1251
|
Kalisz S, Purugganan MD. Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 2004; 19:309-14. [PMID: 16701276 DOI: 10.1016/j.tree.2004.03.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In plants, naturally occurring methylation of genes can affect the level of gene expression. Variation among individuals in the degree of methylation of a gene, termed epialleles, produces novel phenotypes that are heritable across generations. To date, ecologically important genes with methylated epialleles have been found to affect floral shape, vegetative and seed pigmentation, pathogen resistance and development in plants. Currently, the extent to which epiallelic variation is an important common contributor to phenotypic variation in natural plant populations and its fitness consequences are not known. Because epiallele phenotypes can have identical underlying DNA sequences, response to selection on these phenotypes is likely to differ from expectations based on traditional models of microevolution. Research is needed to understand the role of epialleles in natural plant populations. Recent advances in molecular genetic techniques could enable population biologists to screen for epiallelic variants within plant populations and disentangle epigenetic from more standard genetic sources of phenotypic variance, such as additive genetic variance, dominance variance, epistasis and maternal genetic effects.
Collapse
Affiliation(s)
- Susan Kalisz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
1252
|
Vercelli D. Genetics, epigenetics, and the environment: switching, buffering, releasing. J Allergy Clin Immunol 2004; 113:381-6; quiz 387. [PMID: 15007332 DOI: 10.1016/j.jaci.2004.01.752] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence suggests that the interactions between genes and environment might play a critical role in the pathogenesis of complex diseases, such as asthma, that exhibit a heritable component but do not follow Mendel's laws. Gene-environment interactions are extremely complex and not linear, such that the same genetic variants might be associated with opposite phenotypes in different environments. This is particularly evident for innate immunity genes, which operate at the interface between the immune system and the pathogen world. This article examines gene-environment interactions by using CD14 as a model and argues that the conflicting results of epidemiologic studies on CD14*C-159T result from differences in environmental conditions essential to modulate CD14 gene expression. Furthermore, on the basis of how rapidly environmental changes have affected the incidence of immune diseases, I argue that a full understanding of gene-environment interactions requires that epigenetic as well as classical genetic mechanisms be taken into account. Recent data about the effect of diet on gene methylation and the release of hidden genetic variation by impairment of heat shock protein 90-mediated buffering systems offer eloquent examples of how epigenetic mechanisms might affect gene-environment interactions.
Collapse
Affiliation(s)
- Donata Vercelli
- Functional Genomics Laboratory, Arizona Respiratory Center, Tucson, AZ 85724, USA
| |
Collapse
|
1253
|
Becker B, Multhoff G, Farkas B, Wild PJ, Landthaler M, Stolz W, Vogt T. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 2004; 13:27-32. [PMID: 15009113 DOI: 10.1111/j.0906-6705.2004.00114.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heat-shock protein Hsp90 has been shown to be essential for the functional integrity of the telomerase complex. The telomerase activity is enhanced in melanoma and stabilizes the chromosomal integrity in proliferating cells. Furthermore, overexpression of Hsp90 induces silencing of point mutations in transcription factors which, otherwise, would result in a loss-of-function phenotype. In melanocytic lesions there is a higher risk of mutations caused by the enhanced proliferation in melanocytic cells. By analyzing microdissected melanocytic tumors by semiquantitative PCR, we demonstrate an overexpression of Hsp90 mRNA in malignant melanomas (10/14) and in melanoma metastases (6/6) as well as in melanoma cell lines (9/9) when compared with melanocytic nevi (2/9). These results could be confirmed on protein level by immunohistochemistry. While melanocytic nevi show discrete Hsp90 expression only in a minor fraction (2/9), malignant melanomas and metastases show a positive Hsp90 immunohistochemistry in the majority of cases; (7/9) and (13/14), respectively. In addition, by analyzing melanoma metastases by flow cytometry we show that Hsp90 is expressed on the surface of tumor cells (7/8). From these data we conclude that Hsp90 is present in advanced malignant melanomas and may have a stabilizing effect on the cellular functions in proliferating cells of melanocytic lesions and could thereby be a prerequisite for the tumor progression. As Hsp90 is expressed on the cell surface, it might also be a potential immunorelevant target structure for immunotherapy of melanoma.
Collapse
Affiliation(s)
- B Becker
- Department of Dermatology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
1254
|
Frank SA. Genetic variation in cancer predisposition: mutational decay of a robust genetic control network. Proc Natl Acad Sci U S A 2004; 101:8061-5. [PMID: 15141087 PMCID: PMC419557 DOI: 10.1073/pnas.0400561101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A computational model of cancer progression is used to study how mutations in genes that control tumor initiation and progression accumulate in populations. The model assumes that cancer occurs only after a cell lineage has progressed through a series of stages. The greater the number of stages, the more strongly the individual is protected against cancer. It is shown that an extra stage initially improves the survival of individuals by decreasing mortality from cancer. However, the additional buffering by an extra stage reduces the impact of any single hereditary mutation and therefore allows the accumulation of more nonlethal mutations in the population. Extra stages thereby lead to the evolution of partially decreased cancer mortality and significantly increased genetic predisposition to disease in the population as a whole. In general, the model illustrates how all robust control networks allow the accumulation of deleterious mutations. An increase in the number of buffering components leads to significant mutational decay in the protection provided by each buffering component and increased genetic predisposition to disease. An extra buffering component's net contribution to survival and reproduction is often small.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| |
Collapse
|
1255
|
Abstract
Protein-damaging stresses induce the expression of 'heat-shock proteins', which have essential roles in protecting cells from the potentially lethal effects of stress and proteotoxicity. These stress-protective heat-shock proteins are often overexpressed in cells of various cancers and have been suggested to be contributing factors in tumorigenesis. An underlying basis of oncogenesis is the acquisition and accumulation of mutations that provide the transformed cell with the combined characteristics of deregulated cell proliferation and suppressed cell death. Heat-shock proteins with dual roles as regulators of protein conformation and stress sensors may therefore have intriguing and central roles in both cell proliferation and apoptosis. It has been established that heat-shock proteins exhibit specificity to particular classes of polypeptide substrates and client proteins in vivo, and that chaperones can stabilize mutations that affect the folded conformation. Likewise, overexpression of chaperones has also been shown to protect cells against apoptotic cell death. The involvement of chaperones, therefore, in such diverse roles might suggest novel anticancer therapeutic approaches targeting heat-shock protein function for a broad spectrum of tumor types.
