1251
|
Lancaster CRD. Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:215-31. [PMID: 12409197 DOI: 10.1016/s0005-2736(02)00571-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Str. 7, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|
1252
|
Kawatsu T, Kakitani T, Yamato T. Destructive Interference in the Electron Tunneling through Protein Media. J Phys Chem B 2002. [DOI: 10.1021/jp026035y] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tsutomu Kawatsu
- Department of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toshiaki Kakitani
- Department of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahisa Yamato
- Department of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
1253
|
Fuziwara S, Sagami I, Rozhkova E, Craig D, Noble MA, Munro AW, Chapman SK, Shimizu T. Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase. J Inorg Biochem 2002; 91:515-26. [PMID: 12237219 DOI: 10.1016/s0162-0134(02)00478-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
P450 BM3 and the nitric oxide synthases are related classes of flavocytochrome mono-oxygenase enzymes, containing NADPH-dependent FAD- and FMN-containing oxidoreductase modules fused to heme b-containing oxygenase domains. Domain-swap hybrids of these two multi-domain enzymes were created by genetic engineering of different segments of reductase and heme domains from neuronal nitric oxide synthase and P450 BM3, as a means of investigating the catalytic competence and substrate-binding properties of the fusions and the influence of tetrahydrpbiopterin and calmodulin binding regions on the electron transfer kinetics of the chimeras. Despite marked differences in hybrid stability and solubility, four catalytically functional chimeras were created that retained good reductase activity and which could be expressed successfully in Escherichia coli and purified. All of the BM3 reductase domain chimeras (chimeras I-III) exhibited inefficient flavin-to-heme inter-domain electron transfer, diminishing their oxygenase activity. However, the chimera containing the neuronal nitric oxide synthase reductase domain (chimera IV) showed good oxygenase domain activity, indicating that the flavin-to-heme electron transfer reaction is relatively efficient in this case. The data reinforce the importance of the nature of inter-domain linker constitution in multi-domain enzymes, and the difficulties posed in attempts to create chimeric enzymes with enhanced catalytic properties.
Collapse
Affiliation(s)
- Shigeyoshu Fuziwara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1254
|
Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ. Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c. J Biol Chem 2002; 277:35703-11. [PMID: 12080059 DOI: 10.1074/jbc.m203866200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genus Shewanella produces a unique small tetraheme cytochrome c that is implicated in the iron oxide respiration pathway. It is similar in heme content and redox potential to the well known cytochromes c(3) but related in structure to the cytochrome c domain of soluble fumarate reductases from Shewanella sp. We report the crystal structure of the small tetraheme cytochrome c from Shewanella oneidensis MR-1 in two crystal forms and two redox states. The overall fold and heme core are surprisingly different from the soluble fumarate reductase structures. The high resolution obtained for an oxidized orthorhombic crystal (0.97 A) revealed several flexible regions. Comparison of the six monomers in the oxidized monoclinic space group (1.55 A) indicates flexibility in the C-terminal region containing heme IV. The reduced orthorhombic crystal structure (1.02 A) revealed subtle differences in the position of several residues, resulting in decreased solvent accessibility of hemes and the withdrawal of a positive charge from the molecular surface. The packing between monomers indicates that intermolecular electron transfer between any heme pair is possible. This suggests there is no unique site of electron transfer on the surface of the protein and that electron transfer partners may interact with any of the hemes, a process termed "electron-harvesting." This optimizes the efficiency of intermolecular electron transfer by maximizing chances of productive collision with redox partners.
Collapse
Affiliation(s)
- David Leys
- Laboratory of Protein Biochemistry and Protein Engineering, Department of Biochemistry, Physiology, and Microbiology, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
1255
|
Schünemann V, Jung C, Terner J, Trautwein AX, Weiss R. Spectroscopic studies of peroxyacetic acid reaction intermediates of cytochrome P450cam and chloroperoxidase. J Inorg Biochem 2002; 91:586-96. [PMID: 12237224 DOI: 10.1016/s0162-0134(02)00476-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via Mössbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.
Collapse
Affiliation(s)
- V Schünemann
- Institute of Physics, Medical University Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
1256
|
Contzen J, Kostka S, Kraft R, Jung C. Intermolecular electron transfer in cytochrome P450cam covalently bound with Tris(2,2'-bipyridyl)ruthenium(II): structural changes detected by FTIR spectroscopy. J Inorg Biochem 2002; 91:607-17. [PMID: 12237226 DOI: 10.1016/s0162-0134(02)00497-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using Fourier transform infrared spectroscopy (FTIR) we have monitored the changes in the protein structure following photoinduced electron transfer from Ru(bpy)(3)(2+) covalently attached to cysteine 334 on the surface of cytochrome P450cam (CYP101). The FTIR difference spectra between the oxidized and reduced form indicate changes in a salt link and the secondary structure (alpha-helix and turn regions). Photoreduction was carried out in the presence of carbon monoxide in order to prove the reduction of the heme iron by means of the appearance of the characteristic CO stretch vibration infrared band at 1940 cm(-1) for the camphor-bound protein. This infrared band has also been used to estimate electron transfer rates. The observed rates depend on the protein concentration, indicating that intermolecular electron transfer occurs between the labeled molecules.
Collapse
Affiliation(s)
- Jörg Contzen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
1257
|
Hunte C, Solmaz S, Lange C. Electron transfer between yeast cytochrome bc(1) complex and cytochrome c: a structural analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:21-8. [PMID: 12206886 DOI: 10.1016/s0005-2728(02)00249-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the complex between cytochrome c (CYC) and the cytochrome bc(1) complex (QCR) from yeast crystallized with an antibody fragment has been recently determined at 2.97 A resolution [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2800]. CYC binds to subunit cytochrome c(1) of the enzyme stabilized by hydrophobic interactions surrounding the heme crevices creating a small, compact contact site. A central cation-pi interaction is an important and conserved feature of CYC binding. Peripheral patches with highly conserved complementary charges further stabilize the enzyme-substrate complex by long-range electrostatic forces and may affect the orientation of the substrate. Size and characteristics of the contact site are optimal for a transient electron transfer complex. Kinetic data show a bell-shaped ionic strength dependence of the cytochrome c reduction with a maximum activity near physiological ionic strength. The dependence is less pronounced in yeast compared to horse heart CYC indicating less impact of electrostatic interactions in the yeast system. Interestingly, a local QCR activity minimum is found for both substrates at 120-140 mM ionic strength. The architecture of the complex results in close distance of both c-type heme groups allowing the rapid reduction of cytochrome c by QCR via direct heme-to-heme electron transfer. Remarkably, CYC binds only to one of the two possible binding sites of the homodimeric complex and binding appears to be coordinated with the presence of ubiquinone at the Q(i) site. Regulatory aspects of CYC reduction are discussed.
