1201
|
Abstract
PURPOSE OF REVIEW To briefly summarize some of the principles of epigenetics and assess their potential relevance for the disease pathogenesis of inflammatory bowel diseases (IBDs). To review the results of recent IBD-related epigenetic studies, discuss main challenges as well as highlight the opportunities for future research in this field. RECENT FINDINGS Evidence is accumulating for a major role of epigenetic mechanisms in the disease pathogenesis of several immune-mediated diseases. Recent findings indicate that epigenetics may mediate some of the effects of environment, genetic predisposition and intestinal microbiota on IBD pathogenesis. SUMMARY Epigenetics is a rapidly expanding and hugely promising area of research. At best, it may provide a unifying molecular mechanism to explain complex immune-mediated diseases such as IBD. Future research studies must be carefully designed, performed and analysed taking into account the basic principles of epigenetics in order to ensure the true potential of this field is realized in the understanding of IBD.
Collapse
|
1202
|
Bernal AJ, Dolinoy DC, Huang D, Skaar DA, Weinhouse C, Jirtle RL. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB J 2012; 27:665-71. [PMID: 23118028 DOI: 10.1096/fj.12-220350] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (A(vy)) locus in a sex-specific manner (P=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 and 7.6 cGy, with maximum effects at 1.4 and 3.0 cGy (P<0.01). Offspring coat color was concomitantly shifted toward pseudoagouti (P<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring. Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic A(vy) mouse model, epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful.
Collapse
Affiliation(s)
- Autumn J Bernal
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,, USA
| | | | | | | | | | | |
Collapse
|
1203
|
Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012; 94:2242-63. [DOI: 10.1016/j.biochi.2012.06.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
|
1204
|
Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17253-60. [PMID: 23045638 DOI: 10.1073/pnas.1121249109] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.
Collapse
|
1205
|
Abstract
High-potency or artificial sweeteners have historically been considered inert compounds without physiological consequences other than taste sensations. However, recent data suggest that some of these sweeteners have biological effects that may impact human health. Furthermore, there are significant gaps in our current knowledge of the pharmacokinetics of these sweeteners, their potential for "sweetener-drug interactions" and their impact on appetite and body weight regulation. Nine research needs are described that address some of the major unknown issues associated with ingestion of high-potency sweeteners.
Collapse
|
1206
|
Ion channels/transporters as epigenetic regulators? -a microRNA perspective. SCIENCE CHINA-LIFE SCIENCES 2012; 55:753-60. [PMID: 23015123 DOI: 10.1007/s11427-012-4369-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.
Collapse
|
1207
|
The 2012 John Swales lecture: questions unanswered - 30 years in the world of blood pressure. J Hypertens 2012; 30:2060-5. [PMID: 22990350 DOI: 10.1097/hjh.0b013e328357f245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1208
|
Lund RJ, Närvä E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 2012; 13:732-44. [PMID: 22965355 DOI: 10.1038/nrg3271] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies using high-resolution genome-wide approaches have recently reported that genomic and epigenomic alterations frequently accumulate in human pluripotent cells. Detailed characterization of these changes is crucial for understanding the impact of these alterations on self-renewal and proliferation, and particularly on the developmental and malignant potential of the cells. Such knowledge is required for the optimized and safe use of pluripotent cells for therapeutic purposes, such as regenerative cellular therapies using differentiated derivatives of pluripotent cells.In this Review, we summarize the current knowledge of the genomic and epigenomic stability of pluripotent human cells and the implications for stem cell research.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
1209
|
Hewitt KJ, Garlick JA. Cellular reprogramming to reset epigenetic signatures. Mol Aspects Med 2012; 34:841-8. [PMID: 22982217 DOI: 10.1016/j.mam.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