Collapse
Affiliation(s)
- Dick D Mosser
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
1256
|
Rattan SIS. Hormetic Mechanisms of Anti-Aging and Rejuvenating Effects of Repeated Mild Heat Stress on Human Fibroblasts in Vitro. Rejuvenation Res 2004; 7:40-8. [PMID: 15256044 DOI: 10.1089/154916804323105071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phenomenon of hormesis is represented by mild stress-induced stimulation of maintenance and repair pathways, resulting in beneficial effects for cells and organisms. We have reported that repeated mild heat stress (RMHS) has anti-aging hormetic effects on growth and various cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects of RMHS include the maintenance of the stress protein profile, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the activities of the proteasome and its 11S activator, improvement in cellular resistance to ethanol, hydrogen peroxide, and ultraviolet rays, and increased antioxidative activity of the cells. We have also reported that RMHS prolongs the lifespan of Drosophila. Others have reported anti-aging and life prolonging effects of a wide variety of so-called stressors, such as pro-oxidants, aldehydes, calorie restriction, irradiation, heat shock, and hypergravity. Although molecular mechanisms of hormesis are yet to be elucidated, there are indications that relatively small hormetic effects become biologically amplified, resulting in significant improvement of cellular and organic functions and survival. Hormesis, therefore, can be an effective approach for modulating aging, for preventing or delaying the onset of age-related diseases, and for improving the quality of life in old age.
Collapse
|
1257
|
Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. TRENDS IN PLANT SCIENCE 2004; 9:244-52. [PMID: 15130550 DOI: 10.1016/j.tplants.2004.03.006] [Citation(s) in RCA: 1477] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Wangxia Wang
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
1258
|
Lan C, Lee HC, Tang S, Zhang L. A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem 2004; 279:27607-12. [PMID: 15102838 DOI: 10.1074/jbc.m402777200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones Hsp90 and Hsp70 control many signal transducers, including cyclin-dependent kinases and steroid receptors. The yeast heme-responsive transcriptional activator Hap1 is a native substrate of both Hsp90 and Hsp70. Hsp90 and Hsp70 are critical for the precise regulation of Hap1 activity by heme. Here, to decipher the molecular events underlying the actions of Hsp90 and Hsp70 in heme regulation, we purified various multichaperone-Hap1 complexes and characterized the complexes linked to Hap1 repression and activation by two-dimensional electrophoresis analysis. Notably, we found that in vitro Hap1 is associated continuously with Ssa and its co-chaperones, and this association is not weakened by heme. Heme enhances the interaction between Hap1 and Hsp90. In vivo, defective Ssa, Ydj1, or Sro9 function causes Hap1 derepression in the absence of heme, whereas defective Hsp90 function causes reduced Hap1 activity at high heme concentrations. These results show that continuous association of Hap1 with Ssa, Ydj1, and Sro9 confers Hap1 repression, whereas enhanced association of Hsp90 with the repressed Hap1-Ssa-Ydj1-Sro9 complex by heme causes Hap1 activation. This novel mechanism of chaperone action may operate to control the activity of other important signal transducers.
Collapse
Affiliation(s)
- Changgui Lan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, New York 10032, USA
| | | | | | | |
Collapse
|
1259
|
Rattan SIS, Eskildsen-Helmond YEG, Beedholm R. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:105-116. [PMID: 19330126 PMCID: PMC2655703 DOI: 10.1080/15401420490464376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In a series of experimental studies we have shown that repetitive mild heat stress has anti-aging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. We have reported the hormetic effects of repeated challenge at the levels of maintenance of stress protein profile; reduction in the accumulation of oxidatively and glycoxidatively damaged proteins; stimulation of the proteasomal activities for the degradation of abnormal proteins; improved cellular resistance to ethanol, hydrogenperoxide, and ultraviolet-B rays; and enhanced levels of various antioxidant enzymes. We are now undertaking a detailed analysis of the signal transduction pathways to determine alterations in the phosphorylation and dephosphorylation states of extracellular signal-related kinase, c-Jun terminal kinase and p38 MAP-kinases as a measure of cellular responsiveness to mild and severe heat stress. Furthermore, we are also undertaking comparative studies using non-aging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells for establishing differences in normal and cancerous cells with respect to their responsiveness to mild and severe stresses.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | |
Collapse
|
1260
|
Teng SC, Chen YY, Su YN, Chou PC, Chiang YC, Tseng SF, Wu KJ. Direct Activation of HSP90A Transcription by c-Myc Contributes to c-Myc-induced Transformation. J Biol Chem 2004; 279:14649-55. [PMID: 14724288 DOI: 10.1074/jbc.m308842200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and differentiation and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Heat shock protein 90 (HSP90) is involved in the folding of proteins such as signal transduction molecules (Src, Raf1, cdk4) and steroid receptors and in enhancing the activity of telomerase and nitric-oxide synthase. Here we show that c-Myc directly activates HSP90A transcription. c-Myc-mediated induction of HSP90A transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the proximal promoter region of HSP90A gene. Overexpression of HSP90A in Rat1a cells induces transformation. Short interference RNA of HSP90A/Hsp86alpha reduces transformation activity in HeLa and RatMyc cells. These results indicate that by induction of HSP90A c-Myc may control the activity of multiple signal pathways involved in cellular transformation.