Collapse
Affiliation(s)
- Carola Hunte
- Max-Planck-Institute of Biophysics, Dept. Molecular Membrane Biology, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M., Germany.
| | | | | |
Collapse
|
1258
|
Pina F, Lima JC, Lodeiro C, Seixas de Melo J, Díaz P, Albelda MT, García-España E. Long Range Electron Transfer Quenching in Polyamine Chains Bearing a Terminal Naphthalene Unit. J Phys Chem A 2002. [DOI: 10.1021/jp025848j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando Pina
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - J. C. Lima
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - Carlos Lodeiro
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - J. Seixas de Melo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - Pilar Díaz
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - M. Teresa Albelda
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| | - Enrique García-España
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, Departamento de Química (CQC), Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal, and Departament de Química Inorgànica, Facultt de Química, Universitat de València, Spain, C/ Dr. Moliner 50, 46100 Burjassot (València), Spain
| |
Collapse
|
1259
|
Barquera B, Zhou W, Morgan JE, Gennis RB. Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 2002; 99:10322-4. [PMID: 12122213 PMCID: PMC124912 DOI: 10.1073/pnas.162361299] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavins are cofactors in many electron-transfer enzymes. Typically, two types of flavins perform this role: 5'-phosphoriboflavin (FMN) and flavin-adenine dinucleotide (FAD). Both of these are riboflavin derivatives, but riboflavin itself has never been reported to be an enzyme-bound component. We now report that tightly bound riboflavin is a component of the NADH-driven sodium pump from Vibrio cholerae.
Collapse
Affiliation(s)
- Blanca Barquera
- Department of Biochemistry, University of Illinois, 600 South Mathews Street, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
1260
|
Clay MD, Jenney FE, Noh HJ, Hagedoorn PL, Adams MWW, Johnson MK. Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase. Biochemistry 2002; 41:9833-41. [PMID: 12146949 DOI: 10.1021/bi025833b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resonance Raman spectrum of oxidized wild-type P. furiosus SOR at pH 7.5 and 10.5 has been investigated using excitation wavelengths between 406 and 676 nm, and vibrational modes have been assigned on the basis of isotope shifts resulting from global replacements of (32)S with (34)S, (14)N with (15)N, (56)Fe with (54)Fe, and exchange into a H(2)(18)O buffer. The results are interpreted in terms of the crystallographically defined active-site structure involving a six-coordinate mononuclear Fe center with four equatorial histidine ligands and axial cysteine and monodentate glutamate ligands (Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. C. (2000) Biochemistry 39, 2499-2508). Excitation into the intense (Cys)S(p(pi))-to-Fe(d(pi)) CT transition centered at 660 nm results in strong enhancement of modes at 298 cm(-1) and 323 cm(-1) that are assigned to extensively mixed cysteine S-C(beta)-C(alpha) bending and Fe-S(Cys) stretching modes, respectively. All other higher-energy vibrational modes are readily assigned to overtone or combination bands or to fundamentals corresponding to internal modes of the ligated cysteine. Weak enhancement of Fe-N(His) stretching modes is observed in the 200-250 cm(-1) region. The enhancement of internal cysteine modes and Fe-N(His) stretching modes are a consequence of a near-planar Fe-S-C(beta)-C(alpha)-N unit for the coordinated cysteine and significant (His)N(p(pi))-Fe(d(xy))-(Cys)S(p(pi)) orbital overlap, respectively, and have close parallels to type 1 copper proteins. By analogy with type 1 copper proteins, putative superexchange electron-transfer pathways to the mononuclear Fe active site are identified involving either the tyrosine and cysteine residues or the solvent-exposed deltaN histidine residue in a Y-C-X-X-H arrangement. Studies of wild-type at pH 10.5 and the E14A variant indicate that the resonance Raman spectrum is remarkably insensitive to changes in the ligand trans to cysteine and hence are inconclusive concerning the origin of the alkaline transition and the nature of sixth Fe ligand in the E14A variant.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
1261
|
|
1262
|
Abstract
Hydrogenases are enzymes capable of catalyzing the oxidation of molecular hydrogen or its production from protons and electrons according to the reversible reaction: H(2)<==>2H(+)+2e(-). Most of these enzymes fall into to major classes: NiFe and Fe-only hydrogenases. Extensive spectroscopic, electrochemical and structural studies have shed appreciable light on the catalytic mechanism of hydrogenases. Although evolutionarily unrelated, NiFe and Fe-hydrogenases share a common, unusual feature: an active site low-spin Fe center with CO and CN coordination. We have recently focused our attention on Fe-hydrogenases because from structural studies by us and others, it appears to be a simpler system than the NiFe counterpart. Thus the primary hydrogen binding site has been identified and plausible, electron, proton and hydrogen pathways from and to the buried active site may be proposed from the structural data. The extensive genome sequencing effort currently under way has shown that eukaryotic organisms contain putatively gene coding sequences that display significant homology to Fe-hydrogenases. Here, we summarize the available evidence concerning the mechanism of these enzymes and carry out a structural comparison between Fe-hydrogenases and related proteins of unknown metal content from yeast, plant, worm, insect and mammals.
Collapse
Affiliation(s)
- Yvain Nicolet
- Laboratoire de Cristallographie et de Cristallogenèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, 41, rue Jules Horowitz, 38027 Grenoble, Cedex 1, France
| | | | | |
Collapse
|
1263
|
Angove HC, Cole JA, Richardson DJ, Butt JN. Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase. J Biol Chem 2002; 277:23374-81. [PMID: 11970951 DOI: 10.1074/jbc.m200495200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome c nitrite reductases perform a key step in the biological nitrogen cycle by catalyzing the six-electron reduction of nitrite to ammonium. Graphite electrodes painted with Escherichia coli cytochrome c nitrite reductase and placed in solutions containing nitrite (pH 7) exhibit large catalytic reduction currents during cyclic voltammetry at potentials below 0 V. These catalytic currents were not observed in the absence of cytochrome c nitrite reductase and were shown to originate from an enzyme film engaged in direct electron exchange with the electrode. The catalytic current-potential profiles observed on progression from substrate-limited to enzyme-limited nitrite reduction revealed a fingerprint of catalytic behavior distinct from that observed during hydroxylamine reduction, the latter being an alternative substrate for the enzyme that is reduced to ammonium in a two electron process. Cytochrome c nitrite reductase clearly interacts differently with these two substrates. However, similar features underlie the development of the voltammetric response with increasing nitrite or hydroxylamine concentration. These features are consistent with coordinated two-electron reduction of the active site and suggest that the mechanisms for reduction of both substrates are underpinned by common rate-defining processes.