The controlled differentiation of induced pluripotent stem cells (iPSC) towards clinically-relevant cell types has benefitted from epigenetic profiling of lineage-specific markers to confirm the phenotype of iPSC-derived cells. Mapping epigenetic marks throughout the genome has identified unique changes which occur in the DNA methylation profile of cells as they differentiate to specific cell types. Beyond characterizing the development of cells derived from pluripotent stem cells, the process of reprogramming cells to iPSC resets lineage-specific DNA methylation marks established during differentiation to specific somatic cell types. This property of reprogramming has potential utility in reverting aberrant epigenetic alterations in nuclear organization that are linked to disease progression. Since DNA methylation marks are reset following reprogramming, and contribute to restarting developmental programs, it is possible that DNA methylation marks associated with the disease state may also be erased in these cells. The subsequent differentiation of such cells could result in cell progeny that will function effectively as therapeutically-competent cell types for use in regenerative medicine. This suggests that through reprogramming it may be possible to directly modify the epigenetic memory of diseased cells and help to normalize their cellular phenotype, while also broadening our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Kyle J Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
| | | |
Collapse
|
1210
|
Reddy MA, Park JT, Natarajan R. Epigenetic modifications and diabetic nephropathy. Kidney Res Clin Pract 2012; 31:139-50. [PMID: 26894019 PMCID: PMC4716094 DOI: 10.1016/j.krcp.2012.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/30/2012] [Accepted: 07/09/2012] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a "metabolic memory" of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.
Collapse
Affiliation(s)
| | | | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
1211
|
Abstract
Twin studies allow us to estimate the relative contributions of nature and nurture to human phenotypes by comparing the resemblance of identical and fraternal twins. Variation in complex traits is a balance of genetic and environmental influences; these influences are typically estimated at a population level. However, what if the balance of nature and nurture varies depending on where we grow up? Here we use statistical and visual analysis of geocoded data from over 6700 families to show that genetic and environmental contributions to 45 childhood cognitive and behavioral phenotypes vary geographically in the United Kingdom. This has implications for detecting environmental exposures that may interact with the genetic influences on complex traits, and for the statistical power of samples recruited for genetic association studies. More broadly, our experience demonstrates the potential for collaborative exploratory visualization to act as a lingua franca for large-scale interdisciplinary research.
Collapse
|
1212
|
Labrie V, Pai S, Petronis A. Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 2012; 28:427-35. [PMID: 22622229 PMCID: PMC3422438 DOI: 10.1016/j.tig.2012.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 01/26/2023]
Abstract
Understanding the origins of normal and pathological behavior is one of the most exciting opportunities in contemporary biomedical research. There is increasing evidence that, in addition to DNA sequence and the environment, epigenetic modifications of DNA and histone proteins may contribute to complex phenotypes. Inherited and/or acquired epigenetic factors are partially stable and have regulatory roles in numerous genomic activities, thus making epigenetics a promising research path in etiological studies of psychiatric disease. In this article, we review recent epigenetic studies examining the brain and other tissues, including those from individuals with schizophrenia (SCZ) and bipolar disorder (BPD). We also highlight heuristic aspects of the epigenetic theory of psychiatric disease and discuss the future directions of psychiatric epigenetics.
Collapse
Affiliation(s)
- Viviane Labrie
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, ONT, M5T 1R8, Canada
| | | | | |
Collapse
|
1213
|
Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 2012; 27:618-26. [PMID: 22940222 DOI: 10.1016/j.tree.2012.07.011] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/12/2012] [Accepted: 07/15/2012] [Indexed: 11/23/2022]
Abstract
Rapidly accumulating evidence shows that herbivore and pathogen attack of plants can generate particular defense phenotypes across generations. What was once thought to be an oddity of plant defense induction now appears to be a taxonomically widespread phenomenon with strong potential to impact the ecology and evolution of species interactions. DNA methylation, histone modifications, and small RNAs each contribute to transgenerational defense initiation; examples in several species demonstrate that this induction can last for multiple generations. Priming of the offspring generation for more rapid induction following subsequent attack has also been reported. The extent to which transgenerational induction is predictable, detectable in nature, and subject to manipulation will determine the ability of researchers to decipher its role in plant-herbivore and plant-pathogen interactions.