Collapse
MESH Headings
- Agar/metabolism
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Division
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Chromatin/metabolism
- Cloning, Molecular
- Genes, Reporter
- HSP90 Heat-Shock Proteins/metabolism
- HeLa Cells
- Humans
- Luciferases/metabolism
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Small Interfering/metabolism
- Rats
- Signal Transduction
- Transcription, Genetic
- Transfection
- U937 Cells
- Up-Regulation
Collapse
Affiliation(s)
- Shu-Chun Teng
- Institute of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
1261
|
Matsuda N, Mishina M. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Development 2004; 131:1913-25. [PMID: 15056614 DOI: 10.1242/dev.01085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Zebrafish no tectal neuron (ntn) mutant obtained by trimethylpsoralen (TMP) mutagenesis showed defects in tectal neuropil formation and small eyes. We carried out whole-genome subtraction between wild-type and mutant zebrafish embryos using the representational difference analysis (RDA) method. Nineteen subtraction products enabled us to construct genetic and physical maps of the ntn region. Direct selection of cDNAs using a YAC clone encompassing the ntn locus and RT-PCR analysis of transcripts identified a 143 bp deletion in the cct3 gene encoding the gamma subunit of chaperonin containing TCP-1 (CCT). Injection of antisense cct3 morpholino oligonucleotides into zebrafish embryos induced characteristic ntn phenotypes including defects in retinal ganglion cell (RGC) differentiation and tectal neuropil formation. Moreover, injection of cct3 mRNA successfully rescued ntn mutant embryos. Our results suggest that RDA is an efficient and widely applicable cloning strategy in zebrafish genetics. The strong expression of the cct3 mRNA started in the entire embryos by 12 hpf and was sustained thereafter, but there were no detectable abnormalities in body patterning and neurogenesis in ntn mutant embryos at 30 hpf. The expression patterns of transcription factor genes ath5 and brn3b that are essential for the development and maintenance of RGCs were indistinguishable between wild-type and ntn mutant embryos, but those of early and late differentiation markers of RGCs, nicotinic acetylcholine receptor beta 3 and zn5, were diminished in mutant embryos. Immunostaining of acetylated tubulin also revealed the impairment of RGC neurite extension. Thus, the ntn mutation of the cct3 gene impaired the differentiation of retinal neuroepithelial cells to RGCs. Similarly, the expression of brn3b was normal in the tectum of ntn mutants, but tectal neuropil formation was abolished. These results suggest that the gamma subunit of chaperonin CCT plays an essential role in retinotectal development.
Collapse
Affiliation(s)
- Naoto Matsuda
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and SORST, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | | |
Collapse
|
1262
|
Abstract
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.
Collapse
Affiliation(s)
- Morag MacLean
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
1263
|
Brown P, Small D. FLT3 Inhibitors. Eur J Cancer 2004; 40:707-21, discussion 722-4. [PMID: 15010072 DOI: 10.1016/j.ejca.2003.08.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 08/27/2003] [Accepted: 08/27/2003] [Indexed: 01/01/2023]
Abstract
The area of molecularly-targeted cancer therapeutics is generating tremendous interest and excitement. While clinical investigation of these agents has been largely limited to adults, clinical trials for paediatric cancer patients with many of these agents are now underway. This paper reviews the current status of molecularly-targeted therapies for paediatric malignancies, with special attention given to one class of agents, inhibitors of the FLT3 receptor tyrosine kinase. FLT3 is expressed and activated in many human leukemias, including a significant percentage of pediatric AML and infant and childhood ALL, especially in the setting of MLL gene rearrangement. Activating mutations of FLT3 portend a poor prognosis in pediatric AML. Activated FLT3 can be effectively and selectively targeted by small molecule inhibitors, and these agents have shown promise in early phase clinical trials in adults with AML. Limited preclinical data with FLT3 inhibitors in MLL-rearranged ALL have also been reported. Challenges and future directions for the use of FLT3 inhibitors and other targeted agents in paediatric cancer are discussed.
Collapse
Affiliation(s)
- P Brown
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21231-1000, USA
| | | |
Collapse
|
1264
|
Dabir DV, Trojanowski JQ, Richter-Landsberg C, Lee VMY, Forman MS. Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:155-66. [PMID: 14695329 PMCID: PMC1602238 DOI: 10.1016/s0002-9440(10)63106-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular accumulations of filamentous material composed of tau proteins are defining features of sporadic and familial neurodegenerative disorders termed "tauopathies." In Alzheimer's disease, the most common tauopathy, tau pathology is predominantly localized within neurons; however, robust glial pathology occurs in other tauopathies. Although the pathogenesis of tauopathies remains primarily unknown, molecular chaperones such as heat-shock proteins (HSPs) are implicated in these tau disorders as well as other neurodegenerative diseases characterized by the accumulation of insoluble protein aggregates such as alpha-synuclein in Parkinson's disease and polyglutamine in Huntington's disease. We analyzed a variety of tauopathies with antibodies to a panel of HSPs to determine their role in the pathogenesis of these disorders. Although HSPs are not found in neuronal tau inclusions, we demonstrate increased expression of the small HSP alphaB-crystallin in glial inclusions of both sporadic and familial tauopathies. alphaB-crystallin was observed in a subset of astrocytic and oligodendrocytic tau inclusions as well as the neuropil thread pathology in cellular processes, but the co-expression of alphaB-crystallin with tau inclusions was relatively specific to tauopathies with extensive glial pathology. Thus, increased alphaB-crystallin expression in glial tau inclusions may represent a response by glia to the accumulation of misfolded or aggregated tau protein that is linked to the pathogenesis of the glial pathology and distinct from mechanisms underlying neuronal tau pathology in neurodegenerative disease.
Collapse
Affiliation(s)
- Deepa V Dabir
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | | | | | |
Collapse
|
1265
|
Jones DA, Takemoto D. Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 2004; 16:48-62. [PMID: 14734110 DOI: 10.1016/j.coi.2003.11.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plants have the capacity to recognise and reject pathogens at various stages of their attempted colonisation of the plant. Non-specific rejection often arises as a consequence of the potential pathogen's attempt to breach the first lines of plant defence. Pathogens able to penetrate beyond this barrier of non-host resistance may seek a subtle and persuasive relationship with the plant. For some, this may be limited to molecular signals released outside the plant cell wall, but for others it includes penetration of the cell wall and the delivery of signal molecules to the plant cytosol. Direct or indirect recognition of these signals triggers host-specific resistance. Our understanding of host-specific resistance and its possible links to non-host-specific resistance has advanced significantly as more is discovered about the nature and function of the molecules underpinning both kinds of resistance.