Collapse
Affiliation(s)
- Hayley C Angove
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
1264
|
Imahori H, Tamaki K, Araki Y, Sekiguchi Y, Ito O, Sakata Y, Fukuzumi S. Stepwise charge separation and charge recombination in ferrocene-meso,meso-linked porphyrin dimer-fullerene triad. J Am Chem Soc 2002; 124:5165-74. [PMID: 11982381 DOI: 10.1021/ja016655x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A meso,meso-linked porphyrin dimer [(ZnP)(2)] as a light-harvesting chromophore has been incorporated into a photosynthetic multistep electron-transfer model for the first time, including ferrocene (Fc), as an electron donor and fullerene (C(60)) as an electron acceptor to construct the ferrocene-meso,meso-linked porphyrin dimer-fullerene system (Fc-(ZnP)(2)-C(60)). Photoirradiation of Fc-(ZnP)(2)-C(60) results in photoinduced electron transfer from the singlet excited state of the porphyrin dimer [(1)(ZnP)(2)] to the C(60) moiety to produce the porphyrin dimer radical cation-C(60) radical anion pair, Fc-(ZnP)(2)(*+)-C(60)(*-). In competition with the back electron transfer from C(60)(*-) to (ZnP)(2)(*+) to the ground state, an electron transfer from Fc to (ZnP)(2)(*+) occurs to give the final charge-separated (CS) state, that is, Fc(+)-(ZnP)(2)-C(60)(*-), which is detected as the transient absorption spectra by the laser flash photolysis. The quantum yield of formation of the final CS state is determined as 0.80 in benzonitrile. The final CS state decays obeying first-order kinetics with a lifetime of 19 micros in benzonitrile at 295 K. The activation energy for the charge recombination (CR) process is determined as 0.15 eV in benzonitrile, which is much larger than the value expected from the direct CR process to the ground state. This value is rather comparable to the energy difference between the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)) and the final CS state (Fc(+)-(ZnP)(2)-C(60)(*-)). This indicates that the back electron transfer to the ground state occurs via the reversed stepwise processes,that is, a rate-limiting electron transfer from (ZnP)(2) to Fc(+) to give the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)), followed by a fast electron transfer from C(60)(*-) to (ZnP)(2)(*+) to regenerate the ground state, Fc-(ZnP)(2)-C(60). This is in sharp contrast with the extremely slow direct CR process of bacteriochlorophyll dimer radical cation-quinone radical anion pair in bacterial reaction centers.
Collapse
Affiliation(s)
- Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, CREST, Japan Science and Technology Corporation (JST), Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
1265
|
Iverson TM, Luna-Chavez C, Croal LR, Cecchini G, Rees DC. Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site. J Biol Chem 2002; 277:16124-30. [PMID: 11850430 DOI: 10.1074/jbc.m200815200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.
Collapse
Affiliation(s)
- Tina M Iverson
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
1266
|
Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TWB, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL. P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 2002; 27:250-7. [PMID: 12076537 DOI: 10.1016/s0968-0004(02)02086-8] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Flavocytochrome P450 BM3 is a bacterial P450 system in which a fatty acid hydroxylase P450 is fused to a mammalian-like diflavin NADPH-P450 reductase in a single polypeptide. The enzyme is soluble (unlike mammalian P450 redox systems) and its fusion arrangement affords it the highest catalytic activity of any P450 mono-oxygenase. This article discusses the fundamental properties of P450 BM3 and how progress with this model P450 has affected our comprehension of P450 systems in general.
Collapse
Affiliation(s)
- Andrew W Munro
- Department Biochemistry, University of Leicester, The Adrian Building, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1267
|
Rosenfeld RJ, Hays AMA, Musah RA, Goodin DB. Excision of a proposed electron transfer pathway in cytochrome c peroxidase and its replacement by a ligand-binding channel. Protein Sci 2002; 11:1251-9. [PMID: 11967381 PMCID: PMC2373560 DOI: 10.1110/ps.4870102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A previously proposed electron transfer (ET) pathway in the heme enzyme cytochrome c peroxidase has been excised from the structure, leaving an open ligand-binding channel in its place. Earlier studies on cavity mutants of this enzyme have revealed structural plasticity in this region of the molecule. Analysis of these structures has allowed the design of a variant in which the specific section of protein backbone representing a previously proposed ET pathway is accurately extracted from the protein. A crystal structure verified the creation of an open channel that overlays the removed segment, extending from the surface of the protein to the heme at the core of the protein. A number of heterocyclic cations were found to bind to the proximal-channel mutant with affinities that can be rationalized based on the structures. It is proposed that small ligands bind more weakly to the proximal-channel mutant than to the W191G cavity due to an increased off rate of the open channel, whereas larger ligands are able to bind to the channel mutant without inducing large conformational changes. The structure of benzimidazole bound to the proximal-channel mutant shows that the ligand accurately overlays the position of the tryptophan radical center that was removed from the wild-type enzyme and displaces four of the eight ordered solvent molecules seen in the empty cavity. Ligand binding also caused a small rearrangement of the redesigned protein loop, perhaps as a result of improved electrostatic interactions with the ligand. The engineered channel offers the potential for introducing synthetic replacements for the removed structure, such as sensitizer-linked substrates. These installed "molecular wires" could be used to rapidly initiate reactions, trap reactive intermediates, or answer unresolved questions about ET pathways.