Collapse
|
1214
|
Deary IJ. Looking for 'system integrity' in cognitive epidemiology. Gerontology 2012; 58:545-53. [PMID: 22907506 DOI: 10.1159/000341157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/20/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the last decade, an increasing body of empirical evidence has gathered to establish an association between higher cognitive ability in youth and later mortality, less morbidity and better health. This field of research is known as cognitive epidemiology. The causes of these associations are not understood. OBJECTIVE Among the possible explanations for the associations is the suggestion that they might, in part, be accounted for by general bodily 'system integrity'. That is, scoring well on cognitive ability tests might be an indicator of a more general tendency for complex systems in the body to be efficient. The construct of system integrity is critically assessed. METHOD This viewpoint provides a critical presentation and an empirical and theoretical evaluation of the construct of system integrity as it is used in cognitive epidemiology. RESULTS A precedent of the system integrity suggestion is discovered. The empirical tests of the system integrity idea to date are critically evaluated. Other possible routes to testing system integrity are suggested. There is a critical re-evaluation of the idea and other, related concepts. CONCLUSION The construct of system integrity is distinct from related constructs. It is still underdeveloped theoretically, and undertested empirically within cognitive epidemiology.
Collapse
Affiliation(s)
- Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
1215
|
Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med 2012; 34:753-64. [PMID: 22906839 DOI: 10.1016/j.mam.2012.07.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/31/2012] [Indexed: 12/12/2022]
Abstract
While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout one's lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.
Collapse
Affiliation(s)
- Stephanie A Tammen
- Jean Mayer USDA Human Nutrition Research Center on Aging - Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
1216
|
Smith CR, Mutti NS, Jasper WC, Naidu A, Smith CD, Gadau J. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLoS One 2012; 7:e42433. [PMID: 22879983 PMCID: PMC3411777 DOI: 10.1371/journal.pone.0042433] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 07/09/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. METHODOLOGY/PRINCIPAL FINDINGS Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP). Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD) is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids) were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination. CONCLUSIONS/SIGNIFICANCE These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology, Earlham College, Richmond, Indiana, United States of America.
| | | | | | | | | | | |
Collapse
|
1217
|
Leung A, Schones DE, Natarajan R. Using epigenetic mechanisms to understand the impact of common disease causing alleles. Curr Opin Immunol 2012; 24:558-63. [PMID: 22857822 DOI: 10.1016/j.coi.2012.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
Many common genetic variants have been identified to be associated with autoimmune diseases such as Type I diabetes. Methods to identify these genetic loci have become powerful, but deciphering the functional effects of these variants in disease progression remains a major challenge. Recent studies have shown that single nucleotide polymorphisms are associated with altered DNA methylation and chromatin accessibility, suggesting that genetic variants can alter epigenetic features and epigenetic variations can mediate genetic variability. In this review, we highlight recent studies that have examined the relationship between genetics and epigenetics, and how epigenetic studies may complement genetic studies in understanding the impact of common disease causing alleles.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes, Beckman Research Institute of the City of Hope, Duarte, CA 91010, United States
| | | | | |
Collapse
|
1218
|
Disanto G, Chaplin G, Morahan JM, Giovannoni G, Hyppönen E, Ebers GC, Ramagopalan SV. Month of birth, vitamin D and risk of immune-mediated disease: a case control study. BMC Med 2012; 10:69. [PMID: 22764877 PMCID: PMC3395583 DOI: 10.1186/1741-7015-10-69] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A season of birth effect in immune-mediated diseases (ID) such as multiple sclerosis and type 1 diabetes has been consistently reported. We aimed to investigate whether season of birth influences the risk of rheumatoid arthritis, Crohn's disease, ulcerative colitis and systemic lupus erythematosus in addition to multiple sclerosis, and to explore the correlation between the risk of ID and predicted ultraviolet B (UVB) light exposure and vitamin D status during gestation. METHODS The monthly distribution of births of patients with ID from the UK (n = 115,172) was compared to that of the general population using the Cosinor test. Predicted UVB radiation and vitamin D status in different time windows during pregnancy were calculated for each month of birth and correlated with risk of ID using the Spearman's correlation coefficient. RESULTS The distributions of ID births significantly differed from that of the general population (P = 5e-12) with a peak in April (odds ratio = 1.045, 95% confidence interval = 1.024, 1.067, P < 0.0001) and a trough in October (odds ratio = 0.945, 95% confidence interval = 0.925, 0.966, P < 0.0001). Stratification by disease subtype showed seasonality in all ID but Crohn's disease. The risk of ID was inversely correlated with predicted second trimester UVB exposure (Spearman's rho = -0.49, P = 0.00005) and third trimester vitamin D status (Spearman's rho = -0.44, P = 0.0003). CONCLUSIONS The risk of different ID in the UK is significantly influenced by the season of birth, suggesting the presence of a shared seasonal risk factor or factors predisposing to ID. Gestational UVB and vitamin D exposure may be implicated in the aetiology of ID.