Collapse
Affiliation(s)
- David A Jones
- Research School of Biological Sciences, Australian National University, ACT 2601 Canberra, Australia.
| | | |
Collapse
|
1266
|
Dworkin I, Palsson A, Birdsall K, Gibson G. Evidence that Egfr contributes to cryptic genetic variation for photoreceptor determination in natural populations of Drosophila melanogaster. Curr Biol 2004; 13:1888-93. [PMID: 14588245 DOI: 10.1016/j.cub.2003.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One objective of quantitative genetics is to identify the nucleotide variants within genes that contribute to phenotypic variation and susceptibility [1]. In an evolutionary context, this means characterizing the molecular polymorphisms that modify the penetrance and expressivity of perturbed traits. A survey of association between 267 SNPs in almost 11 kb of the D. melanogaster Egfr and the degree of eye roughening due to a gain-of-function Egfr(E1) allele crossed into 210 isogenic wild-type lines provides evidence that a handful of synonymous substitutions supply cryptic variation for photoreceptor determination. Ten sites exceed Bonferroni threshold for association in two sets of crosses to different Egfr(E1) backgrounds including a particularly significant cluster of sites in tight linkage disequilibrium toward the 3' end of the coding region. Epistatic interaction of this cluster with one other site enhances the expressivity of this haplotype. Replication of the strongest associations with an independent sample of 302 phenotypically extreme individuals derived from 1000 crosses of Egfr(E1) to freshly trapped males was achieved using modified case-control and transmission-disequilibrium tests. A tendency for the rarer alleles to have more disrupted eye development suggests that mutation-selection balance is a possible mechanism contributing to maintaining cryptic variation for Egfr.
Collapse
Affiliation(s)
- Ian Dworkin
- Department of Genetics, North Carolina State University, Raleigh 27695, USA
| | | | | | | |
Collapse
|
1267
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
1268
|
Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 2004; 279:2101-8. [PMID: 14583611 DOI: 10.1074/jbc.m310029200] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SGT1 and Rar1 are important signaling components of resistance (R) gene-mediated plant innate immune responses. Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus. This suggests that Hsp90-SGT1-Rar1 and R proteins might exist in one complex. Suppression of Hsp90 in Nicotiana benthamiana plants shows that it plays an important role in plant growth and development. In addition, Hsp90 suppression in NN plants compromises N-mediated resistance to tobacco mosaic virus. Our results reveal a new role for SGT1- and Rar1-associated chaperone machinery in R gene-mediated defense signaling.
Collapse
Affiliation(s)
- Yule Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
1269
|
de Visser JAGM, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC. Perspective: Evolution and detection of genetic robustness. Evolution 2004; 57:1959-72. [PMID: 14575319 DOI: 10.1111/j.0014-3820.2003.tb00377.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level. Phenotypes can be robust either against heritable perturbations (e.g., mutations) or nonheritable perturbations (e.g., the weather). Here we primarily focus on the first kind of robustness--genetic robustness--and survey three growing avenues of research: (1) measuring genetic robustness in nature and in the laboratory; (2) understanding the evolution of genetic robustness: and (3) exploring the implications of genetic robustness for future evolution.
Collapse
Affiliation(s)
- J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1270
|
Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279:12714-23. [PMID: 14711833 PMCID: PMC1987378 DOI: 10.1074/jbc.m310548200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Department of Microbiology and Immunology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
1271
|
Polak M, Kroeger DE, Cartwright IL, Ponce deLeon C. Genotype-specific responses of fluctuating asymmetry and of preadult survival to the effects of lead and temperature stress in Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 127:145-155. [PMID: 14554005 DOI: 10.1016/s0269-7491(03)00238-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although fluctuating asymmetry (FA) increases with exposure to certain types of environmental stressors such as temperature extremes, relatively little is known about the effects of interaction (e.g., synergism) between known sources of environmental stress on FA. Knowledge of such interaction effects, and of the magnitude of genotype-by-environment interaction, are of fundamental importance toward predicting the usefulness of FA as a bioindicator of environmental pollution. We tested for synergistic effects on FA between elevated temperature and exposure to lead, and examined FA responses simultaneously in four genetic strains of Drosophila melanogaster known to differ in their degree of developmental instability, and presumably in their buffering capacity. In the absence of heavy metal, bristle FA increased with temperature, but in the presence of lead, FA at high temperature (30 (degrees)C) was reduced to levels similar, or below, that at lower temperature (25 (degrees)C). This temperature by lead interaction was statistically significant, but paradoxical in that the disruptive effects of temperature appeared to be attenuated in the presence of the heavy metal. In no case was there a significant effect of lead on bristle FAs, despite documented assimilation of heavy metal by flies, and in no case was the genotype by environment interaction significant. Whereas lead treatment did not influence survival, survival was reduced at the high temperature, but significantly so only in one genetic strain (Oregon-R). There was no relationship between survival and FA across stress treatments within lines. Thus, any disproportionate stress-induced mortality in developmentally unstable classes (developmental selection) was unlikely to bias the FA results. Our results underscore the need for independent replication of significant findings before FA-based biomonitoring can be responsibly and effectively implemented. The results call for caution in using FA as a biomarker of stress, because stress factors may interact in complex and unpredictable ways, which could result in erroneous conclusions about real levels of stress present in field populations, under the unduly simplistic assumption that stress factors will act additively to increase FA.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221-0006, USA.
| | | | | | | |
Collapse
|
1272
|
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. PHOTOSYNTHESIS RESEARCH 2004; 82:221-40. [PMID: 16143837 DOI: 10.1007/s11120-004-2216-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/11/2004] [Indexed: 05/04/2023]
Abstract
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
Collapse
Affiliation(s)
- Michael Schroda
- Institut für Biologie II/Biochemie, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany,
| |
Collapse
|
1273
|
Abstract
A recent paper suggests that genes can interact in networks to limit variation of phenotype. Similar principles might apply to the regulation of ion channels in nerve cells
Collapse
Affiliation(s)
- Jeremy E Niven
- Department of Zoology at the University of Cambridge in Cambridge, United Kingdom.
| |
Collapse
|
1274
|
Abstract
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.