Collapse
Affiliation(s)
- Robin J Rosenfeld
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
1268
|
Hurley JK, Morales R, Martínez-Júlvez M, Brodie TB, Medina M, Gómez-Moreno C, Tollin G. Structure-function relationships in Anabaena ferredoxin/ferredoxin:NADP(+) reductase electron transfer: insights from site-directed mutagenesis, transient absorption spectroscopy and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:5-21. [PMID: 12034466 DOI: 10.1016/s0005-2728(02)00188-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction between reduced Anabaena ferredoxin and oxidized ferredoxin:NADP(+) reductase (FNR), which occurs during photosynthetic electron transfer (ET), has been investigated extensively in the authors' laboratories using transient and steady-state kinetic measurements and X-ray crystallography. The effect of a large number of site-specific mutations in both proteins has been assessed. Many of the mutations had little or no effect on ET kinetics. However, non-conservative mutations at three highly conserved surface sites in ferredoxin (F65, E94 and S47) caused ET rate constants to decrease by four orders of magnitude, and non-conservative mutations at three highly conserved surface sites in FNR (L76, K75 and E301) caused ET rate constants to decrease by factors of 25-150. These residues were deemed to be critical for ET. Similar mutations at several other conserved sites in the two proteins (D67 in Fd; E139, L78, K72, and R16 in FNR) caused smaller but still appreciable effects on ET rate constants. A strong correlation exists between these results and the X-ray crystal structure of an Anabaena ferredoxin/FNR complex. Thus, mutations at sites that are within the protein-protein interface or are directly involved in interprotein contacts generally show the largest kinetic effects. The implications of these results for the ET mechanism are discussed.
Collapse
Affiliation(s)
- John K Hurley
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721-0088, USA
| | | | | | | | | | | | | |
Collapse
|
1269
|
Dobritzsch D, Ricagno S, Schneider G, Schnackerz KD, Lindqvist Y. Crystal structure of the productive ternary complex of dihydropyrimidine dehydrogenase with NADPH and 5-iodouracil. Implications for mechanism of inhibition and electron transfer. J Biol Chem 2002; 277:13155-66. [PMID: 11796730 DOI: 10.1074/jbc.m111877200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dihydroprymidine dehydrogenase catalyzes the first and rate-limiting step in pyrimidine degradation by converting pyrimidines to the corresponding 5,6- dihydro compounds. The three-dimensional structures of a binary complex with the inhibitor 5-iodouracil and two ternary complexes with NADPH and the inhibitors 5-iodouracil and uracil-4-acetic acid were determined by x-ray crystallography. In the ternary complexes, NADPH is bound in a catalytically competent fashion, with the nicotinamide ring in a position suitable for hydride transfer to FAD. The structures provide a complete picture of the electron transfer chain from NADPH to the substrate, 5-iodouracil, spanning a distance of 56 A and involving FAD, four [Fe-S] clusters, and FMN as cofactors. The crystallographic analysis further reveals that pyrimidine binding triggers a conformational change of a flexible active-site loop in the alpha/beta-barrel domain, resulting in placement of a catalytically crucial cysteine close to the bound substrate. Loop closure requires physiological pH, which is also necessary for correct binding of NADPH. Binding of the voluminous competitive inhibitor uracil-4-acetic acid prevents loop closure due to steric hindrance. The three-dimensional structure of the ternary complex enzyme-NADPH-5-iodouracil supports the proposal that this compound acts as a mechanism-based inhibitor, covalently modifying the active-site residue Cys-671, resulting in S-(hexahydro-2,4-dioxo-5-pyrimidinyl)cysteine.
Collapse
Affiliation(s)
- Doreen Dobritzsch
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
1270
|
Daizadeh I, Medvedev DM, Stuchebrukhov AA. Electron transfer in ferredoxin: are tunneling pathways evolutionarily conserved? Mol Biol Evol 2002; 19:406-15. [PMID: 11919281 DOI: 10.1093/oxfordjournals.molbev.a004095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical study of electron transfer (ET) pathways in a recently crystallized Clostridium acidurici ferredoxin is reported. The electronic structure of the protein complex is treated at the semiempirical extended Hückel level, and the tunneling pathways are calculated with the rigorous quantum mechanical method of tunneling currents. The model predicts two pathways between the two [4Fe-4S] cubanes: a strong one running directly from Cys(14) to Cys(43) and a weaker one from Cys(14) via Ile(23) to Cys(18), whereas other amino acids do not play a significant role in the electron tunneling. The cysteine ligands conduct almost all of the current when Ile(23) is mutated to valine in silico, so that there is no appreciable change in the ET rate. The calculated value of the transfer matrix element is consistent with the experimentally determined rate of transfer. Results of the sequence analysis performed on this ferredoxin reveal that Ile(23) is a highly variable amino acid compared with the cubane-ligating cysteine amino acids, even though Ile(23) lies directly between the donor and acceptor complexes. We further argue that the homologous proteins with a [3Fe-4S] cofactor, which does not have one of the four cysteine ligands, use the same tunneling pathways as those in this ferredoxin, on the basis of the high homology as well as the absolute conservation of Cys(14) and Cys(43) which serve as the main tunneling conduit. Our results explain why mutation of amino acids around and between the donor and acceptor cubane clusters, including that of Ile(23), does not appreciably affect the rate of transfer and add support to the proposal that there exist evolutionarily conserved electron tunneling pathways in biological ET reactions.
Collapse
Affiliation(s)
- Iraj Daizadeh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
1271
|
Jormakka M, Törnroth S, Byrne B, Iwata S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 2002; 295:1863-8. [PMID: 11884747 DOI: 10.1126/science.1068186] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends almost 90 angstroms through the enzyme. The menaquinone reduction site associated with a possible proton pathway was also characterized. This structure provides critical insights into the proton motive force generation by redox loop, a common mechanism among a wide range of respiratory enzymes.
