer as well as normal cell lines to document the effect of cocoa extract (COE) on cellular physiology, followed by in vivo mouse survival analysis, and the organ-protective effect of COE on DOX-treated animals with EAC-induced solid tumors was then investigated. In silico studies were conducted on cocoa compounds with lipoxygenase and xanthine oxidase to provide possible molecular explanations for the experimental observations. Results: In vitro studies revealed potent selective cytotoxicity of COE on cancer cells compared to normal. Interestingly, COE enhanced DOX potency when used in combination. The in vivo results revealed reduction in EAC and DOX-induced toxicities in mice treated with COE, which also improved the mouse survival time; percentage of lifespan; antioxidant defense system; renal, hepatic, and cardiac function biomarkers; and also oxidative stress markers. COE reduced DOX-induced histopathological alterations. Through molecular docking and MD simulations, we observed chlorogenic acid and 8'8 methylenebiscatechin, present in cocoa, to have the highest binding affinity with lipoxygenase and xanthine oxidase, which lends support to their potential in ameliorating oxidative stress. Conclusion: The COE reduced DOX-induced organ damage in the EAC-induced tumor model and exhibited powerful anticancer and antioxidant effects. Therefore, COE might be useful as an adjuvant nutritional supplement in cancer therapy.
Collapse
Affiliation(s)
- Priyanka P. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Vishal S. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Harish R. Darasaguppe
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Arati Bhatkande
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Rajesh K. Joshi
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Subarna Roy
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
1150
|
Panossian A. Challenges in phytotherapy research. Front Pharmacol 2023; 14:1199516. [PMID: 37324491 PMCID: PMC10264668 DOI: 10.3389/fphar.2023.1199516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Alexander Panossian
- Phytomed AB, Västervik, Sweden
- EuroPharma USA Inc., Green Bay, WI, United States
| |
Collapse
|