Collapse
Affiliation(s)
- O O Odunuga
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | |
Collapse
|
1275
|
Ketola T, Laakso J, Kaitala V, Airaksinen S. EVOLUTION OF HSP90 EXPRESSION IN TETRAHYMENA THERMOPHILA (PROTOZOA, CILIATA) POPULATIONS EXPOSED TO THERMALLY VARIABLE ENVIRONMENTS. Evolution 2004. [DOI: 10.1554/03-572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1276
|
Sangster TA, Lindquist S, Queitsch C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 2004; 26:348-62. [PMID: 15057933 DOI: 10.1002/bies.20020] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmentally responsive molecular chaperone Hsp90 assists the maturation of many key regulatory proteins. An unexpected consequence of this essential biochemical function is that genetic variation can accumulate in genomes and can remain phenotypically silent until Hsp90 function is challenged. Notably, this variation can be revealed by modest environmental change, establishing an environmentally responsive exposure mechanism. The existence of diverse cryptic polymorphisms with a plausible exposure mechanism in evolutionarily distant lineages has implications for the pace and nature of evolutionary change. Chaperone-mediated storage and release of genetic variation is undoubtedly rooted in protein-folding phenomena. As we discuss, proper protein folding crucially affects the trajectory from genotype to phenotype. Indeed, the impact of protein quality-control mechanisms and other fundamental cellular processes on evolution has heretofore been overlooked. A true understanding of evolutionary processes will require an integration of current evolutionary paradigms with the many new insights accruing in protein science.
Collapse
Affiliation(s)
- Todd A Sangster
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | |
Collapse
|
1277
|
Affiliation(s)
- Günter P Wagner
- Department of Ecology/Evolutionary Biology, Osborn Memorial Labs, Yale University, 165 Prospect Street, New Haven, CT 06520-8106, USA.
| |
Collapse
|
1278
|
Csermely P, Sőti C, Kalmar E, Papp E, Pato B, Vermes A, Sreedhar AS. Molecular chaperones, evolution and medicine. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
1279
|
Milton CC, Huynh B, Batterham P, Rutherford SL, Hoffmann AA. Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci U S A 2003; 100:13396-401. [PMID: 14595030 PMCID: PMC263825 DOI: 10.1073/pnas.1835613100] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 chaperone buffers development against a wide range of morphological changes in many organisms and in Drosophila masks the effects of hidden genetic variation. Theory predicts that genetic and nongenetic buffering will share common mechanisms. For example, it is argued that Hsp90 genetic buffering evolved solely as a by-product of environmental buffering, and that Hsp90 should mask morphological deviations from any source. To test this idea, we examined the effect of Hsp90 on purely nongenetic variation in phenotype, measured as differences between the left and right sides of several bilaterally symmetrical bristle and wing traits in individual flies. Consistent with previous reports, Hsp90 buffered the expression of rare morphogenic variants specific to particular genetic backgrounds. However, neither trait-by-trait nor global asymmetry was affected in outbred flies treated with an Hsp90 inhibitor or across a series of inbred genetic backgrounds from a wild population tested in isogenic F1 heterozygotes carrying either (i) a dominant negative Hsp90 allele on a mutant 3rd chromosome or (ii) a null P-insertion mutation, which was introgressed into the control genetic background on all chromosomes. By contrast, Hsp90-regulated trait means and significant effects of sex, temperature, and genetic background on trait symmetry were clearly detected. We conclude that, by maintaining the function of signaling proteins, Hsp90 masks variation affecting target pathways and traits in populations independent of purely nongenetic sources of variation, refuting the idea that a single Hsp90-dependent process generally controls genetic canalization and developmental stability.
Collapse
Affiliation(s)
- Claire C Milton
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
1280
|
Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 2003; 81:678-99. [PMID: 12942175 DOI: 10.1007/s00109-003-0464-5] [Citation(s) in RCA: 1237] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 06/03/2003] [Indexed: 10/26/2022]
Abstract
The deposition of proteins in the form of amyloid fibrils and plaques is the characteristic feature of more than 20 degenerative conditions affecting either the central nervous system or a variety of peripheral tissues. As these conditions include Alzheimer's, Parkinson's and the prion diseases, several forms of fatal systemic amyloidosis, and at least one condition associated with medical intervention (haemodialysis), they are of enormous importance in the context of present-day human health and welfare. Much remains to be learned about the mechanism by which the proteins associated with these diseases aggregate and form amyloid structures, and how the latter affect the functions of the organs with which they are associated. A great deal of information concerning these diseases has emerged, however, during the past 5 years, much of it causing a number of fundamental assumptions about the amyloid diseases to be re-examined. For example, it is now apparent that the ability to form amyloid structures is not an unusual feature of the small number of proteins associated with these diseases but is instead a general property of polypeptide chains. It has also been found recently that aggregates of proteins not associated with amyloid diseases can impair the ability of cells to function to a similar extent as aggregates of proteins linked with specific neurodegenerative conditions. Moreover, the mature amyloid fibrils or plaques appear to be substantially less toxic than the pre-fibrillar aggregates that are their precursors. The toxicity of these early aggregates appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increases in free Ca2+ that eventually lead to apoptotic or necrotic cell death. The 'new view' of these diseases also suggests that other degenerative conditions could have similar underlying origins to those of the amyloidoses. In addition, cellular protection mechanisms, such as molecular chaperones and the protein degradation machinery, appear to be crucial in the prevention of disease in normally functioning living organisms. It also suggests some intriguing new factors that could be of great significance in the evolution of biological molecules and the mechanisms that regulate their behaviour.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | | |
Collapse
|
1281
|
Affiliation(s)
- Cristian I Castillo-Davis
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
1282
|
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425:407-10. [PMID: 14508491 DOI: 10.1038/nature01913] [Citation(s) in RCA: 1072] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 07/11/2003] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.