Collapse
Affiliation(s)
- Mika Jormakka
- Division of Biomedical Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
1272
|
Imahori H, Tamaki K, Araki Y, Hasobe T, Ito O, Shimomura A, Kundu S, Okada T, Sakata Y, Fukuzumi S. Linkage Dependent Charge Separation and Charge Recombination in Porphyrin-Pyromellitimide-Fullerene Triads. J Phys Chem A 2002. [DOI: 10.1021/jp014433f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hiroshi Imahori
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Koichi Tamaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Yasuyuki Araki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Taku Hasobe
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Osamu Ito
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Akihisa Shimomura
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Santi Kundu
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Tadashi Okada
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Yoshiteru Sakata
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan, and Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of
| |
Collapse
|
1273
|
Lange C, Hunte C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci U S A 2002; 99:2800-5. [PMID: 11880631 PMCID: PMC122428 DOI: 10.1073/pnas.052704699] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to integral membrane proteins. Specific and transient complexes need to be formed between the redox partners to ensure fast turnover. In respiration, the mobile electron carrier cytochrome c shuttles electrons from the cytochrome bc1 complex to cytochrome c oxidase. Despite extensive studies of this fundamental step of energy metabolism, the structures of the respective electron transfer complexes were not known. Here we present the crystal structure of the complex between cytochrome c and the cytochrome bc1 complex from Saccharomyces cerevisiae. The complex was crystallized with the help of an antibody fragment, and its structure was determined at 2.97-A resolution. Cytochrome c is bound to subunit cytochrome c1 of the enzyme. The tight and specific interactions critical for electron transfer are mediated mainly by nonpolar forces. The close spatial arrangement of the c-type hemes unexpectedly suggests a direct and rapid heme-to-heme electron transfer at a calculated rate of up to 8.3 x 10(6) s(-1). Remarkably, cytochrome c binds to only one recognition site of the homodimeric multisubunit complex. Interestingly, the occupancy of quinone in the Qi site is higher in the monomer with bound cytochrome c, suggesting a coordinated binding and reduction of both electron-accepting substrates. Obviously, cytochrome c reduction by the cytochrome bc1 complex can be regulated in response to respiratory conditions.
Collapse
Affiliation(s)
- Christian Lange
- Max Planck Institute for Biophysics, Heinrich-Hoffmann-Strasse 7, D-60528 Frankfurt am Main, Germany
| | | |
Collapse
|
1274
|
Jones ML, Kurnikov IV, Beratan DN. The Nature of Tunneling Pathway and Average Packing Density Models for Protein-Mediated Electron Transfer. J Phys Chem A 2002. [DOI: 10.1021/jp0133743] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Megan L. Jones
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Igor V. Kurnikov
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - David N. Beratan
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
1275
|
Johansson MP, Blomberg MRA, Sundholm D, Wikström M. Change in electron and spin density upon electron transfer to haem. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:183-7. [PMID: 11997127 DOI: 10.1016/s0005-2728(02)00182-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Haems are the cofactors of cytochromes and important catalysts of biological electron transfer. They are composed of a planar porphyrin structure with iron coordinated at the centre. It is known from spectroscopy that ferric low-spin haem has one unpaired electron at the iron, and that this spin is paired as the haem receives an electron upon reduction (I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummins Publ. Co., Menlo Park, CA, 1986, pp. 165-170; H.M. Goff, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part I, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 237-281; G. Palmer, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part II, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 43-88). Here we show by quantum chemical calculations on a haem a model that upon reduction the spin pairing at the iron is accompanied by effective delocalisation of electrons from the iron towards the periphery of the porphyrin ring, including its substituents. The change of charge of the iron atom is only approx. 0.1 electrons, despite the unit difference in formal oxidation state. Extensive charge delocalisation on reduction is important in order for the haem to be accommodated in the low dielectric of a protein, and may have impact on the distance dependence of the rates of electron transfer. The lost individuality of the electron added to the haem on reduction is another example of the importance of quantum mechanical effects in biological systems.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, P.O. Box 55 (A.I. Virtanens plats 1), University of Helsinki, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
1276
|
Lemos RS, Gomes CM, LeGall J, Xavier AV, Teixeira M. The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 2002; 34:21-30. [PMID: 11860177 DOI: 10.1023/a:1013814619023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The membrane bound fumarate reductase (FRD) from the sulphate-reducer Desulfovibrio gigas was purified from cells grown on a fumarate/sulphate medium and extensively characterized. The FRD is isolated with three subunits of apparent molecular masses of 71, 31, and 22 kDa. The enzyme is capable of both fumarate reduction and succinate oxidation, exhibiting a higher specificity toward fumarate (Km for fumarate is 0.42 and for succinate 2 mM) and a reduction rate 30 times faster than that for oxidation. Studies by Visible and EPR spectroscopies allowed the identification of two B-type haems and the three iron-sulplur clusters usually found in FRDs and succinate dehydrogenases: [2Fe-2S]2+/1+ (S1), [4Fe-4S]2+/1+ (S2), and [3Fe-4S]1+/0 (S3). The apparent macroscopic reduction potentials for the metal centers, at pH 7.6, were determined by redox titrations: -45 and -175 mV for the two haems, and +20 and -140 mV for the S3 and SI clusters, respectively. The reduction potentials of the haem groups are pH dependent, supporting the proposal that fumarate reduction is associated with formation of the membrane proton gradient. Furthermore, co-reconstitution in liposomes of D. gigas FRD, duroquinone, and D. gigas cytochrome bd shows that this system is capable of coupling succinate oxidation with oxygen reduction to water.
Collapse
Affiliation(s)
- Rita S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
1277
|
Oubrie A, Rozeboom HJ, Kalk KH, Huizinga EG, Dijkstra BW. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer. J Biol Chem 2002; 277:3727-32. [PMID: 11714714 DOI: 10.1074/jbc.m109403200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.
Collapse
Affiliation(s)
- Arthur Oubrie
- Laboratory of Biophysical Chemistry and BIOSON Research Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
1278
|
Schuhmann W. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. J Biotechnol 2002; 82:425-41. [PMID: 11996220 DOI: 10.1016/s1389-0352(01)00058-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of reagentless biosensors implies the tight and functional immobilisation of biological recognition elements on transducer surfaces. Specifically, in the case of amperometric enzyme electrodes, electron-transfer pathways between the immobilised redox protein and the electrode surface have to be established allowing a fast electron transfer concomitantly avoiding free-diffusing redox species. Based on the specific nature of different redox proteins and non-manual immobilisation procedures possible biosensor designs are discussed, namely biosensors based on (i) direct electron transfer between redox proteins and electrodes modified with self-assembled monolayers; (ii) anisotropic orientation of redox proteins at monolayer-modified electrodes; (iii) electron-transfer cascades via redox hydrogels; and (iv) electron-transfer via conducting polymers.