Collapse
|
1219
|
Huidobro C, Fernandez AF, Fraga MF. Aging epigenetics: causes and consequences. Mol Aspects Med 2012; 34:765-81. [PMID: 22771540 DOI: 10.1016/j.mam.2012.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Growth and development of higher organisms are regulated by the orchestrated change of epigenetic marks over time. In addition, there is also an epigenetic variation without any apparent role in development that is thought to be the result of the stochastic accumulation of epigenetic errors. The process depends on genetic and environmental factors and, when it takes place in adult stem cells, it could play an important role in aging, although the underlying molecular mechanisms are still largely unknown.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
1220
|
Lilley TM, Ruokolainen L, Pikkarainen A, Laine VN, Kilpimaa J, Rantala MJ, Nikinmaa M. Impact of tributyltin on immune response and life history traits of Chironomus riparius: single and multigeneration effects and recovery from pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7382-7389. [PMID: 22680406 DOI: 10.1021/es300536t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chironomids play an important role in the detritus cycle and as a component in brackish- and freshwater benthic and terrestrial food webs. If TBT is present in their environment, then they may accumulate tributyltin (TBT) during their juvenile period, which negatively affects many of their life history characteristics. The aim of this experiment is to test the effects of three TBT sediment concentrations (nominal 30, 90, and 180 μg/kg) on life history traits (development time, survival, fecundity, and weight) and immune response (number of hemocytes and phenoloxidase activity) of the nonbiting midge, Chironomus riparius. These responses were recorded immediately after one generation of TBT exposure, and in the long run during five consecutive generations. We also assessed recovery from pollution after four generations of TBT exposure. In a single generation, TBT affected all measured parameters, except phenoloxidase activity, when compared to the control. Long-term-effects of TBT lead to extinction of all treatments after the fifth generation. Again, all measured variables significantly differ from the control, although TBT had varying effects on the measured variables. Most of the effects of TBT on population viability were not evident during recovery, once TBT was removed from the sediment. The effect of previous TBT contamination was observed only in delayed larval development, suggesting that TBT has only limited maternal/epigenetic effects on individual condition. However, altered schedules in the life-cycle can have unexpected ecological impacts. TBT decreases the viability of Chironomus riparius and the effect will become stronger if exposure to TBT continues for many generations. Yet, the harmful effect of TBT disappears quickly as the TBT is removed from the environment.
Collapse
Affiliation(s)
- Thomas M Lilley
- Department of Biology, University of Turku , FI-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
1221
|
Abstract
How cells sense and respond to environmental cues remains a central question of biological research. Recent evidence suggests that DNA transcription is regulated by chromatin organization. However, the mechanism for relaying the cytoplasmic signaling to chromatin remodeling remains incompletely understood. Although much emphasis has been put on delineating transcriptional output of growth factor/hormonal signaling pathways, accumulated evidence from yeast and mammalian systems suggest that metabolic signals also play critical roles in determining chromatin structure. Here we summarize recent progress in understanding the molecular connection between metabolism and epigenetic modifications of chromatin implicated in a variety of diseases including cancer.