Collapse
Affiliation(s)
- Adeela Kamal
- Conforma Therapeutics Corporation, 9393 Towne Centre Drive, Suite 240, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
1283
|
Abstract
Heat shock proteins (Hsps) are conserved molecular chaperones that are upregulated following exposure to environmental stress and during aging. The mechanisms underlying the aging process are only beginning to be understood. The beneficial effects of Hsps on aging revealed in mild stress and overexpression experiments suggest that these proteins are part of an important cell protection system rather than being unspecific molecular chaperones. Among the Hsps families, small Hsps have the greatest influence on aging and the modulation of their expression during aging in Drosophila suggest that they are involved in pathways of longevity determination.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratory of Cellular and Developmental Genetics, Department of Medicine and CREFSIP, Université Laval, Pavillon C.E. Marchand, Ste-Foy, Que., Canada G1K 7P4
| | | |
Collapse
|
1284
|
|
1285
|
Oxelmark E, Knoblauch R, Arnal S, Su LF, Schapira M, Garabedian MJ. Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling. J Biol Chem 2003; 278:36547-55. [PMID: 12835317 DOI: 10.1074/jbc.m305960200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p23 is an Hsp90-associated protein that regulates signal transduction by the estrogen receptor alpha (ER); however, the mechanism through which p23 governs ER function remains enigmatic. To obtain a collection of p23 molecules with distinct effects on ER signaling, we screened in yeast a series of random mutations as well as specific sequence alterations based on the p23 crystal structure and further analyzed these mutations for their effect on p23-Hsp90 association in vitro and in vivo. We found that the ability of the p23 mutants to decrease or increase ER signal transduction correlated with their association with Hsp90. We also identified a mutation in the C-terminal tail of p23, which displayed a dominant inhibitory effect on ER transcriptional activation and associates more avidly with Hsp90 relative to the wild type p23. Interestingly, this mutant interacts with Hsp90 in its non-ATP-bound state, whereas the wild type p23 protein interacts exclusively with the ATP-bound form of Hsp90, which may account for its dominant phenotype. In addition, we have uncovered a novel activity of p23 that antagonizes Hsp90 action during times of cell stress. Using molecular modeling and the p23 crystal structure, we found that the p23 mutations affecting ER signaling identified in the screen localized to one face of the molecule, whereas those that had no effect mapped to other parts of the protein. Thus, our structure/function analysis has identified an important regulatory surface on p23 involved in ER signaling and p23 binding to Hsp90.
Collapse
Affiliation(s)
- Ellinor Oxelmark
- Departments of Microbiology, Urology, and Structural Biology, Skirball Institute of Biomolecular Medicine
| | | | | | | | | | | |
Collapse
|
1286
|
Roberts SP, Marden JH, Feder ME. Dropping like Flies: Environmentally Induced Impairment and Protection of Locomotor Performance in AdultDrosophila melanogaster. Physiol Biochem Zool 2003; 76:615-21. [PMID: 14671709 DOI: 10.1086/376922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2003] [Indexed: 11/03/2022]
Abstract
In Drosophila, heat shock (HS) during the pupal stage chronically hinders adult locomotor performance by disrupting wing development and cellular and/or tissue-level mechanisms that support walking and flight. Furthermore, heat pretreatment (PT) protects locomotor function against these disruptions. HS flies with abnormal wings were less able to alter trajectory in free fall relative to control, PT-only, and PT+HS wild-type flies. This deficit was less severe but still present in HS-only flies with wild-type wings. Transgenic increases in the copies of genes encoding the major inducible heat-shock protein of Drosophila melanogaster, Hsp70, also protected walking ability from disruption due to pupal HS. Walking velocity did not differ between excision (five natural hsp70 copies) and extra-copy (five natural and six transgenic hsp70 copies) flies in the control, PT, and PT+HS groups, nor did velocity vary among these thermal treatment groups. HS dramatically reduced walking velocity, however, but this effect occurred primarily in the excision flies. These results suggest that Hsp70 and other mechanisms protect against heat-induced locomotor impairment.
Collapse
Affiliation(s)
- Stephen P Roberts
- Department of Biological Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154-4004, USA.
| | | | | |
Collapse
|
1287
|
Elliot SL, Blanford S, Horton CM, Thomas MB. Fever and phenotype: transgenerational effect of disease on desert locust phase state. Ecol Lett 2003. [DOI: 10.1046/j.1461-0248.2003.00487.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1288
|
Dautin N, Karimova G, Ladant D. Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant. J Virol 2003; 77:8216-26. [PMID: 12857890 PMCID: PMC165233 DOI: 10.1128/jvi.77.15.8216-8226.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protease (PR) from human immunodeficiency virus (HIV) is essential for viral replication: this aspartyl protease, active only as a dimer, is responsible for cleavage of the viral polyprotein precursors (Gag and Gag-Pol), to release the functional mature proteins. In this work, we have studied the structure-function relationships of the HIV PR by combining a genetic test to detect proteolytic activity in Escherichia coli and a bacterial two-hybrid assay to analyze PR dimerization. We showed that a drug-resistant PR variant isolated from a patient receiving highly active antiretroviral therapy is impaired in its dimerization capability and, as a consequence, is proteolytically inactive. We further showed that the polypeptide regions adjacent to the PR coding sequence in the Gag-Pol polyprotein precursor, and in particular, the transframe polypeptide (TF), located at the N terminus of PR, can facilitate the dimerization of this variant PR and restore its enzymatic activity. We propose that the TF protein could help to compensate for folding and/or dimerization defects in PR arising from certain mutations within the PR coding sequence and might therefore function to buffer genetic variations in PR.