Collapse
Affiliation(s)
- Wolfgang Schuhmann
- Analytische Chemie-Elektroanalytik & Sensorik, Ruhr-Universität Bochum, Germany.
| |
Collapse
|
1279
|
Richter CD, Allen JWA, Higham CW, Koppenhofer A, Zajicek RS, Watmough NJ, Ferguson SJ. Cytochrome cd1, reductive activation and kinetic analysis of a multifunctional respiratory enzyme. J Biol Chem 2002; 277:3093-100. [PMID: 11709555 DOI: 10.1074/jbc.m108944200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paracoccus pantotrophus cytochrome cd(1) is an enzyme of bacterial respiration, capable of using nitrite in vivo and also hydroxylamine and oxygen in vitro as electron acceptors. We present a comprehensive analysis of the steady state kinetic properties of the enzyme with each electron acceptor and three electron donors, pseudoazurin and cytochrome c(550), both physiological, and the non-physiological horse heart cytochrome c. At pH 5.8, optimal for nitrite reduction, the enzyme has a turnover number up to 121 s(-1) per d(1) heme, significantly higher than previously observed for any cytochrome cd(1). Pre-activation of the enzyme via reduction is necessary to establish full catalytic competence with any of the electron donor proteins. There is no significant kinetic distinction between the alternative physiological electron donors in any respect, providing support for the concept of pseudospecificity, in which proteins with substantially different tertiary structures can transfer electrons to the same acceptor. A low level hydroxylamine disproportionase activity that may be an intrinsic property of cytochromes c is also reported. Important implications for the enzymology of P. pantotrophus cytochrome cd(1) are discussed and proposals are made about the mechanism of reduction of nitrite, based on new observations placed in the context of recent rapid reaction studies.
Collapse
Affiliation(s)
- Carsten D Richter
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1280
|
Lancaster CRD, Simon J. Succinate:quinone oxidoreductases from epsilon-proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:84-101. [PMID: 11803019 DOI: 10.1016/s0005-2728(01)00230-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The epsilon-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the epsilon-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from epsilon-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic epsilon-proteobacteria.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Frankfurt am Main, Germany.
| | | |
Collapse
|
1281
|
Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CRD. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:23-38. [PMID: 11803015 DOI: 10.1016/s0005-2728(01)00234-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors ('fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (Deltap) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to Deltap generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the Deltap is generated exclusively by MK reduction with H2 or formate; MKH2 oxidation by fumarate appears to be an electroneutral process. However, evidence derived from the crystal structure of fumarate reductase suggests an electrogenic mechanism for the latter process.
Collapse
Affiliation(s)
- Achim Kröger
- Institüt für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
1282
|
Fukuzumi S. Catalysis in electron transfer reactions: facts and mechanistic insights. J PHYS ORG CHEM 2002. [DOI: 10.1002/poc.496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1283
|
Partitioning technique in electron transfer and excitation energy transfer. ADVANCES IN QUANTUM CHEMISTRY 2002. [DOI: 10.1016/s0065-3276(02)41044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
1284
|
Truglio JJ, Theis K, Leimkühler S, Rappa R, Rajagopalan KV, Kisker C. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 2002; 10:115-25. [PMID: 11796116 DOI: 10.1016/s0969-2126(01)00697-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Xanthine dehydrogenase (XDH), a complex molybdo/iron-sulfur/flavoprotein, catalyzes the oxidation of hypoxanthine to xanthine followed by oxidation of xanthine to uric acid with concomitant reduction of NAD+. The 2.7 A resolution structure of Rhodobacter capsulatus XDH reveals that the bacterial and bovine XDH have highly similar folds despite differences in subunit composition. The NAD+ binding pocket of the bacterial XDH resembles that of the dehydrogenase form of the bovine enzyme rather than that of the oxidase form, which reduces O(2) instead of NAD+. The drug allopurinol is used to treat XDH-catalyzed uric acid build-up occurring in gout or during cancer chemotherapy. As a hypoxanthine analog, it is oxidized to alloxanthine, which cannot be further oxidized but acts as a tight binding inhibitor of XDH. The 3.0 A resolution structure of the XDH-alloxanthine complex shows direct coordination of alloxanthine to the molybdenum via a nitrogen atom. These results provide a starting point for the rational design of new XDH inhibitors.
Collapse
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, Center for Structural Biology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
1285
|
Faller P, Debus RJ, Brettel K, Sugiura M, Rutherford AW, Boussac A. Rapid formation of the stable tyrosyl radical in photosystem II. Proc Natl Acad Sci U S A 2001; 98:14368-73. [PMID: 11762431 PMCID: PMC64688 DOI: 10.1073/pnas.251382598] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Indexed: 11/18/2022] Open
Abstract
Two symmetrically positioned redox active tyrosine residues are present in the photosystem II (PSII) reaction center. One of them, TyrZ, is oxidized in the ns-micros time scale by P680+ and reduced rapidly (micros to ms) by electrons from the Mn complex. The other one, TyrD, is stable in its oxidized form and seems to play no direct role in enzyme function. Here, we have studied electron donation from these tyrosines to the chlorophyll cation (P680+) in Mn-depleted PSII from plants and cyanobacteria. In particular, a mutant lacking TyrZ was used to investigate electron donation from TyrD. By using EPR and time-resolved absorption spectroscopy, we show that reduced TyrD is capable of donating an electron to P680+ with t1/2 approximately equal to 190 ns at pH 8.5 in approximately half of the centers. This rate is approximately 10(5) times faster than was previously thought and similar to the TyrZ donation rate in Mn-depleted wild-type PSII (pH 8.5). Some earlier arguments put forward to rationalize the supposedly slow electron donation from TyrD (compared with that from TyrZ) can be reassessed. At pH 6.5, TyrZ (t1/2 = 2-10 micros) donates much faster to P680+ than does TyrD (t1/2 > 150 micros). These different rates may reflect the different fates of the proton released from the respective tyrosines upon oxidation. The rapid rate of electron donation from TyrD requires at least partial localization of P680+ on the chlorophyll (PD2) that is located on the D2 side of the reaction center.