Collapse
Affiliation(s)
- Chao Lu
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
1222
|
Abstract
Obesity is a complex multifaceted disease resulting from interactions between genetics and lifestyle. The proportion of phenotypic variance ascribed to genetic variance is 0.4 to 0.7 for obesity and recent years have seen considerable success in identifying disease-susceptibility variants. Although with the advent of genome-wide association studies the list of genetic variants predisposing to obesity has significantly increased the identified variants only explain a fraction of disease heritability. Studies of gene-environment interactions can provide more insight into the biological mechanisms involved in obesity despite the challenges associated with such designs. Epigenetic changes that affect gene function without DNA sequence modifications may be a key factor explaining interindividual differences in obesity, with both genetic and environmental factors influencing the epigenome. Disentangling the relative contributions of genetic, environmental and epigenetic marks to the establishment of obesity is a major challenge given the complex interplay between these determinants.
Collapse
Affiliation(s)
- Jana V. van Vliet-Ostaptchouk
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vasiliki Lagou
- Oxford Centre for Diabetes, Endocrinology, and Metabolism and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
1223
|
Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:190930. [PMID: 22934169 PMCID: PMC3420412 DOI: 10.1155/2012/190930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022]
Abstract
Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism.
Collapse
|
1224
|
Moggs JG, Terranova R, Kammüller ME, Chibout SD, Chapman V, Dearman RJ, Kimber I. Regulation of allergic responses to chemicals and drugs: possible roles of epigenetic mechanisms. Toxicol Sci 2012; 130:60-9. [PMID: 22705809 DOI: 10.1093/toxsci/kfs207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is increasing evidence that epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune and allergic responses. Such regulatory mechanisms have potentially important implications for the acquisition of sensitization to chemical and drug allergens; and in determining the vigor, characteristics, and longevity of allergic responses. Importantly, the discovery of long-lasting epigenetic alterations in specific immunoregulatory genes provides a mechanistic basis for immune cell memory, and thereby the potential of chemical allergens to influence the subsequent orientation of the adaptive immune system. In this article, we consider the implications of epigenetic mechanisms for the development of sensitization to chemical and drug allergens and the form that allergic reactions will take.
Collapse
Affiliation(s)
- Jonathan G Moggs
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel CH-4057, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
1225
|
Zucchi FCR, Yao Y, Metz GA. The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 2012; 3:96. [PMID: 22675331 PMCID: PMC3366387 DOI: 10.3389/fgene.2012.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation modulates gene expression without altering the DNA sequence to facilitate rapid adjustments to dynamically changing environmental conditions. The formation of an epigenetic memory allows passing on this information to subsequent generations. Here we propose that epigenetic memories formed by adverse environmental conditions and stress represent a critical determinant of health and disease in the F3 generation and beyond. Transgenerational programming of epigenetic regulation may represent a key to understand adult-onset complex disease pathogenesis and cumulative effects of life span and familial disease etiology. Ultimately, the mechanisms of generating an epigenetic memory may become of potentially promising diagnostic and therapeutic relevance due to their reversible nature. Exploring the role of environmental factors, such as stress, in causing variations in epigenetic profiles may lead to new avenues of personalized, preventive medicine based on epigenetic signatures and interventions.
Collapse
Affiliation(s)
- Fabiola C R Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
1226
|
Commentaries on Viewpoint: Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J Appl Physiol (1985) 2012; 112:1084-5. [DOI: 10.1152/japplphysiol.00065.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
1227
|
Saze H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012; 87:145-52. [DOI: 10.1266/ggs.87.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University
- PRESTO, Japan Science and Technology Agency (JST)
| |
Collapse
|