Collapse
Affiliation(s)
- Nathalie Dautin
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS URA 2185, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
1289
|
Wong GKS, Yang Z, Passey DA, Kibukawa M, Paddock M, Liu CR, Bolund L, Yu J. A population threshold for functional polymorphisms. Genome Res 2003; 13:1873-9. [PMID: 12902381 PMCID: PMC403778 DOI: 10.1101/gr.1324303] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We sequenced 114 genes (for DNA repair, cell cycle arrest, apoptosis, and detoxification)in a mixed human population and observed a sudden increase in the number of functional polymorphisms below a minor allele frequency of approximately 6%. Functionality is assessed by considering the ratio in the number of nonsynonymous single nucletide polymorphisms (SNPs)to the number of synonymous or intron SNPs. This ratio is steady from below 1% in frequency-that regime traditionally associated with rare Mendelian diseases-all the way up to about 6% in frequency, after which it falls precipitously. We consider possible explanations for this threshold effect. There are four candidates as follows: (1). deleterious variants that have yet to be purified from the population, (2). balancing selection, in which a selective advantage accrues to the heterozygotes, (3). population-specific functional polymorphisms, and (4). adaptive variants that are accumulating in the population as a response to the dramatic environmental changes of the last 7000 approximately 17000 years.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- University of Washington Genome Center, Department of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1290
|
|
1291
|
Bergman A, Siegal ML. Evolutionary capacitance as a general feature of complex gene networks. Nature 2003; 424:549-52. [PMID: 12891357 DOI: 10.1038/nature01765] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 04/24/2003] [Indexed: 11/09/2022]
Abstract
An evolutionary capacitor buffers genotypic variation under normal conditions, thereby promoting the accumulation of hidden polymorphism. But it occasionally fails, thereby revealing this variation phenotypically. The principal example of an evolutionary capacitor is Hsp90, a molecular chaperone that targets an important set of signal transduction proteins. Experiments in Drosophila and Arabidopsis have demonstrated three key properties of Hsp90: (1) it suppresses phenotypic variation under normal conditions and releases this variation when functionally compromised; (2) its function is overwhelmed by environmental stress; and (3) it exerts pleiotropic effects on key developmental processes. But whether these properties necessarily make Hsp90 a significant and unique facilitator of adaptation is unclear. Here we use numerical simulations of complex gene networks, as well as genome-scale expression data from yeast single-gene deletion strains, to present a mechanism that extends the scope of evolutionary capacitance beyond the action of Hsp90 alone. We illustrate that most, and perhaps all, genes reveal phenotypic variation when functionally compromised, and that the availability of loss-of-function mutations accelerates adaptation to a new optimum phenotype. However, this effect does not require the mutations to be conditional on the environment. Thus, there might exist a large class of evolutionary capacitors whose effects on phenotypic variation complement the systemic, environment-induced effects of Hsp90.
Collapse
Affiliation(s)
- Aviv Bergman
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
1292
|
Abstract
Saccharomyces cerevisiae's ability to form the prion [PSI+] may increase the rate of evolvability, defined as the rate of appearance of heritable and potentially adaptive phenotypic variants. The increase in evolvability occurs when the appearance of the prion causes read-through translation and reveals hidden variation in untranslated regions. Eventually the portion of the phenotypic variation that is adaptive loses its dependence on the revealing mechanism. The mechanism is reversible, so the restoration of normal translation termination conceals the revealed deleterious variation, leaving the yeast without a permanent handicap. Given that the ability to form [PSI+] is known to be fixed and conserved in yeast, we construct a mathematical model to calculate whether this ability is more likely to have become fixed due to chance alone or due to its evolvability characteristics. We find that evolvability is a more likely explanation, as long as environmental change makes partial read-through of stop codons adaptive at a frequency of at least once every million years.
Collapse
Affiliation(s)
- Joanna Masel
- Center for Computational Genetics and Biological Modeling, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
1293
|
Pigliucci M, Murren CJ. Perspective: Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evolution 2003; 57:1455-64. [PMID: 12940351 DOI: 10.1111/j.0014-3820.2003.tb00354.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The idea of genetic assimilation, that environmentally induced phenotypes may become genetically fixed and no longer require the original environmental stimulus, has had varied success through time in evolutionary biology research. Proposed by Waddington in the 1940s, it became an area of active empirical research mostly thanks to the efforts of its inventor and his collaborators. It was then attacked as of minor importance during the "hardening" of the neo-Darwinian synthesis and was relegated to a secondary role for decades. Recently, several papers have appeared, mostly independently of each other, to explore the likelihood of genetic assimilation as a biological phenomenon and its potential importance to our understanding of evolution. In this article we briefly trace the history of the concept and then discuss theoretical models that have newly employed genetic assimilation in a variety of contexts. We propose a typical scenario of evolution of genetic assimilation via an intermediate stage of phenotypic plasticity and present potential examples of the same. We also discuss a conceptual map of current and future lines of research aimed at exploring the actual relevance of genetic assimilation for evolutionary biology.
Collapse
Affiliation(s)
- Massimo Pigliucci
- Department of Botany, University of Tennessee, Knoxville, Tennessee 37996-1100, USA.
| | | |
Collapse
|
1294
|
Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci 2003; 358:1149-55. [PMID: 12831481 PMCID: PMC1693194 DOI: 10.1098/rstb.2003.1305] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.
Collapse
Affiliation(s)
- Luca Comai
- Department of Biology, Box 355325, University of Washington, Seattle, WA 98195-5325, USA.
| | | | | | | |
Collapse
|
1295
|
Abstract
We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) give rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.