Collapse
Affiliation(s)
- P Faller
- Département de Biologie Cellulaire et Moléculaire (DBCM), Commissariat à l'Energie Atomique (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
1286
|
Fukuzumi S, Yoshida Y, Urano T, Suenobu T, Imahori H. Extremely slow long-range electron transfer reactions across zeolite-solution interface. J Am Chem Soc 2001; 123:11331-2. [PMID: 11697992 DOI: 10.1021/ja015751v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST) 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
1287
|
Abstract
Redox proteins and enzymes are attractive targets for nanobiotechnology. The theoretical framework of biological electron transfer is increasingly well-understood, and several properties make redox centres good systems for exploitation: many can be detected both electrochemically and optically; they can perform specific reactions; they are capable of self-assembly; and their dimensions are in the nanoscale. Great progress has been made with the two main approaches of protein engineering: rational design and combinatorial synthesis. Rational design has put our understanding of the structure-function relationship to the test, whereas combinatorial synthesis has generated new molecules of interest. This article provides selected examples of novel approaches where redox proteins are "wired up" in efficient electron-transfer chains, are "assembled" in artificial multidomain structures (molecular Lego), are "linked" to surfaces in nanodevices for biosensing and nanobiotechnological applications.
Collapse
Affiliation(s)
- G Gilardi
- Dept of Biological Sciences, Imperial College of Science, Technology and Medicine, London, UK SW7 2AY.
| | | |
Collapse
|
1288
|
Verkhovsky MI, Jasaitis A, Wikström M. Ultrafast haem-haem electron transfer in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:143-6. [PMID: 11779547 DOI: 10.1016/s0005-2728(01)00220-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electron transfer between the redox centres is essential for the function of the haem-copper oxidases. To date, the fastest rate of electron transfer between the haem groups has been determined to be ca. 3 x 10(5) s(-1). Here, we show by optical spectroscopy that about one half of this electron transfer actually occurs at least three orders of magnitude faster, after photolysis of carbon monoxide from the half-reduced bovine heart enzyme. We ascribe this to the true haem-haem electron tunnelling rate between the haem groups.
Collapse
Affiliation(s)
- M I Verkhovsky
- Helsinki Bioenergetics Group, Institute of Biotechnology and Biocentrum Helsinki, Biocenter 2, Room 2011, P.O. Box 56, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | |
Collapse
|
1289
|
Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci U S A 2001; 98:11973-8. [PMID: 11593006 PMCID: PMC59822 DOI: 10.1073/pnas.211429998] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Accepted: 08/15/2001] [Indexed: 11/18/2022] Open
Abstract
A crystal structure of the anaerobic Ni-Fe-S carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum has been determined to 2.8-A resolution. The CODH family, for which the R. rubrum enzyme is the prototype, catalyzes the biological oxidation of CO at an unusual Ni-Fe-S cluster called the C-cluster. The Ni-Fe-S C-cluster contains a mononuclear site and a four-metal cubane. Surprisingly, anomalous dispersion data suggest that the mononuclear site contains Fe and not Ni, and the four-metal cubane has the form [NiFe(3)S(4)] and not [Fe(4)S(4)]. The mononuclear site and the four-metal cluster are bridged by means of Cys(531) and one of the sulfides of the cube. CODH is organized as a dimer with a previously unidentified [Fe(4)S(4)] cluster bridging the two subunits. Each monomer is comprised of three domains: a helical domain at the N terminus, an alpha/beta (Rossmann-like) domain in the middle, and an alpha/beta (Rossmann-like) domain at the C terminus. The helical domain contributes ligands to the bridging [Fe(4)S(4)] cluster and another [Fe(4)S(4)] cluster, the B-cluster, which is involved in electron transfer. The two Rossmann domains contribute ligands to the active site C-cluster. This x-ray structure provides insight into the mechanism of biological CO oxidation and has broader significance for the roles of Ni and Fe in biological systems.
Collapse
Affiliation(s)
- C L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
1290
|
Wiklund R, Salih GF, Mäenpää P, Jansson C. Engineering of the protein environment around the redox-active TyrZ in photosystem II. The role of F186 and P162 in the D1 protein of Synechocystis 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5356-64. [PMID: 11606198 DOI: 10.1046/j.0014-2956.2001.02466.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem II reaction centre protein D1 is encoded by the psbA gene. By activation of the silent and divergent psbA1 gene in the cyanobacterium Synechocystis 6803, a novel D1 protein, D1', was produced [Salih, G. & Jansson, C. (1997) Plant Cell 9, 869-878]. The D1' protein was found to be fully operational although it deviates from the normal D1 protein in 54 out of 360 amino acids. Two notable amino-acid substitutions in D1' are the replacements of F186 by a leucine and P162 by a serine. The F186 and P162 positions are located in the vicinity of the reaction centre chlorophyll dimer P680 and the redox-active Y161 (TyrZ), and F186 has been implicated in the electron transfer between Y161 and P680. The importance of F186 was addressed by construction of engineered D1 proteins in Synechocystis 6803. F186 was replaced by leucine, serine, alanine, tyrosine or tryptophan. Only the leucine replacement yielded a functional D1 protein. Other substitutions did not support photoautotrophic growth and the corresponding mutants showed no or very poor oxygen evolving activity. In the F186Y and F186W mutants, the D1 protein failed to accumulate to appreciable levels in the thylakoid membrane. The F186S mutation severely increased the light sensitivity of the D1 protein, as indicated by the presence of a 16-kDa proteolytic degradation product. We conclude that the hydrophobicity and van der Waals volume are the most important features of the residue at position 186. Exchanging P162 for a serine yielded no observable phenotype.
Collapse
Affiliation(s)
- R Wiklund
- Department of Plant Biology, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
1291
|
Chohan KK, Jones M, Grossmann JG, Frerman FE, Scrutton NS, Sutcliffe MJ. Protein dynamics enhance electronic coupling in electron transfer complexes. J Biol Chem 2001; 276:34142-7. [PMID: 11429403 DOI: 10.1074/jbc.m101341200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron-transferring flavoproteins (ETFs) from human and Paracoccus denitrificans have been analyzed by small angle x-ray scattering, showing that neither molecule exists in a rigid conformation in solution. Both ETFs sample a range of conformations corresponding to a large rotation of domain II with respect to domains I and III. A model of the human ETF.medium chain acyl-CoA dehydrogenase complex, consistent with x-ray scattering data, indicates that optimal electron transfer requires domain II of ETF to rotate by approximately 30 to 50 degrees toward domain I relative to its position in the x-ray structure. Domain motion establishes a new "robust engineering principle" for electron transfer complexes, tolerating multiple configurations of the complex while retaining efficient electron transfer.
Collapse
Affiliation(s)
- K K Chohan
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
1292
|
Barter L, Schilstra M, Barber J, Durrant J, Klug D. Are the trapping dynamics in Photosystem II sensitive to QA redox potential? J Photochem Photobiol A Chem 2001. [DOI: 10.1016/s1010-6030(01)00506-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1293
|
|
1294
|
Sétif P, Seo D, Sakurai H. Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria. Biophys J 2001; 81:1208-19. [PMID: 11509338 PMCID: PMC1301603 DOI: 10.1016/s0006-3495(01)75779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iron-sulfur clusters are the terminal electron acceptors of the photosynthetic reaction centers of green sulfur bacteria and photosystem I. We have studied electron-transfer reactions involving these clusters in the green sulfur bacterium Chlorobium tepidum, using flash-absorption spectroscopic measurements. We show for the first time that three different clusters, named F(X), F(1), and F(2), can be photoreduced at room temperature during a series of consecutive flashes. The rates of electron escape to exogenous acceptors depend strongly upon the number of reduced clusters. When two or three clusters are reduced, the escape is biphasic, with the fastest phase being 12-14-fold faster than the slowest phase, which is similar to that observed after single reduction. This is explained by assuming that escape involves mostly the second reducible cluster. Evidence is thus provided for a functional asymmetry between the two terminal acceptors F(1) and F(2). From multiple-flash experiments, it was possible to derive the intrinsic recombination rates between P840(+) and reduced iron-sulfur clusters: values of 7, 14, and 59 s(-1) were found after one, two and three electron reduction of the clusters, respectively. The implications of our results for the relative redox potentials of the three clusters are discussed.
Collapse
Affiliation(s)
- P Sétif
- Commissariat à l'Energie Atomique, Département de Biologie Cellulaire et Moléculaire, Section de Bioénergétique and CNRS URA 2096, 91191 Gif sur Yvette, France.
| | | | | |
Collapse
|
1295
|
Lancaster CR. Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase? FEBS Lett 2001; 504:133-41. [PMID: 11532445 DOI: 10.1016/s0014-5793(01)02706-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure of Wolinella succinogenes quinol:fumarate reductase by X-ray crystallography has been determined at 2.2-A resolution [Lancaster et al. (1999), Nature 402, 377-385]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulphur clusters, and two haem b groups) a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which is essential for menaquinol oxidation. [Lancaster et al. (2000), Proc. Natl. Acad. Sci. USA 97, 13051-13056]. The location of this residue in the structure suggests that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could be associated with the generation of a transmembrane electrochemical potential. Based on crystallographic analysis of three different crystal forms of the enzyme and the results from site-directed mutagenesis, we have derived a mechanism of fumarate reduction and succinate oxidation [Lancaster et al. (2001) Eur. J. Biochem. 268, 1820-1827], which should be generally relevant throughout the superfamily of succinate:quinone oxidoreductases.
Collapse
Affiliation(s)
- C R Lancaster
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
1296
|
Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 2001; 293:1281-5. [PMID: 11509720 DOI: 10.1126/science.1061500] [Citation(s) in RCA: 370] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The homodimeric nickel-containing CO dehydrogenase from the anaerobic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO to CO2. A crystal structure of the reduced enzyme has been solved at 1.6 angstrom resolution. This structure represents the prototype for Ni-containing CO dehydrogenases from anaerobic bacteria and archaea. It contains five metal clusters of which clusters B, B', and a subunit-bridging, surface-exposed cluster D are cubane-type [4Fe-4S] clusters. The active-site clusters C and C' are novel, asymmetric [Ni-4Fe-5S] clusters. Their integral Ni ion, which is the likely site of CO oxidation, is coordinated by four sulfur ligands with square planar geometry.
Collapse
Affiliation(s)
- H Dobbek
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
1297
|
Fukuzumi S, Imahori H, Okamoto K, Yamada H, Fujitsuka M, Ito O, Guldi DM. Uphill Photooxidation of NADH Analogues by Hexyl Viologen Catalyzed by Zinc Porphyrin-Linked Fullerenes. J Phys Chem A 2001. [DOI: 10.1021/jp011613g] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Hiroshi Imahori
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ken Okamoto
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Hiroko Yamada
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Mamoru Fujitsuka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Osamu Ito
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Dirk M. Guldi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation (JST), Sendai, Miyagi 980-8577, Japan, and Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
1298
|
Beck BW, Xie Q, Ichiye T. Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide pipoles in [4Fe-4S] ferredoxins. Biophys J 2001; 81:601-13. [PMID: 11463610 PMCID: PMC1301538 DOI: 10.1016/s0006-3495(01)75726-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein.
Collapse
Affiliation(s)
- B W Beck
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
1299
|
Imahori H, Guldi DM, Tamaki K, Yoshida Y, Luo C, Sakata Y, Fukuzumi S. Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J Am Chem Soc 2001; 123:6617-28. [PMID: 11439049 DOI: 10.1021/ja004123v] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extremely long-lived charge-separated state has been achieved successfully using a ferrocene-zincporphyrin-freebaseporphyrin-fullerene tetrad which reveals a cascade of photoinduced energy transfer and multistep electron transfer within a molecule in frozen media as well as in solutions. The lifetime of the resulting charge-separated state (i.e., ferricenium ion-C(60) radical anion pair) in a frozen benzonitrile is determined as 0.38 s, which is more than one order of magnitude longer than any other intramolecular charge recombination processes of synthetic systems, and is comparable to that observed for the bacterial photosynthetic reaction center. Such an extremely long lifetime of the tetrad system has been well correlated with the charge-separated lifetimes of two homologous series of porphyrin-fullerene dyad and triad systems.
Collapse
Affiliation(s)
- H Imahori
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
1300
|
Darrouzet E, Moser CC, Dutton PL, Daldal F. Large scale domain movement in cytochrome bc(1): a new device for electron transfer in proteins. Trends Biochem Sci 2001; 26:445-51. [PMID: 11440857 DOI: 10.1016/s0968-0004(01)01897-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, crystallographic, spectroscopic, kinetic and biochemical genetic data have merged to unveil a large domain movement for the Fe-S subunit in cytochrome bc(1). In this evolutionarily conserved enzyme, the domain motion acts to conduct intra-complex electron transfer and is essential for redox energy conversion.
Collapse
Affiliation(s)
- E Darrouzet
- Service de Biochimie Post-génomique et Toxicologie Nucléaire, DIEP, DSV, CEA VALRHO, 30207, Bagnols sur Cèze, France
| | | | | | | |
Collapse
|