Collapse
Affiliation(s)
- Charles Ofria
- Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
1296
|
Workman P. Pharmacogenomics in cancer drug discovery and development: inhibitors of the Hsp90 molecular chaperone. CANCER DETECTION AND PREVENTION 2003; 26:405-10. [PMID: 12507224 DOI: 10.1016/s0361-090x(02)00126-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug discovery is being revolutionised by a number of technological developments. These include high throughput screening, combinatorial chemistry and genomics. The impact of the new technologies is to accelerate the pace of anticancer discovery. The completion of the Human Genome Project and the ongoing high throughput sequencing of cancer genomes will facilitate the identification of a range of new molecular targets for drug discovery. Over the next few years we will have a complete molecular understanding of the various combinations of genes and cognate pathways that drive the malignant phenotype and tumour progression. The vision for postgenomic cancer drug discovery must be to identify therapeutic agents that correct or exploit each of these molecular abnormalities. In this way, it will be possible to develop personalised drug combinations that are targeted to the molecular make up of individual tumours. It is anticipated that these therapies will be more effective and less toxic than current approaches, although combinations of novel agents with existing cytotoxic therapies are likely to continue for some time. Examples of postgenomic, mechanism-based drugs include Glivec, Herceptin and Iressa, with many more agents undergoing preclinical and clinical development. An interesting new approach involves the development of inhibitors of heat shock protein (Hsp90) molecular chaperone. Because Hsp90 is required for the correct folding, stability and function of a range of oncoproteins that are mutated or over expressed in cancer, Hsp90 inhibitors have the potential to provide a simultaneous, combinatorial attack on multiple oncogenic pathways. By depleting the levels of multiple oncoproteins in cancer cells and blocking a wide range of oncogenic pathways, Hsp90 inhibitors have the potential to inhibit all of the hallmark characteristics of cancer cells. Progress in the preclinical and clinical development of Hsp90 inhibitors will be described, including an update on clinical studies with the first-in-class agent 17AAG. The use of the postgenomic technology of gene expression microarrays in cancer pharmacology and drug development will be exemplified.
Collapse
Affiliation(s)
- Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Block E, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| |
Collapse
|
1297
|
Seguí-Simarro JM, Testillano PS, Risueño MC. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J Struct Biol 2003; 142:379-91. [PMID: 12781665 DOI: 10.1016/s1047-8477(03)00067-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A stress treatment of 32 degrees C for at least 8h was able to change the gametophytic program of the microspore, switching it to embryogenesis in Brassica napus, an interesting model for studying this process in vitro. After induction, some microspores started symmetric divisions and became haploid embryos after a few days, whereas other microspores, not sensitive to induction, followed their original gametophytic development. In this work the distribution and ultrastructural localization of two heat-shock proteins (Hsp70 and Hsp90) throughout key stages before and after embryogenesis induction were studied. Both Hsp proteins are rapidly induced, localizing in the nucleus and the cytoplasm. Immunogold labeling showed changes in the distribution patterns of these proteins, these changes being assessed by a quantitative analysis. Inside the nucleus, Hsp70 was found in association with RNP structures in the interchromatin region and in the nucleolus, whereas nuclear Hsp90 was mostly found in the interchromatin region. For Hsp70, the accumulation after the inductive treatment was accompanied by a reversible translocation from the cytoplasm to the nucleus, in both induced (embryogenic) and noninduced (gametophytic) microspores. However, the translocation was higher in embryogenic microspores, suggesting a possible additional role for Hsp70 in the switch to embryogenesis. In contrast, Hsp90 increase was similar in all microspores, occurring faster than for Hsp70 and suggesting a more specific role for Hsp90 in the stress response. Hsp70 and Hsp90 colocalized in clusters in the cytoplasm and the nucleus, but not in the nucleolus. Results indicated that stress proteins are involved in the process of microspore embryogenesis induction. The differential appearance and distribution of the two proteins and their association at specific stages have been determined between the two systems coexisting in the same culture: embryogenic development (induced cells) and development of gametes (noninduced cells).
Collapse
Affiliation(s)
- J M Seguí-Simarro
- Plant Development and Nuclear Organization, Centro de Investigaciones Biológicas-CSIC, Velázquez, 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
1298
|
Affiliation(s)
- Tomoko Ohta
- National Institute of Genetics, Mishima 411-8540, Japan.
| |
Collapse
|
1299
|
Abstract
Development is a very robust but far from perfect process, subjected to random variation due to the combined factors that constitute the so-called developmental noise. The effects of early developmental noise may have long-term consequences resulting from slight differences in the make-up and organisation of the former developing system. Here we present evidence suggesting that cancer is not an acquired but an intrinsic process resulting from random factors acting during early development, thus leading to a mixture of susceptibility types that may develop cancer sooner or later, depending on the combination of the environment acting upon such different susceptibility types. We discuss evidence suggesting that some supposedly tumour-suppressor functions, such as those associated with the p53 protein, actually evolved as buffering functions against the early effects of developmental noise that might compromise the stability of embryonic cells and hence of development. Ageing is a stochastic process characterised by progressive failure of somatic maintenance and repair. We put forth the notion that progressive loss of the morphological coherence of the organism (morphological disorder) is a form of ageing, and that morphological disorder is the common theme of most types of cancer. Thus, we suggest that the exhaustion of both developmental constraints and buffering developmental mechanisms link ageing and cancer. Moreover, we propose that cancer may represent one of the most radical forms of ageing, because it generally satisfies the criteria of senescence: intrinsicality, progressiveness and deleteriousness.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. México, Mexico.
| | | |
Collapse
|
1300
|
Chitwood DJ. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. PEST MANAGEMENT SCIENCE 2003; 59:748-53. [PMID: 12846325 DOI: 10.1002/ps.684] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent de-registration of several chemical nematicides and the impending loss of methyl bromide from the pest-control market necessitate the development of new methods for controlling nematode-induced crop damage. One approach for developing novel target-specific controls is by exploiting fundamental differences between the biological processes of nematodes and their host plants. Researchers of the Agricultural Research Service (ARS) of the US Department of Agriculture are actively exploring these differences. Research accomplishments include the discovery of heat shock protein genes possibly involved in developmental arrest of the soybean cyst nematode, the identification of neuropeptides and female-specific proteins in the soybean cyst nematode, the disruption of nematode reproduction with inhibitors of nematode sterol metabolism, the development of novel morphological and molecular (heat shock protein genes and the D3 segment of large subunit ribosomal DNA) features useful for nematode identification and classification, and the elucidation of the population genetics of potato cyst nematode pathotypes. In addition, several ARS researchers are investigating biological determinants of nematode response to management strategies utilized in agricultural fields. These collective efforts should lead to new chemical and non-chemical alternatives to conventional nematode control strategies.
Collapse
Affiliation(s)
- David J Chitwood
- Nematology Laboratory, USDA-ARS, Building 011A, BARC-West, Beltsville, MD 20705, USA.
| |
Collapse
|